当前位置:文档之家› 锻件超声波检测方法(1)

锻件超声波检测方法(1)

锻件超声波检测方法(1)

锻件超声波检测作业指导书

锻件超声波检测作业指导书 7.1适用范围: 本条适用于碳素钢和低合金钢锻件的超声波检测和缺陷等级评定,不适用于奥氏体粗晶材料的超声检测,也不适用于内外径之比小于80%的环形和筒形锻件的周向横波检测。 7.2检测工艺卡 7.2.1检测工艺卡由具有II级UT资质人员编制,工艺卡的编制应与所执行的技术规范及本检测作业指导书相符。 7.2.2检测工艺卡由具有UTIII资质人员或UT检测责任师审核批准。 7.3检测器材: 7.3.1仪器 选用数字式超声波检测仪或A型脉冲反射式超声波检测仪,其工作频率范围为0.5-10MHz,水平线性误差不大于1%,垂直线性误差不大于5%。 7.3.2探头 选用双晶直探头频率为 5 MHz,晶片面积不小于

150mm2;单晶直探头,频率为2-5 MHz,圆晶片直径为14-25mm。 7.3.3试块 采用纵波单晶直探头时采用JB/T4730-2005规定的CSI 试块;采用纵波双晶探头时采用JB/T4730-2005图8-5规定的CSII标准试块;检测面是曲面时采用CSIII试块。 7.3.4耦合剂:化合浆糊或机油。 7.4检测时机:原则上安排热处理后,槽、孔、台阶加工前进行。若热处理后锻件形状不适合超声波检测时,也可在热处理前进行,但在热处理后仍应对锻件进行尽可能完全的检测。 7.5检测方法 7.5.1执行检测工艺卡的规定 7.5.2锻件一般应进行纵波检测,对筒形锻件还应进行横波检测,但扫查部位 和验收标准应根据JB/T4730-2005.3附录C的规定。 7.5.3在纵波检测时,原则上应从两面相互垂直的方向进行检

测,尽可能的检测带锻件的全体积,但锻件厚度超过400mm 时,应从两端面进行100%的扫查。 7.6检测灵敏度确定 7.6.1纵波直探头检测灵敏度的确定 当被检部位的厚度大于或等于3倍进场区时,原则上选用底波计算方法确定基准灵敏度,也可以采用试块法确定基准灵敏度。 7.6.2纵波双晶直探头灵敏度确定 根据需要选择不同直径的平底孔试块,并依次测试一组不同检测深度的平底孔(至少三个),调节衰减器,使其中最高回波达到满刻度的80%。不改变仪器参数,测出其他平底孔回波的最高点,将其标在荧光屏上,连接这些点,即得到对应于不同直径平底孔的双晶直探头的距离—波幅曲线,并以此作为基准灵敏度。 7.6.3检测灵敏度一般不得低于最大检测距离处的φ2mm平底孔当量直径。 7.6.4缺陷当量的确定:

锻件超声作业指导书

超声波检测作业指导书 姓名:身份证号码:报考级别: 报考门类:锻件 一、前言 1.适用范围: 本作业指导书适用于本次考试的碳钢和低合金锻钢件的超声检测方法和质量分级。 2.检测标准 JB/T 8467-2014 锻钢件超声检测 二、检测人员资质要求 从事超声波探伤的检测人员,必须掌握超声波探伤的基础技术。具备足够的焊缝超声波探伤经验, 三、工件参数与检测要求 1.工件参数 本次考试试件工件参数 2.检测要求 记录缺陷位置、缺陷当量尺寸、评定等级。 四、探伤仪、探头及系统性能 1.探伤仪性能 采用A型脉冲反射式超声波探伤仪,其工作频率范围为0.5MHz~10MHz,仪器至少在荧光屏满刻度的80%范围内呈线性显示。探伤仪应具有80dB以上的连续可调衰减器,步进级每档不大于2dB,其精度为任意相邻12dB误差在±1dB以内,最大累计误差不超过1dB。 2.探头性能 采用单晶直探头,直径应在为Φ10mm~Φ40mm范围内,探头标称频率应在1MHz~5MHz 范围内。 3.系统性能 水平线性误差不大于±2%,垂直线性误差不大于±5%。灵敏度余量应不小于30dB。五、试块 CS-2

六、检测等级 1.检测等级 无 2.检测等级的检测范围 应在相互垂直的两个检测面上进行扫查。 七、检测准备 1.探伤面准备 检测面应无污物、氧化皮、漆皮等 2.探头频率、角度选择 2.5PΦ20 3.耦合剂选择 机油 八、检测程序 1. 检测系统调节 使用CS-2试块,Φ2mm平底孔,采用计算法,并以此作为基准灵敏度。 Δ=40lgA X/ A F A X为考试试件的厚度,A F为试块的厚度。 2. 检测 为确保检测时超声声束能扫查到工件的整个被检区域,探头的每次扫查覆盖应大于探头直径的15%。 探头的扫查速度一般不应超过150mm/s。 扫查灵敏度一般应比基准灵敏度高6dB。 九、缺陷评定. 采用计算法确定缺陷的当量。 Δ=40lg(D F×A X)/(D I×A F) A X为考试试件的厚度, A F为缺陷深度, D F为缺陷当量值, D I为Φ2

超声检测锻件实操步骤

考试程序步骤 一、锻件(直探头2.5Pφ14K2) 步骤:1、开机——按两次确定键——按功能键——按零(初始化)——按1(当前通道)——长按通道/设置键——改探头参数等—调校。 2、直探头纵波入射点调校:由上一步进入零点/调校键——选择1(入射点调校)(显 示调节为,波速5920M/S;一次回波声程100mm;二次回波声程0mm.)——放在CSK-ⅠA试块上,对准中间完好位置找到底面回波,待波稳定后,按确定键,完成入射点调校。 3、调整灵敏度:将直探头放在150/φ3(根据现场情况)试块上,找到其反射波,并 用“波门”键调整“+”或“—”使其波门对准150/φ3处的反射波,找到最高波,调节到80%。记下此时增益Δ1dB,然后计算出150/φ3与225/φ2的回波分贝差Δ2dB,在Δ1dB基础上,调节增益旋钮增至(Δ1+Δ2)dB。 4、锻件检测:将直探头放在225mm,锻件上,全面扫查,找到200mm处缺陷波,用“波门”键调整“+”或“—”使其波门对准200mm处的反射波,使其最高波达到80%,记下此时Δ3dB. 5、计算当量:则200mm处缺陷波比225/φ2波高高Δ=(Δ1+Δ2-Δ3)dB。由公式 计算出缺陷当量。 6、根据标准进行评级,整理报告。 最简单做法: 锻件: 步骤:1、开机——按两次确定键——按功能键——按零(初始化)——按1(当前通道)——长按通道/设置键——改探头参数等—调校。 2、直探头纵波入射点调校:由上一步进入零点/调校键——选择1(入射点调校)(显 示调节为,波速5920M/S;一次回波声程100mm;二次回波声程0mm.)——放在CSK-ⅠA试块上,对准中间完好位置找到底面回波,待波稳定后,按确定键,完成入射点调校。 3、调整灵敏度:将直探头放在150/φ3(根据现场情况)试块上,找到其反射波,并 用“波门”键调整“+”或“—”使其波门对准150/φ3处的反射波,找到最高波,调节到80%。记下此时面板的读数Δ1dB。 4、锻件检测:将直探头放在225mm,锻件上,全面扫查,找到200mm处缺陷波,用“波门”键调整“+”或“—”使其波门对准200mm处的反射波,使其最高波达到80%,记下此时面板右上角的读数Δ2dB. 5、计算当量:则200/φx缺陷波比150/φ3波高高Δ=(Δ2-Δ1)dB。由公式 计算出缺陷当量。 6、根据标准进行评级,整理报告。

关于锻件超声波探伤的标准及规程

关于锻件超声波探伤的标准及规程 1.1.1筒形锻件----轴向长度L大于其外径尺寸D的轴对称空心锻件如图1(a) 所示.t为公称厚度. 环形锻件----轴向长度L小于等于其外径尺寸D的轴对称空心件如图1(a)所 示.t为公称厚度. 饼形锻件----轴向长度L小于等于其外径D的轴对称形锻件如图1(b)所示.t 为公称厚度. 碗形锻件----用作容器封头,中心部份凹进去的轴对称形锻件如图1(c)所示.t 为公称厚度. 方形锻件----相交面互相垂直的六面体锻件如图1(d)所示. 三维尺寸a、b、c中最上称厚度. 底波降低量GB/BF(dB) 无缺陷区的第一次底波高度(GB)和有缺陷区的第一次底波高度(BF)之比.由缺陷 引起的底面反射的降低量用dB值表示. 密集区缺陷 当荧光屏扫描线上相当于50mm的声程范围内同时有5个或者5个以上的缺陷反射信号;或者在50mm×50mm的探测面上发现同一深度范围内有5个或5个以上的 缺陷反射信号. 缺陷当量直径 用AVG方法求出的假定与超声波束相垂直的平底孔的直径,称为缺陷当量直径, 或简称为当量直径. AVG曲线 以纵座标轴表示相对的反射回波高度,以横座标轴表示声程,对不同直径且假定与超声波束相垂直的圆平面缺陷所画出的曲线图叫AVG曲线,亦称为DGS曲线. 2探伤人员 锻件探伤应由具有一定基础知识和锻件探伤经验,并经考核取得国家认可的资格 证书者担任. 3探伤器材

探伤仪 应采用A型脉冲反射式超声波探伤仪,其频响范围至少应在1MHz~5Mhz内. 仪器应至少在满刻度的75%范围内呈线性显示(误差在5%以内),垂直线性误差 应不大于5%. 仪器和探头的组合灵敏度:在达到所探工件最大程处的探伤灵敏度时,有效灵敏 度余量至少为10dB. 衰减器的精度和范围,仪器的水平线性、动态范围等均应队伍ZBY230-84《A型脉冲反射式超声波探伤仪通用技术条件》中的有关规定. 探头 探头的公称频率主要为,频率误差为±10%. 主要采用晶片尺寸为Φ20mm的硬保护膜直探头. 必要时也可采用2MHzs或25MHz,以及晶片尺寸不大于Φ28mm探头. 探头主声束应无双峰,无偏斜. 耦合剂 可采用机油、甘油等透声性能好,且不损害工件的液体. 4探伤时机及准备工作 探伤时机 探伤原则上应安排在最终热处理后,在槽、孔、台级等加工前,比较简单的几何形状下进行.热处理后锻件形状若不适于超声波探伤也可在热处理前进行.但在热处理后,仍应对锻件尽可能完全进行探伤. 准备工作 探伤面的光洁度不应低一地5,且表面平整均匀,并与反射面平等,圆柱形锻件其端面应与轴线相垂直,以便于轴向探伤.方形锻件的面应加工平整,相邻的端面 应垂直. 探伤表面应无划伤以及油垢和油潜心物等附着物. 锻件的几何形状及表面检查均合格后,方可进行探伤. 重要区

无损检测实验报告

无损检测实验报告 一、实验目的 1.通过实验了解六种无损检测(超声检测、射线检测、涡流检测、磁粉检测、 渗透检测、声发射检测)的基本原理。 2.掌握六种无损检测的方法,仪器及其功能和使用方法。 3.了解六种无损检测的使用范围,使用规范和注意事项。 二、实验原理 (一)超声检测(UT) 1. 基本原理 超声波与被检工件相互作用,根据超声波的反射、透射和散射的行为,对被检工件经行缺陷测量和力学性能变化进行检测和表征,进而进行安全评价的一种无损检测技术。 金属中有气孔、裂纹、分层等缺陷(缺陷中有气体)或夹杂,超声波传播到金属与缺陷的界面处时,就会全部或部分反射。超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种不连续往往又造成声阻抗的不一致,由反射定理我们知道,超声波在两种不同声阻抗的介质的交界面上将会发生反射,反射回来的能量的大小与交界面两边介质声阻抗的差异和交界面的取向、大小有关。脉冲反射式超声波探伤仪就是根据这个原理设计的。目前便携式的脉冲反射式超声波探伤仪大部分是A 扫描方式的,所谓A 扫描显示方式即显示器的横坐标是超声波在被检测材料中的传播时间或者传播距离,纵坐标是超声波反射波的幅值。譬如,在一个钢工件中存在一个缺陷,由于这个缺陷的存在,造成了缺陷和钢材料之间形成了一个不同介质之间的交界面,交界面之间的声阻抗不同,当发射的超声波遇到这个界面之后,就会发生反射,反射回来的能量又被探头接受到,在显示屏幕中横坐标的一定的位置就会显示出来一个反射波的波形,横坐标的这个位置就是缺陷在被检测材料中的深度。这个反射波的高度和形状因不同的缺陷而不同,反映了缺陷的性质。 2. 仪器结构 a)仪器主要组成 探头、压电片和耦合剂。 其中,探头分为直探头、斜探头。压电片受到电信号激励便可产生振动发射超声波,当超声波作用在压电片上时,晶片受迫振动引起的形变可转换成相应的电信号,从而接受超声波。耦合剂是为了使超声波更有效的传入工件,在探头与工件表面之间施加的一层透生介质为耦合剂,作用在于排除探头与工件之间的空气。 b)主要旋钮 F1-F6 菜单键,不同状态下有不同功能。 0ABC\4MNO 调节键,调节参数值的大小。 设置及检测键。 快捷键。dB 增益,2GHI 闸门,范围,移位。 电源键。 射线的种类很多,其中易于穿透物质的有X射线、丫射线、中子射线三种。这三 种射线都被用于无损检测,其中X射线和丫射线广泛用于锅炉压力容器焊缝和其他工业

锻件超声波探伤记录报告(大平底)47013-友联

锻件超声波探伤记录和报告(南通友联专用)大平底 准考号: 评分: 试件编号 X 试件名称 锻件 试件材质 45# 试件规格 φ70×225 探头规格 2.5P φ14 探头型式 单晶直探头 仪器型号 PXUT-350C 型 扫查比例 深度1:1 扫查方式 全面扫查 探测灵敏度 φ2灵敏度 执行标准 NB/T47013.3-2015 探 伤 结 果 一.检测内容:对锻件T=225mm 进行超声检测,如何利用150mm 大平底调节工件φ2当量灵敏度. 二.检测步骤: (1) 扫描比例调节; 将纵波直探头放置150mm 大平底上,找出一次(B1)和二次(B2)底面反射波,分别将两波对准水平刻度150和300处, 此时, 深度1:1比例调好. (2).计算步骤 方法A. ①计算150大平底与工件同声程处(150/φ2)回波分贝差; dB X B Bf 352150 36.22lg 202lg 202 2=???=Φ=?ππλ ②计算150/φ2与工件225/φ2回波分贝差 dB X X 71502225 2lg 40lg 401221=??=ΦΦ=? 先增益35dB 调节好150/φ2当量灵敏度,再增益7dB 工件225/φ2灵敏度调节完毕 方法B. 计算150大平底与工件225/φ2回波分贝差; 已知Xf =225 XB =150

db X D X B f 42)150214.322536.22lg(202lg 202 2 22=????==?πλ (3)灵敏度调节;探头放在150大平底试块上,使平底回波达到最高,调至基准高度(80%), 然后增益42dB,此时工件225/φ2灵敏度调好. (4).锻件检测;将探头放置225mm 锻件上进行全面扫查,距锻件表面200mm 发现一缺陷 波,波高比225/φ2灵敏度基准波高高9dB.求缺陷当量. 已知X1=200 φ2=2 X2=225 △=9 求; φX )5625.0lg(402002225lg 40lg 409122X X X X X Φ=??Φ=ΦΦ==? X Φ=5625.0lg 225.0 mm X 3=Φ 三.结论; 对该锻件垂直方向进行超声全面扫查,发现距锻件表面 200mm 处有一缺陷,缺陷当量为3mm. 根据NB/T47013-2015标准,该钢板评为Ⅰ级,合格 报告日期 年 月 日

SEP1921-84锻件超声波检测详细资料

SEP1921-84锻件和锻材的超声检验 1检验目的和对象 本方法适用于直径(边长)100mm以上(含100mm)一般要求锻件和锻材(以下称锻件)的超声检验,尤其适用于脉冲—反射技术检验材料内部缺陷。由缺陷产生的反射波可以确定缺陷的准确位置、尺寸、连续性和数量。有探伤要求的锻件,本方法可作为指导,提供检测范围(见6.2节)和允许的极限(见6.5节和6.6节)。检验所要求的技术条件包括检测系统、锻件状态和结果评级。2应用范围 检验方法上仅包括未完成和未加工的锻件的检验,还包括没有进行热处理和已进行热处理锻件的检验,尤其适于非合金钢和合金钢的检验(见6.1节)更高要求锻件的检验见SEP0000* 若使用的探头与锻件上匹配,检验结果可能会因声波或其它原因的衰减而受到影响。此时,应标注检验结果的偏差。否则,下一步检验的程序须和买方或买方责任人达成一致。 3评级 根据检验的范围分成四个检验组(见6.2节),根据允许缺陷的尺寸和缺陷所指示的长度分5个级别(见6.4节和6.5、表1),此外按允许缺陷的数量也分5个级别(见6.4.3) 4检验的准备 锻件应具有简单的形状或检测部分旋转对称(见DIN54126第1部分,6节),为了使探头和锻件表面耦合良好,检验面和其它反射面要有斜度和粗糙

SEP1921-84 度的要求。 对于无氧化铁皮光滑面的检验,只要选择合适的耦合剂,就可以取得良好的检验效果,若表面粗糙度Rq≤20,根据DIN4762的要求应对材料表面进行加工。 若钢材没经过热处理,而锻件声能的衰减仍在允许的偏差极限(或注明极限)内(只要钢适于热处理),为减少声能损失而进行热处理是必要的。 为了检验缺陷所要求的尺寸等级,通过加工和热处理来达到适于检验的结构和表面状态也是必要的。(表1) 5检测系统: 5.1检测设备 根据脉冲回声技术和回波高度测量关系,带dB幅值控制的校准,超声检测装置应在2dB误差范围内工作。若在使用的灵敏范围内,则上必显示闸门和饱和度。 检验要求的范围必须调整到与检测装置一致,水平线性应在2%以内。5.2探头 探头标称频率必须与被检验圆盘反射体、声距离长度、声波衰减一致。一般探头标称频率在1—4MHz,然而只要符合6.5节注明允许的极限值,也可使用其它频率探头。 检验通常使用直探头,然而为检验近表面缺陷和声波难以到达的环或为使缺陷特殊标定锻件部分扇域具有良好的分辨力,通常用TR探头或者斜探头检验。 为了测出圆盘反射体的当量尺寸,应该了解每类探头A VG曲线的制作方法。

锻件超声波探伤标准

锻件超声波探伤标准 锻件超声波探伤标准 1.1.1筒形锻件----轴向长度L大于其外径尺寸D的轴对称空心锻件如图1(a)所示.t 为公称厚度. 1.1.2 环形锻件----轴向长度L小于等于其外径尺寸D的轴对称空心件如图1(a)所示.t 为公称厚度. 1.1.3 饼形锻件----轴向长度L小于等于其外径D的轴对称形锻件如图1(b)所示.t 为公称厚度. 1.1.4 碗形锻件----用作容器封头,中心部份凹进去的轴对称形锻件如图1(c)所示.t为公称厚度. 1.1.5 方形锻件----相交面互相垂直的六面体锻件如图1(d)所示. 三维尺寸a、b、c中最上称厚度. 1.2 底波降低量GB/BF(dB) 无缺陷区的第一次底波高度(GB)和有缺陷区的第一次底波高度(BF)之比.由缺陷引起的底面反射的降低量用dB值表示. 1.3 密集区缺陷 当荧光屏扫描线上相当于50mm的声程范围内同时有5个或者5个以上的缺陷反射信号;或者在50mm×50mm的探测面上发现同一深度范围内有5个或5个以上的缺陷反射信号. 1.4 缺陷当量直径 用A VG方法求出的假定与超声波束相垂直的平底孔的直径,称为缺陷当量直径,或简称为当量直径. 1.5 A VG曲线 以纵座标轴表示相对的反射回波高度,以横座标轴表示声程,对不同直径且假定与超声波束相垂直的圆平面缺陷所画出的曲线图叫AVG曲线,亦称为DGS曲线. 2探伤人员 锻件探伤应由具有一定基础知识和锻件探伤经验,并经考核取得国家认可的资格证书者担任. 3探伤器材 3.1 探伤仪 3.1.1 应采用A型脉冲反射式超声波探伤仪,其频响范围至少应在1MHz~5Mhz内. 3.1.2 仪器应至少在满刻度的75%范围内呈线性显示(误差在5%以内),垂直线性误差应不大于5%. 3.1.3 仪器和探头的组合灵敏度:在达到所探工件最大程处的探伤灵敏度时,有效灵敏度余量至少为10dB. 3.1.4 衰减器的精度和范围,仪器的水平线性、动态范围等均应队伍ZBY230-84《A型脉冲反射式超声波探伤仪通用技术条件》中的有关规定. 3.2 探头 3.2.1 探头的公称频率主要为2.5Mhz,频率误差为±10%. 3.2.2 主要采用晶片尺寸为Φ20mm的硬保护膜直探头. 3.2.3 必要时也可采用2MHzs或25MHz,以及晶片尺寸不大于Φ28mm探头. 3.2.4 探头主声束应无双峰,无偏斜. 3.3 耦合剂 可采用机油、甘油等透声性能好,且不损害工件的液体. 4探伤时机及准备工作

●锻件超声波检测时经验计算调整值

超声波检测锻件、轧辊(底面与探测面须平行或大的实心圆柱体)时经验计算调整值 不同深度Ф2当量灵敏度增益分贝值 dB x/mm 40 50 60 70 80 90 100 150 200 250 300 350 400 450 500 550 600 650 △B/Ф223.5 25.5 27.0 28.4 29.5 30.5 31.5 35.0 37.5 39.5 41.0 42.4 43.5 44.6 45.5 46.3 47.1 47.8 x/mm 700 800 900 1000 1100 1200 △Ф248.4 49.6 50.6 51.5 52.3 53.1 注:x——平底孔至波源的距离;△B/Ф2=20lg x-8.5(不同深度Φ2当量灵敏度的增益分贝值) 缺陷Фx在x1处时与最大声程时Ф2的分贝差 dB 注:x1——缺陷Фx的声程;n——缺陷Фx在超声波探伤仪示波屏上的刻度值;△Ф——不同距离处的平底孔Фx的大小Фx——在超声波探伤仪示波屏不同刻度上所显示的缺陷;△Фx=40lg(Фx x2/Ф2x1)=40lg(10Фx/nФ2)

实用AVG曲线及缺陷当量定量表

操作步骤及举例说明 1. 调节探伤灵敏度 (1)根据探件大小,确定好探测范围; (2)置探头于工件探测面上,找到工件完好部位的大平底回波(底面与探测面须平行)或大实心圆柱体底波,将其调到一定高度; (3)查曲线即得到所对应长度的分贝值,再增益其分贝值,即得所对应的Ф2当量灵敏度。另外可查表得到其他灵敏度。 2 .确定缺陷当量 (1)找出缺陷回波的最高峰,增加仪器分贝值使之处于所定的某一高度,则仪器分贝增加值已知; (2)根据此缺陷波所处的位置及分贝增加值,查表可得缺陷的当量大小。 举例:一检件规格为Φ120×1000.距离600处有一缺陷,现有PXUT-320C一台,2.5P20Z探头一个,以此条件检测此检件并确定缺陷的当量大小。 1.在试块上测好零点并保存。 2.将探测范围调至1500㎜,探头置于检件探测面找完好部位大平地回波至80﹪波高。 3.查表1000处为51.5dB,仪器再增益51.5dB。此处Ф2灵敏度调好。确定。 4.找到缺陷最高波至80﹪波高,记下此时dB增加值。 5.根据缺陷所处位置及dB增加值,查表得缺陷的当量大小。 假设2.5刻度处dB增加值31 dB,则缺陷的当量大小为Ф3。 注: 1.大平底声程差1倍,回波声压差6dB。 2.平底孔声程差1倍或孔径差1倍,回波声压均差12dB。 3.2.5MH 声程100㎜大平底与同声程Φ2平底孔声程差31.5 dB。声程100㎜×N(某一数)的大平底与同声程Φ2平底孔声程差为 Z (31.5+20LgN)dB。

锻件质量证明书

锻件质量证明书 锻件产品质量证明书锻件名称锻件编号质量保证师印章法定代表人印章章丘市顺发机械厂年月日锻件产品合格证质量检验报告订货单位锻件名称制造标准锻件批号锻件级别批量钢号出厂日期 该批锻件经质量检验,符合《压力容器安全技术监察规程》、设备和行业标准的要求。质量检验员签字年月日质量检验科章年月日检验责任师检验员年月日篇二:锻件的材质单要求(学习) 锻件的材质单正常流程:针对于锻件物料:此单中涉及的所有证件,皆应该与到货物料一共发来。篇三:锻件热处理报告 forging heat treatment report reporter:trier: quality inspection section stamp(质检章): 20XX年8月2日受压元件产品质量证明书 quality certificate of forging 锻件名称:锻件、支撑法兰、法兰盖、外筒法兰锻件编号:f14-132~137 forging serial number:质量保证师印章:

quality assurance engineer stamp:法定代表人印章: lagal representative stamp:制造单位:大石桥市石化机械制造厂 manufacturer:dashiqiaoshi shihuajixie duanzaochang 20XX年8月5日锻件产品合格证质量检验报告 qualification certificate of forging 法兰盖、外筒法兰、侧法兰 asmeⅱparta- 锻件名称:锻件、支撑法制造标准:20XXed+20XXadd/sa182m forging name fabrication standard 批件批号:20XX08161 锻件级别:ⅲforging lotnumber forging class 批件量: 7件 钢号: 316 lotquantity steel designation 订货单位:辽阳科林仪表有限公司出厂日期:20XX年8月21日 the purchaser the date of delivery 该批锻件经质量检验,符合《固定式压力容器安全技术监察规程》、设计图样和 行业标准的要求。质量检验员签字20XX年8月21日 inspector signature 质量检验科章20XX 年8月21日quality inspection section(department)stamp 检验责任师:检查员: 20XX年8月21日consign no. 委托号:

超声波检测国家标准总汇(2015最新)

超声波检测国家标准超声波检测国家标准超声波检测国家标准GB 3947-83 GB/T1786-1990 GB/T 2108-1980 GB/T2970-2004 GB/T3310-1999 GB/T3389.2-1999 GB/T4162-1991 GB/T 4163-1984 GB/T5193-1985 GB/T5777-1996 GB/T6402-1991 GB/T6427-1999 GB/T6519-2000 GB/T7233-1987 GB/T7734-2004 GB/T7736-2001 GB/T8361-2001 GB/T8651-2002 GB/T8652-1988 GB/T11259-1999 GB/T11343-1989 GB/T11344-1989 GB/T11345-1989 GB/T 12604.1-2005 GB/T 12604.4-2005 GB/T12969.1-1991 GB/T13315-1991 GB/T13316-1991 GB/T15830-1995 GB/T18182-2000 GB/T18256-2000 GB/T18329.1-2001 GB/T18604-2001 GB/T18694-2002 GB/T 18696.1-2004 GB/T18852-2002/行业标准 /行业标准 /行业标准表 声学名词术语 锻制园并的超声波探伤方法 薄钢板兰姆波探伤方法 厚钢板超声波检验方法 铜合金棒材超声波探伤方法 压电陶瓷材料性能测试方法纵向压电应变常数d33 的静态测试 锻轧钢棒超声波检验方法 不锈钢管超声波探伤方法(NDT,86-10) 钛及钛合金加工产品( 横截面厚度≥13mm) 超声波探伤方法(NDT,89-11)(eqv AMS2631) 无缝钢管超声波探伤检验方法(eqv ISO9303:1989) 钢锻件超声波检验方法 压电陶瓷振子频率温度稳定性的测试方法 变形铝合金产品超声波检验方法 铸钢件超声探伤及质量评级方法(NDT,89-9) 复合钢板超声波检验方法 钢的低倍组织及缺陷超声波检验法( 取代 YB898-77) 冷拉园钢表面超声波探伤方法(NDT,91-1) 金属板材超声板波探伤方法 变形高强度钢超声波检验方法(NDT,90-2) 超声波检验用钢制对比试块的制作与校验方法(eqv ASTME428-92) 接触式超声斜射探伤方法(WSTS,91-4) 接触式超声波脉冲回波法测厚 钢焊缝手工超声波探伤方法和探伤结果的分级(WSTS,91-2 ~3) 无损检测术语超声检测代替JB3111-82 GB/T12604.1-1990 无损检测术语声发射检测代替JB3111-82 GB/T12604.4-1990 钛及钛合金管材超声波检验方法 锻钢冷轧工作辊超声波探伤方法 铸钢轧辊超声波探伤方法 钢制管道对接环焊缝超声波探伤方法和检验结果分级 金属压力容器声发射检测及结果评价方法 焊接钢管 ( 埋弧焊除外 )—用于确认水压密实性的超声波检测方法(eqv ISO 10332:1994) 滑动轴承多层金属滑动轴承结合强度的超声波无损检验 用气体超声流量计测量天然气流量 无损检测超声检验探头及其声场的表征(eqv ISO10375:1997) 声学阻抗管中吸声系数和声阻抗的测量第 1 部分 : 驻波比法 无损检测超声检验测量接触探头声束特性的参考试块和方法

锻件超声波检验

锻件超声波检验标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

锻件超声波检验 范围:本条适用于承压设备用碳钢和低合金钢锻件的超声检测和质量分级。 本条不适用于奥氏体钢等粗晶材料锻件的超声检测,也不适用于内外半径之比小于80%的环形和筒形锻件的周向横波检测。 探头:双晶直探头的公称频率应选用5MHz;探头晶片面积不小于150mm2;单晶直探头的公称频率应选用2MHz~5MHz,探头晶片一般为φ14mm~25mm。 试块:用标准锻件试块CSⅠ、CSⅡ、CSⅢ。 检验时机:原则上应热处理后,在槽、孔,台阶等加工前,比较简单的几何形状下进行,检测面的表面粗糙度R a≤μm。 扫查面:扫查表面应无油垢和污物等附着物。 耦合剂:机油或浆糊。 检验方法:以纵波检验为主。对筒形和环形锻件还应进行横波检验,检查部位和验收标准按产品技术要求而定。 扫查方法:以两个相互垂直的方向进行,尽可能地探测到锻件的全体积,主要探测方向如图所示。 其他形状锻件也可参照执行。

扫查速度:探头移动速度不超过150mm/s。 当锻件探测厚度大于400mm时,应从相对的两端面进行100%的扫查。 检测灵敏度的校验 当被检部位的厚度大于或等于探头的3 倍近场区长度,且探测面与底面平行时,可采用底波计算法确定检测灵敏度,校正点的位置应在工件上无缺陷的完好区域,且至少选择三点,并取得平均值;对由于几何形状所限,不能获得底波或壁厚小于探头的3 倍近场区时,可直接采用CSⅠ标准试块确定基准灵敏度。 检测灵敏度不得低于最大检测距离处的φ2mm平底孔当量直径。 缺陷当量确定,采用AVG 曲线及计算法确定缺陷当量(工件厚度大于或等于探头的三倍近场区)计算缺陷当量时,当材质衰减系数超过4dB/m时,应予修正。 记录 a.记录当量直径超过φ4mm的单个缺陷的波幅和位置; b.密集性缺陷:记录密集性缺陷中最大当量缺陷的位置和分布; c.饼形锻件应记录大于或等于φ4mm当量直径的缺陷密集区,其它锻件应记录大于或等于φ3mm当量直径的缺陷密集区; d.缺陷密集区面积以50mm×50mm的方法作为最小量度单位,其边界可由半波高度法决定。 等级分类

锻件超声波探伤

锻件超声波探伤 1.1.1筒形锻件----轴向长度L大于其外径尺寸D的轴对称空心锻件如图1(a)所示.t为公称厚度. 1.1.2 环形锻件----轴向长度L小于等于其外径尺寸D的轴对称空心件如图1(a)所示.t为公称厚度. 1.1.3 饼形锻件----轴向长度L小于等于其外径D的轴对称形锻件如图1(b)所示.t为公称厚度. 1.1.4 碗形锻件----用作容器封头,中心部份凹进去的轴对称形锻件如图1(c)所示.t为公称厚度. 1.1.5 方形锻件----相交面互相垂直的六面体锻件如图1(d)所示. 三维尺寸a、b、c中最上称厚度. 1.2 底波降低量GB/BF(dB) 无缺陷区的第一次底波高度(GB)和有缺陷区的第一次底波高度(BF)之比.由缺陷引起的底面反射的降低量用dB 值表示. 1.3 密集区缺陷 当荧光屏扫描线上相当于50mm的声程范围内同时有5个或者5个以上的缺陷反射信号;或者在50mm×50mm 的探测面上发现同一深度范围内有5个或5个以上的缺陷反射信号. 1.4 缺陷当量直径 用AVG方法求出的假定与超声波束相垂直的平底孔的直径,称为缺陷当量直径,或简称为当量直径. 1.5 AVG曲线 以纵座标轴表示相对的反射回波高度,以横座标轴表示声程,对不同直径且假定与超声波束相垂直的圆平面缺陷所画出的曲线图叫AVG曲线,亦称为DGS曲线. 2探伤人员 锻件探伤应由具有一定基础知识和锻件探伤经验,并经考核取得国家认可的资格证书者担任. 3探伤器材 3.1 探伤仪 3.1.1 应采用A型脉冲反射式超声波探伤仪,其频响范围至少应在1MHz~5Mhz内. 3.1.2 仪器应至少在满刻度的75%范围内呈线性显示(误差在5%以内),垂直线性误差应不大于5%. 3.1.3 仪器和探头的组合灵敏度:在达到所探工件最大程处的探伤灵敏度时,有效灵敏度余量至少为10dB. 3.1.4 衰减器的精度和范围,仪器的水平线性、动态范围等均应队伍ZBY230-84《A型脉冲反射式超声波探伤仪通用技术条件》中的有关规定. 3.2 探头 3.2.1 探头的公称频率主要为2.5Mhz,频率误差为±10%. 3.2.2 主要采用晶片尺寸为Φ20mm的硬保护膜直探头. 3.2.3 必要时也可采用2MHzs或25MHz,以及晶片尺寸不大于Φ28mm探头. 3.2.4 探头主声束应无双峰,无偏斜. 3.3 耦合剂 可采用机油、甘油等透声性能好,且不损害工件的液体. 4探伤时机及准备工作 4.1 探伤时机 探伤原则上应安排在最终热处理后,在槽、孔、台级等加工前,比较简单的几何形状下进行.热处理后锻件形状若不适于超声波探伤也可在热处理前进行.但在热处理后,仍应对锻件尽可能完全进行探伤. 4.2 准备工作 4.2.1 探伤面的光洁度不应低一地5,且表面平整均匀,并与反射面平等,圆柱形锻件其端面应与轴线相垂直,以便于轴向探伤.方形锻件的面应加工平整,相邻的端面应垂直. 4.2.2 探伤表面应无划伤以及油垢和油潜心物等附着物. 4.2.3 锻件的几何形状及表面检查均合格后,方可进行探伤. 4.3 重要区 锻件的重要区应在设计图样中或按JB 755-85《压力容器锻件技术条件》予以注明. 5探伤方法 锻件一般应进行纵波探伤,对简形锻件还应进行横波探伤,但扫查部位和验收标准应由供需双方商定.

锻件热处理报告

Forging Heat Treatment Report 锻件热处理记录报告 Reporter(操作者):Trier(检查员):Quality Inspection Section stamp(质检章):2014年8月2日

受压元件(锻件) 产品质量证明书 Quality Certificate of Forging 锻件名称:锻件、支撑法兰、法兰盖、外筒法兰Forging name: 锻件编号:F14-132~137 Forging serial number: 质量保证师印章: Quality Assurance Engineer Stamp: 法定代表人印章: Lagal Representative Stamp: 制造单位:大石桥市石化机械制造厂Manufacturer:Dashiqiaoshi Shihuajixie Duanzaochang

锻件产品合格证质量检验报告Qualification Certificate of Forging Array法兰盖、外筒法兰、侧法兰ASMEⅡPARTA- 锻件名称:锻件、支撑法制造标准:2010ED+2011ADD/SA182M Forging Name Fabrication Standard 批件批(件)号:201408161 锻件级别:Ⅲ Forging Lot(piece)number Forging Class 批件量:7件钢号:316 Lot(piece)Quantity Steel Designation 订货单位:辽阳科林仪表有限公司出厂日期:2014年8月21日 The purchaser The date of Delivery 该批(件)锻件经质量检验,符合《固定式 压力容器安全技术监察规程》、设计图样和行业 标准的要求。 质量检验员签字2014年8月21日 Inspector Signature

最新钢板、锻件超声波检测报告

产品质量证明书 CERTIFICATE OF THE PRODUCT QUALITY 产品编号 Product No.: 设备位号 Item No. : 产品名称 Product Name: 制造日期 年月 Date of Manufacture: 厂名 英文厂名

产品质量证明书目录 Contents 1.产品合格证 Certificate of Compliance 2.产品技术特性 Technical Characteristic of Product 3.产品主要受压元件使用材料一览表 Material of Main Pressure Parts of the Product 4.产品焊接试板力学和弯曲性能检验报告 Mechanical Properties and Bend Test Report for the Welding Test Plate of Product 5.压力容器外观及几何尺寸检验报告 Visual and Geometric Dimensions Examination Report of the Pressure Vessel 6.焊缝射线检测报告 Radiographic Examination Report for Welds 7.焊缝射线检测底片评定表 Radiographic Examination Film Interpretation Sheet of Welds 8.焊缝超声检测报告 Ultrasonic Examination Report for Welds 9.渗透检测报告 Liquid Penetrate Examination Report 10.磁粉检测报告 Magnetic Particle Examination Report 11.热处理检验报告 Heat Treatment Examination Report 12.压力试验检验报告 Pressure Test Report 13.钢板锻件超声波检测报告 Ultrasonic Examination Report for Steel Plate and Forging 钢板、锻件超声波检测报告

超声波检测工作总结

超声波检测专业技术总结 本人于2012年毕业于南昌航空工业学院无损检测专业,从事无损检测工作有12年了,本人第一次参加的工作单位是一家军工企业,在日常工作中涉及到锻件、焊缝和非金属复合材料的无损检测;2008年本人受聘于一家第三方检验公司,从事第三方无损检测工作,主要检测的对象是板材、板材、管材等原材料、大型机械设备的锻件、铸件及焊缝以及压力容器及钢结构的焊缝;在工作过程中本人努力提高检测能力,认真对待检测工作,严格把控产品质量,在从事无损检测工作期间未出现过质量事故。 参加无损检测工作以来,我时刻不忘加强自身的学习,以不断提高自己的专业知识和业务水平,在实践中遇到疑难问题,喜欢刨根问底,查相关资料,从理论知识入手,向老师傅请教,探究问题根源,实践经验也有了一定的积累,现就我个人在超声波探伤中的一些心得体会总结了一下,向各位老师进行汇报。 在超声波检测中我们所关心的有三大关键问题即缺陷的定位、定量和定性。到目前为止,超声波检测的教科书就缺陷的定位、定量做了比较详细的描述,广大的超声检测技术人员已作了大量实验研究工作,在对缺陷的定位和定量评定方面做了很多这方面的论述。然而,在对缺陷定性评定方面却存在相当大的困难, 本人在实践过程遇到过各种缺陷,就检验中遇到的各种主要缺陷的波形特征谈谈自己的心得体会,具体分析如下: 铸钢件中缺陷的波形分析 铸件探伤常用脉冲多次底波法,工件中无缺陷时出现底波次数多,各底波的间隔大致相等,当工件中有疏松等缺陷时,由于散射原因使反射声能减少,底波反射

次数减少,若工件中有严重的大面积缺陷,底波消失,只有杂波存在。 气孔缺陷:有单个、密集和链状等气孔,表面一般比较光滑,所以气孔的波形的特征是反射幅值较高,波形比较陡,波峰单一,敏感性强,根部清晰,对底波影响不大。单个气孔为比较稳定的单脉冲波,链状缺陷会发生连续不断的缺陷波,密集气孔为数个缺陷波。使用不同角度的探头都可检测的铸件气孔缺陷。 铸件中的夹渣缺陷:夹渣缺陷有棱角,回波相对弱,对不同方位的超声波反射幅值变化明显。 铸件中的缩孔缺陷:一般波形幅度高而且集中,在主波周围还有枝状波,底波衰减严重,改变探伤方向,底波基本无变化。 铸件中的疏松缺陷:疏松对超声波有明显的吸收和散射作用,一般没有底波,只有杂乱无章的缺陷波,呈草丛状,移动探头反射波有时会此起彼伏,当量不大而且密集,改变探伤方向时,有时会出现幅度很低的底波,处于草丛波中间。 以杂波、丛状波形式或底波高度损失增大、底波反射次数减少等形式出现。 (2)棒材的中心裂纹:在沿圆周面作360°径向纵波扫查时,由于裂纹的辐射方向性,其反射波幅有高低变化并有不同程度的游动,在沿轴向扫查时,反射波幅度和

锻件与铸件超声波探伤详细教程(附实例解析)

第六章锻件与铸件超声波探伤 第六章锻件与铸件超声波探伤 锻件和铸件是各种机械设备及锅炉压力容器的重要毛坯件。它们在生产加工过程中常会产生一些缺陷,影响设备的安全使用。一些标准规定对某些锻件和铸件必须进行超声波探伤。由于铸件晶粒粗大、透声性差,信噪比低,探伤困难大,因此本章重点计论锻件探伤问题,对铸件探伤只做简单介绍。 第一节锻件超声波探伤 一、锻件加工及常见缺陷 锻件是由热态钢锭经锻压变形而成。锻压过程包括加热、形变和冷却。锻件的方式大致分为镦粗、拔长和滚压。镦粗是锻压力施加于坯料的两端,形变发生在横截面上。拔长是锻压力施加于坯料的外圆,形变发生在长度方向。滚压是先镦粗坯料,然后冲孔再插入芯棒并在外圆施加锻压力。滚压既有纵向形变,又有横向形变。其中镦粗主要用于饼类锻件。拔长主要用于轴类锻件,而简类锻件一般先镦粗,后冲孔,再镦压。 为了改善锻件的绍织性能,锻后还要进行正火、退火或调质等热处理。 锻件缺陷可分为铸造缺陷、锻造缺陷和热处理缺陷。铸造缺陷主要有:缩孔残余、疏松、夹杂、裂纹等。锻造缺陷主要有:折叠、白点、裂纹等。热处理缺陷主要有:裂纹等。 缩孔残余是铸锭中的缩孔在锻造时切头量不足残留下来的,多见于锻件的端部。 疏松是钢锭在凝固收缩时形成的不致密和孔穴,锻造时因锻造比不足而末全焊合,主要存在于钢锭中心及头部。 夹杂有内在夹杂、外来菲金属夹杂栩金属夹杂。内在夹杂主要集中于钢锭中心及头部。 裂纹有铸造裂纹、锻造裂纹和热处理裂纹等。奥氏体钢轴心晶间裂纹就是铸造引起的裂纹。锻造和热处理不当,会在锻件表面或心部形成裂纹。 白点是锻件含氢最较高,锻后冷却过快,钢中溶解的氢来不及逸出,造成应力过大引起的开裂,白点主要集中于锻件大截面中心。合金总量超过3.5~4.0%和Cr、

ASTM A 388-A388M-2009_钢锻件超声波检查规程

Designation:A388/A388M–09Used in USNRC-RDT standards Standard Practice for Ultrasonic Examination of Steel Forgings1 This standard is issued under the?xed designation A388/A388M;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval. A superscript epsilon(′)indicates an editorial change since the last revision or reapproval. 1.Scope* 1.1This practice2covers the examination procedures for the contact,pulse-echo ultrasonic examination of steel forgings by the straight and angle-beam techniques.The straight beam techniques include utilization of the DGS(Distance Gain-Size) method.See Appendix X3. 1.2This practice is to be used whenever the inquiry, contract,order,or speci?cation states that forgings are to be subject to ultrasonic examination in accordance with Practice A388/A388M. 1.3The values stated in either SI units or inch-pound units are to be regarded separately as standard.The values stated in each system may not be exact equivalents;therefore,each system shall be used independently of the https://www.doczj.com/doc/4b3365882.html,bining values from the two systems may result in non-conformance with the standard. 1.4This speci?cation and the applicable material speci?ca-tions are expressed in both inch-pound units and SI units. However,unless the order speci?es the applicable“M”speci-?cation designation[SI units],the material shall be furnished to inch-pound units. 1.5This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. 2.Referenced Documents 2.1ASTM Standards:3 A469/A469M Speci?cation for Vacuum-Treated Steel Forgings for Generator Rotors A745/A745M Practice for Ultrasonic Examination of Aus-tenitic Steel Forgings E317Practice for Evaluating Performance Characteristics of Ultrasonic Pulse-Echo Testing Instruments and Systems without the Use of Electronic Measurement Instruments E428Practice for Fabrication and Control of Metal,Other than Aluminum,Reference Blocks Used in Ultrasonic Testing E1065Guide for Evaluating Characteristics of Ultrasonic Search Units 2.2ANSI Standard: B46.1Surface Texture4 2.3Other Document: Recommended Practice for Nondestructive Personnel Quali-?cation and Certi?cation SNT-TC-1A,(1988or later)5 3.Terminology 3.1De?nitions: 3.1.1indication levels(clusters),n—?ve or more indica-tions in a volume representing a2-in.[50-mm]or smaller cube in the forging. 3.1.2individual indications,n—single indications showing a decrease in amplitude as the search unit is moved in any direction from the position of maximum amplitude and which are too small to be considered traveling or planar. 3.1.3planar indications,n—indications shall be considered continuous over a plane if they have a major axis greater than 1in.[25mm]or twice the major dimension of the transducer, whichever is greater,and do not travel. 3.1.4traveling indications,n—inductions whose leading edge moves a distance equivalent to1in.[25mm]or more of metal depth with movement of the transducer over the surface of the forging. 4.Signi?cance and Use 4.1This practice shall be used when ultrasonic inspection is required by the order or speci?cation for inspection purposes where the acceptance of the forging is based on limitations of the number,amplitude,or location of discontinuities,or a combination thereof,which give rise to ultrasonic indications. 1This practice is under the jurisdiction of ASTM Committee A01on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.06on Steel Forgings and Billets. Current edition approved May1,2009.Published May2009.Originally approved https://www.doczj.com/doc/4b3365882.html,st previous edition approved in2008as A388/A388M–08. 2For ASME Boiler and Pressure Vessel Code applications see related Speci?-cation SA-388/SA-388M in Section II of that Code. 3For referenced ASTM standards,visit the ASTM website,https://www.doczj.com/doc/4b3365882.html,,or contact ASTM Customer Service at service@https://www.doczj.com/doc/4b3365882.html,.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website. 4Available from American National Standards Institute(ANSI),25W.43rd St., 4th Floor,New York,NY10036. 5Available from the American Society for Nondestructive Testing,1711Arlin-gate Ln.,P.O.Box28518,Columbus,OH43228–0518. *A Summary of Changes section appears at the end of this standard. Copyright?ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.

相关主题
文本预览
相关文档 最新文档