当前位置:文档之家› 2有限差分法-1-2

2有限差分法-1-2

Δy

课堂练习:

写出Y方向二阶导数的中心差分公式

用有限差分方程代替偏微分方程,将产生的误差为:

这就是为什么说数值法是一种近似方法。

()[]()[]

()t O x O t x O Δ+Δ=Δ+Δ22

以上是针对(i,j)节点建立的方程,为代数方程。

同理,对于其它节点同样能够建立相似的代数方程。

求解代数方程组就可以得到各节点的水位值。

当Δx、Δy、Δt 取得足够小时,可望得到足够精确的近似解。

4. 解的稳定性和收敛性

以u表示差分方程的准确解,u‘表示差分方程的数值解,H表示观测值。

| H –u | 是差分值的截断误差;

| u -u‘| 是数值解的舍入误差。

如果| H –u | 0时,差分方程的数值解满足收敛性条件。

如果| u -u‘| 0时,差分方程的数值解满足稳定性条件。

有限差分法

利用有限差分法分析电磁场边界问题 在一个电磁系统中,电场和磁场的计算对于完成该系统的有效设计师极端重要的。例如,在系统中,用一种绝缘材料是导体相互隔离是,就要保证电场强度低于绝缘介质的击穿强度。在磁力开关中,所要求的磁场强弱,应能产生足够大的力来驱动开关。在发射系统中进行天线的有效设计时,关于天线周围介质中电磁场分布的知识显然有实质性的意义。 为了分析电磁场,我们可以从问题所涉及的数学公式入手。依据电磁系统的特性,拉普拉斯方程和泊松方程只能适合于描述静态和准静态(低频)运行条件下的情况。但是,在高频应用中,则必须在时域或频域中求解波动方程,以做到准确地预测电场和磁场,在任何情况下,满足边界条件的一个或多个偏微分方程的解,因此,计算电池系统内部和周围的电场和磁场都是必要的。 对电磁场理论而言,计算电磁场可以为其研究提供进行复杂的数值及解析运算的方法,手段和计算结果;而电磁场理论则为计算电磁场问题提供了电磁规律,数学方程,进而验证计算结果。常用的计算电磁场边值问题的方法主要有两大类,其每一类又包含若干种方法,第一类是解析法;第二类是数值法。对于那些具有最简单的边界条件和几何形状规则的(如矩形、圆形等)问题,可用分离变量法和镜像法求电磁场边值问题的解析解(精确解),但是在许多实际问题中往往由于边界条件过于复杂而无法求得解析解。在这种情况下,一般借助于数值法求解电磁场的数值解。 有限差分法,微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网络来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 差分运算的基本概念: 有限差分法是指用差分来近似取代微分,从而将微分方程离散成为差分方程组。于是求解边值问题即转换成为求解矩阵方程[5]。 对单元函数 ()x f而言,取变量x的一个增量x?=h,则函数()x f的增量可以表示为 ()x f? = ()h x f+-()x f 称为函数()x f 的差分或一阶差分。函数增量还经常表示为 ()x f? = ? ? ? ? ? + 2 h x f - ? ? ? ? ? - 2 h x f

有限差分法

班级:通信13-4 姓名: 学号: 指导教师:徐维 成绩: 电子与信息工程学院 信息与通信工程系

求解金属槽的电位分布 1.实验原理 利用有限差分法和matlab软件解决电位在金属槽中的分布。 有限差分法基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解.然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解.在采用数值计算方法求解偏微分方程时,若将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题。 2.有限差分法 方程的定解问题就是在满足某些定解条件下求微分方程的解。在空间区域的边界上要满足的定解条件称为边值条件。如果问题与时间有关,在初始时刻所要满足的定解条件,称为初值条件。不含时间而只带边值条件的定解问题,称为边值问题。与时间有关而只带初值条件的定解问题,称为初值问题。同时带有两种定解条件的问题,称为初值边值混合问题。 定解问题往往不具有解析解,或者其解析解不易计算。所以要采用可行的数值解法。有限差分方法就是一种数值解法,它的基本思想是先把问题的定义域进行网格剖分,然后在网格点上,按适当的数值微分公式把定解问题中的微商换成差商,从而把原问题离散化为差分格式,进而求出数值解。此外,还要研究差分格式的解的存在性和唯一性、解的求法、解法的数值稳定性、差分格式的解与原定解问题的真解的误差估计、差分格式的解当网格大小趋于零时是否趋于真解(即收敛性),等等。 有限差分方法具有简单、灵活以及通用性强等特点,容易在计算机上实现。 2.1有限差分法原理

第二章 有限差分基础

第2章 有限差分基础(finite difference method ,FDM ) 1.1 偏微分方程的一般形式 ()()φφφρρφq x x x u t j j j j +??? ? ????Γ ??=??+?? ( 2-1 ) 2.1 网格划分 一般有限差分采用结构化网格划分。即节点对应于当地坐标系统的原点。它的轴同网格线一致。即两个同一族的网格线不相交,且没对网格线对应不同的族。每一个节点可用唯一的一个坐标表示,如(ξ1, ξ2)。网格线能用ξ1=const, ξ2=const 表示。 1D 2D 有限差分法就是要将节点上的偏微分方程用相邻点上的值表示,变成线性代数方程式。 i-1 i i+1 N 1 N j j+1 j-1 j 1 1 i-1 i i+1

为流体力学的微分方程的数值求解方法之代表。必要条件: ? 连续领域内的分配有限的网格 ? 领域内的函数分布可用网格点上的值代表 1. 计算分子(computational molecule ) 5点计算分子 15点计算分子 7点计算分子 这些节点又称为计算分子。方程的个数应与未知数相同,即每个节点有一个方程式。 E W N E T N

2. T aylor 展开 例如:一维时间变量φ的理论解为φ(t,x),它在离散点上的值为投影(projection )的近似值为:()x i t n ?Λ,φ, n: 时间的step 数 i:空间的step 数 为了求得此近似解,需对微分方程进行差分近似。利用T aylor 展开可得到几个差分表示形式,仅考虑空间依存问题: 在?x 很小时,位置j ?x 内的物理量φ用φj 来表示,则位置(j+1)?x 上的值φj+1表示为: ()???+???+???+=+i i i i x x x x 22 2121φφφφ ( 2-2 ) (j-1)?x 上的值φj+1表示为: ()???+???+???-=-i i i i x x x x 222121φφφφ ( 2-3 ) 2.2 基本差分格式 1. 一阶导数(first derivative )的近似 ()x u or x ????φρφ ( 2-4 ) i. 向前差分(forward difference ,FDS) 利用( 1 ) 式,可得到1阶微分的向前差分形式:

有限差分法

有限差分法 有限差分法(Finite Differential Method, FDM ) 什么是有限差分法 有限差分法是指用泰勒技术展开式将变量的导数写成变量,在不同时间或空间点值的差分形式的方法。 按时间步长和空间步长将时间和空间区域剖分成若干网格,用未知函数在网格结(节)点上的值所构成的差分近似代替所用偏微分方程中出现的各阶导数,从而把表示变量连续变化关系的偏微分方程离散为有限个代数方程,然后解此线性代数方程组,以求出溶质在各网格结(节)点上不同时刻的浓度。 有限差分法的基本步骤 (1)剖分渗流区,确定离散点。将所研究的水动力弥散区域按某种几何形状(如矩形、任意多边形等)剖分成网络系统。 (2)建立水动力弥散问题的差分方程组。 (3)求解差分方程组。采用各种迭代法,如点逐次超松驰方法(SOR)、线逐次超松驰方法(LSOR)、迭代的交替方向隐式方法(IADI)及强隐式方法(SID)等。 (1) 现在分别对时间(从0时刻到到期日)和股票价格(S max )为可达到的足够高的股票价格) 进行分割,即\triangle S=S_{max}/M,\triangle T/N,这样就分别有N+1个时间段和M+1个股票价格,建立如图(所示的坐标方格,将定解区域网格化,坐标方格上的点(i,j )对应时刻 和股票价格 ,用变量f i ,j 表示(i,j )点的期权价格。 2.建立差分格式 (1)内含的有限差分方法 其步骤可分为以下几步:

(1)求前向差分近似:(2) 后向差分格式:(3) 将(2),(3)式平均可更加对称地求出的近似,即 (4) (2)求用前向差分近似: (5) (3)求 (6) (4)将(4),(5),(6)式代入(1)式可得到内含有限差分公式: + b j f i,j?c j f i,j + 1 = f i + 1,j(7) a j f i,j? 1 其中: i=0,1,…,N-1。j=0,1…,M-1 针对看跌期权和看涨期权可分别求出方程的边界条件: 看跌期权: 看涨期权: (5)利用边界条件和(7)式可以给出M-1个联立方程组: + b j f N? 1,j + c j f N? 1,j + 1j=1,2…,M-1 a j f N? 1,j? 1

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插

有限差分法及其应用

有限差分法及其应用 1有限差分法简介 有限差分法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方程将解域划分为差分网格,用有限个网络节点代替连续的求解域。有限差分法通过泰勒级数展开等方法,把控制方程中的导数用网格节点上的函数值得差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 2有限差分法的数学基础 有限差分法的数学基础是用差分代替微分,用差商代替微商而用差商代替微商的意义是用函数在某区域内的平均变化率来代替函数的真是变化率。而根据泰勒级数展开可以看出,用差商代替微商必然会带来阶段误差,相应的用差分方程代替微分方程也会带来误差,因此,在应用有限差分法进行计算的时候,必须注意差分方程的形式,建立方法及由此产生的误差。 3有限差分解题基本步骤 有限差分法的主要解题步骤如下: 1)建立微分方程 根据问题的性质选择计算区域,建立微分方程式,写出初始条件和边界条件。 2)构建差分格式 首先对求解域进行离散化,确定计算节点,选择网格布局,差分形式和步长;然后以有限差分代替无线微分,以差商代替微商,以差分方程代替微分方程及边界条件。 3)求解差分方程 差分方程通常是一组数量较多的线性代数方程,其求解方法主要包括两种:精确法和近似法。其中精确法又称直接发,主要包括矩阵法,高斯消元法及主元素消元法等;近似法又称间接法,以迭代法为主,主要包括直接迭代法,间接迭代法以及超松弛迭代法。4)精度分析和检验 对所得到的数值进行精度与收敛性分析和检验。 4商用有限差分软件简介 商用有限差分软件主要包括FLAC、UDEC/3DEC和PFC程序,其中,FLAC是一个基于显式有限差分法的连续介质程序,主要用来进行土质、岩石和其他材料的三维结构受力特性模拟和塑性流动分析;UDEC/3DEC是针对岩体不连续问题开发,用于模拟非连续介质在静,动态载荷作用下的反应;PFC是利用显式差分算法和离散元理论开发的微、细观力学程序,它是从介质的基本粒子结构的角度考虑介质的基本力学特性,并认为给定介质在不同应力条件下的基本特征主要取决于粒子之间接粗状态的变化,适用于研究粒状集合体的破裂和破裂发展问题,以及颗粒的流动(大位移)问题。

有限差分法

有限差分法 有限差分法有限差分法 finite difference method 微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散 点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函 数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差 分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便 可以从离散解得到定解问题在整个区域上的近似解。 有限差分法的主要内容包括:如何根据问题的特点将定解区域作网格剖分;如何把原 微分方程离散化为差分方程组以及如何解此代数方程组。此外为了保证计算过程的可行和 计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分 格式的相容性、收敛性和稳定性。对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。另外,一个差分格 式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。此外,还有一个重要的概念必须考虑,即差分格式的稳定性。因为差分格式的计算过 程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致 差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以 控制的,就认为格式是稳定的。只有在这种情形,差分格式在实际计算中的近似解才可能 任意逼近差分方程的精确解。关于差分格式的构造一般有以下3种方法。最常用的方法是 数值微分法,比如用差商代替微商等。另一方法叫积分插值法,因为在实际问题中得出的 微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。此外还可以用 待定系数法构造一些精度较高的差分格式。 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法 将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor 级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从 而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数 问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分 的空间形式来考虑,可分为中心格式和逆风格式。 考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目 前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分 方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

有限差分法

有限差分法有限差分法 finite difference method 微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 有限差分法的主要内容包括:如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。此外为了保证计算过程的可行和计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分格式的相容性、收敛性和稳定性。对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。另外,一个差分格式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。此外,还有一个重要的概念必须考虑,即差分格式的稳定性。因为差分格式的计算过程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以控制的,就认为格式是稳定的。只有在这种情形,差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解。关于差分格式的构造一般有以下3种方法。最常用的方法是数值微分法,比如用差商代替微商等。另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。此外还可以用待定系数法构造一些精度较高的差分格式。 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛

有限差分法模拟一维(二维)谐振子 (2)

目录 第一章概述........................................ 错误!未定义书签。第二章有限差分方法................................ 错误!未定义书签。 2.1有限差分法基本思想...................................................... 错误!未定义书签。 2.2差分方程组的求解 ......................................................... 错误!未定义书签。第三章求解谐振子的微分方程................................................... 错误!未定义书签。 3.1 一维谐振子 (4) 3.2二维各向同性谐振子 (6) 第四章总结 (9) 参考文献 (10) 附录 (11)

第一章概述 微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 有限差分法可广泛用来求解偏微分方程的近似解,在电磁场中求解点位函数的拉普拉斯方程时,可采用有限差分法的基本思想是:用网格将场域进行分割,再把拉普拉斯方程用以各网格点处的点位作为未知数的差分方程式来进行代换,将求解拉普拉斯方程解得问题变为求联立差分方程组的解得问题]1[,在差分网格非常多和情况下,利用并行计算方法对其进行区域分解,每个进程负责运算一部分区域,区域边界之间进行必要地通信可有效提高计算速度,解决更大规模的问题。往往只讨论它在静态场中的应用,即泊松方程或拉普拉斯方程的有限差分形式,很少涉及到它在时谐场(即亥姆霍兹方程)中的应用。本文重点讨论亥姆霍兹方程的有限差分形式以及它在时谐场中的应用。同时,有限差分法(finite difference method)是基于差分原理的一种数值计算方法,在求解微分方程定解问题中广泛应用。有限差分法是以差分原理为基础的一种数值计算法。它用离散的函数值构成的差商来近似逼近相应的偏导数,而所谓的差商则是基于差分的应用的数值微分表达式。用离散的只含有有限个未知量的差分方程组去近似代替连续变量的微分方程和定解条件,并把差分方程组的姐作为威风方程定解问题的近似解.有限差分法可以处理几乎所有形式的势函数,且主程序不依赖于势函数的具体形式,对于多数两字体都可以进行相对准确的计算。因此,将有限差分法应用于量子力学本征值问题的计算,有助于相对准确地进行量子体系和形象直观地教学研究]32[ 。 量子力学教程中队一维无限深势阱、线性谐振子、氢原子等量子体系的薛定谔方程进行了严格的求解,得到了描述体系状态的波函数和能量的精确解。多数量子体系的哈密顿算数比较复杂,薛定谔方程不能严格求解,因此,研究和发展薛定谔方程的数值计算方法具有重要意义[4]。

第二章有限元法的基本原理

第二章有限元法的基本原理 有限元法吸取了有限差分法中的离散处理内核,又继承了变分计算中选择试探函数并对区域积分的合理方法。有限元法的理论基础是加权余量法和变分原理,因此这里首先介绍加权余量法和变分原理。 2.1等效积分形式与加权余量法 加权余量法的原理是基于微分方程等效积分的提法,同时它也是求解线性和非线性微分方程近似解的一种有效方法。在有限元分析中,加权余量法可以被用于建立有限元方程,但加权余量法本身又是一种独立的数值求解方法。 2.1.1 微分方程的等效积分形式 工程或物理学中的许多问题,通常是以未知场函数应满足的微分方程和边界条件的形式提出来的,可以一般地表示为未知函数u 应满足微分方程组 12()()()0A A A ?? ?== ? ??? u u u M (在Ω内) (2-1) 域Ω可以是体积域、面积域等,如图2-1所示。同时未知函数u 还应满足边界条件 12()()()0B B B ?? ?== ? ??? u u u M (在Γ内) (2-2) 要求解的未知函数u 可以是标量场(例如压力或温度),也可以是几个变量组成的向量场(例如位移、应变、应力等)。A ,B 是表示对于独立变量(例如空间坐标、时间坐标等)的微分算子。微分方程数目应和未知场函数的数目相对应,因此,上述微分方程可以是单个的方程,也可以是一组方程。所以在以上两式中采用了矩阵形式。 以二维稳态的热传导方程为例,其控制方程和定解条件如下: ()()()0A k k q x x y y φφφ????=++=???? (在Ω内) (2-3)

0()0q B k q n φφφφφ?-=Γ?=??-=Γ???(在上)(在上) (2-4) 这里φ表示温度(在渗流问题中对应压力);k 是流度或热传导系数(在渗流问题中对应流度/K μ);φ和q 是边界上温度和热流的给定值(在渗流问题中分别对应边界上的压力和边界上的流速);n 是有关边界Γ的外法线方向;q 是源密度(在渗流问题中对应井的产量)。 在上述问题中,若k 和q 只是空间位置的函数时,问题是线性的。若k 和q 是φ及其导数的函数时,问题则是非线性的。 由于微分方程组(2-1)在域Ω中每一点都必须为零,因此就有 1122()(()())0u d v A u v A u d ΩΩ Ω≡++Ω≡? ?T V A L (2-5) 其中 12v V v ?? ?= ? ??? M (2-6) 其中V 是函数向量,它是一组和微分方程个数相等的任意函数。 式(2-5)是与微分方程组(2-1)完全等效的积分形式。我们可以说,若积分方程对于任意的V 都能成立,则微分方程(2-1)必然在域内任一点都得到满足。同理,假如边界条件(2-2)亦同时在边界上每一点都得到满足,对于一组任意函数,下式应当成立 1122 ()(()())0u d v B u v B u d ΓΓΓ≡++Γ≡??VB L 因此积分形式 ()()0u d u d ΓΓ Ω+Γ=??T T V A V B 对于所有的V 和V 都成立是等效于满足微分方程(2-1)和边界条件(2-2)。我们把(2-7)式称为微分方程的等效积分形式。 2.1.2等效积分的“弱”形式 在一般情况下,对(2-7)式进行分部积分得到另一种形式: ()()()()0T T v d v d ΩΓ Ω+Γ=??C D u E F u (2-8) 其中C ,D ,E ,F 是微分算子,它们中所包含的导数的阶数较(2-7)式的低,这样对函数u 只需要求较低阶的连续性就可以了。在(2-8)式中降低连续性要求是以提高V 和V 的连续性要求为代价的,由于原来对V 和V (在(2-7)式中)并无连续性要求,但是适当提高对其连续性的要求并不困难,因为它们是可以选择的已知函数。这种降低对函数u 连续性要求的作法在近似计算中,尤其是在有限单元法中是十分重要的。(2-8)式称为微分方程

有限差分法

电磁场与电磁波项目训练报告 求解金属槽的电位分布 班级:通信13-4 姓名: 学号: 指导教师:徐维 成绩: 电子与信息工程学院 信息与通信工程系

求解金属槽的电位分布 1.实验原理 利用有限差分法和matlab软件解决电位在金属槽中的分布。 有限差分法基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解.然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解.在采用数值计算方法求解偏微分方程时,若将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题。 2.有限差分法 方程的定解问题就是在满足某些定解条件下求微分方程的解。在空间区域的边界上要满足的定解条件称为边值条件。如果问题与时间有关,在初始时刻所要满足的定解条件,称为初值条件。不含时间而只带边值条件的定解问题,称为边值问题。与时间有关而只带初值条件的定解问题,称为初值问题。同时带有两种定解条件的问题,称为初值边值混合问题。 定解问题往往不具有解析解,或者其解析解不易计算。所以要采用可行的数值解法。有限差分方法就是一种数值解法,它的基本思想是先把问题的定义域进行网格剖分,然后在网格点上,按适当的数值微分公式把定解问题中的微商换成差商,从而把原问题离散化为差分格式,进而求出数值解。此外,还要研究差分格式的解的存在性和唯一性、解的求法、解法的数值稳定性、差分格式的解与原定解问题的真解的误差估计、差分格式的解当网格大小趋于零时是否趋于真解(即收敛性),等等。 有限差分方法具有简单、灵活以及通用性强等特点,容易在计算机上实现。 2.1有限差分法原理

有限差分法解偏微分方程

有限差分法解偏微分方程综述 绪论 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor 级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 从差分的空间形式来考虑,可分为中心格式和逆风格式。 考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式, 目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 有限差分法求解偏微分方程 在采用数值计算方法求解偏微分方程时,若将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题,即所谓的有限差分法。有限差分法求解偏微分方程的步骤如下: 1、区域离散化,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格; 2、近似替代,即采用有限差分公式替代每一个格点的导数; 3、逼近求解。换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程 有限差分法的应用 抛物型方程的差分方法 1. 简单差分法

有限差分法

有限差分法求解Schr?dinger方程 摘要:针对量子力学中大多数量子体系的哈密顿算符都比较复杂, 薛定谔方程均不能得到严格解或分析解的问题,提出了用数学中的有限差分法来解决计算量子力学中薛定额方程的本征问题.对普通的径向薛定谔方程和含时的薛定谔方程进行了有限差分法的分析, 给出了两种薛定谔方程的有限差分法的离散方程, 并以线性谐振子为例, 进行了计算机编程推算. 结果表明, 该方法在研究量子力学问题中具有广泛的应用前景. 关键词:有限差分法; 本征值; 波函数

引言 在量子力学中,对于一些简单的量子体系,如一维无限深势阱、线性谐振子、氢原子等体系的薛定谔(Schr?dinger)方程可以严格求解, 得到描述体系的精确的状态波函数和能量. 但大多数量子体系的哈密顿算符(Hamiltonian)都比较复杂, 薛定谔(Schr?dinger)方程均不能得到严格解或解析解, 有时能级可以给出解析表达式, 但却无法得到波函数的解析表达式. 因此,研究和发展薛定谔(Schr?dinger)方程的计算方法就具有重要的意义. 由于有限差分法可以处理几乎所有形式的势能函数, 并且编制的计算机主程序不依赖于势能函数的具体形式. 因此可以进行相对精确的计算, 对于确定量子体系的能级和相应的波函数有着重要的意义.

第一章 有限差分法 1 一维薛定谔方程的有限差分解法 根据有限差分法中的二阶微分中心差分算符(其中忽略(3x ?)及更高阶项) ()() ()()()22 2 1 2d f x f x x f x f x x dx x ???= +-+-???? (1.1) 可以将一维薛定谔方程 ()()()()2 22 2d x V x x E x dx ψψψμ- += (1.2) 化为 ()()()() ()() 2 2 22x x x x x x V x E x μψ?ψψ??ψ+-+-= -???? (1.3) 以点()0,1,2,3,,m x a m x m M ?=+= , b a x M ?-= (其中,a b 为左右边界点,计算时将此点波函数设为 零)将坐标分为M 个相等的间隔, 当M 充分大时, x ?就足够小. 将第m 个分点的波函数简记为 ()m m x ψψ=.这样, (1.3)式可以化简为 () 2 112 2m m m m m x E μψβψψ?ψ+--+-= (1.4) 式中 () () 2 2 22m m x V x μβ?=+ 令 () ()2 2 ,22m m R R V x x αμ?= =+ (1.3)可改写为 11m m m m m R R E ψαψψψ-+-+-= (1.5) 2 边界条件与计算区间 当取0,1,2,3,,.m M = 并且注意到满足条件00M ψψ==, 则由(5)式得到一系列线性方程式 1121 12232233433 22 122 11 1 M M M M M M M M M R E R R E R R E R R E R E αψψψψαψψψψαψψψψ αψψ ψψ αψ ψ ----------=-+-=-+-==-+-=-+= 这样将本征值方程离散化为矩阵方程 S E ψψ= (1.6) 其中

相关主题
文本预览
相关文档 最新文档