当前位置:文档之家› 洗煤厂中减速器的日常维护与故障分析处理

洗煤厂中减速器的日常维护与故障分析处理

洗煤厂中减速器的日常维护与故障分析处理
洗煤厂中减速器的日常维护与故障分析处理

洗煤厂中减速器的日常维护与故障分析处理

【摘要】:减速器是机械传动的重要组成部分,在现代化的洗煤厂中减速器作为一种重要的传动装置,它的应用十分广泛。本文针对减速器的故障分析、处理与日常维护展开讨论,重点对减速器的常见故障分析处理做出分析、总结。

【关键词】:减速器故障分析处理维护

一、概述:

减速器是一种封闭在箱体内的齿轮或蜗杆传动所组成的独立的传动装置,通常应用于原动机和工作机之间,用来降低转速,增大转距或改变轴线之间的相互位置以适应工作要求。在个别情况下也用来增速,此时应成为增速器。减速器由于结构紧凑,使用维修简单和效率较高,在工程中得到了广泛的应用。

减速机的作用主要有:

1)降速同时提高输出扭矩,扭矩输出比例按电机输出乘减速比,但要注意不能超出减速机额定扭矩。

2)减速同时降低了负载的惯量,惯量的减少为减速比的平方。

减速机的工作原理:

减速机一般用于低转速大扭矩的传动设备,它是把电动机、内燃机或其它高速运转的动力通过减速机的输入轴上的齿数少的齿轮啮合输出轴上的大齿轮来达到降低转速和增大转距或改变轴线之间的相互位置的目的。

减速器的载荷分类:

与减速器联接的工作机载荷状态比较复杂,对减速器的影响很大,是减速器选用及计算的重要因素,减速器的载荷状态即工作机(从动机)的载荷状态,通常分为三类:

1)均匀载荷;

2)中等冲击载荷;

3)强冲击载荷。

减速器的类型很多,这里主要讨论齿轮减速器,按其传动和结构特点来划分,这

类减速器有以下几种:

1)、齿轮减速器

其中主要有圆柱齿轮减速器、圆锥齿轮减速器(型号DCY280-1S、DCY400-2N、DCY250-2N)和圆锥-圆柱齿轮减速器(型号ZQ、ZL)。

2)、蜗轮蜗杆减速器

主要有圆柱蜗轮蜗杆减速器、圆弧面蜗轮蜗杆减速器、圆锥蜗轮蜗杆减速器和蜗杆-齿轮减速器。主要用于传动比i>10的场合,传动比较大时结构紧凑,在一定条件下具有自锁功能的传动机械。其缺点是效率低。这样的类型用在如浓缩机提爪、仓下给煤机、绞车上用到的减速器、给煤机用到的TDA250-16-5F型蜗轮蜗杆减速器等等。

3)、行星减速器

优点是结构比较紧凑,回程间隙小、精度较高,使用寿命很长,额定输出扭矩可以做的很大。但价格略贵

主要有渐开线行星齿轮减速器、摆线针轮减速器和谐波齿轮减速器。如重型刮板机、斗提机、手选带、压滤机小刮板上用到NGW92-11、NGW62-11、

NGW-J42-12、 NGW112-11、 NGW92-22型减速器,用到的HNW35B-20 星轮减速器等。

我们中心常用减速器型号有DCY、ZQ、ZL、NGW、HEW SEW等典型减速器: DCY型属2-3级圆锥圆柱齿轮减速器。

ZQ、ZL属于渐开线双级圆柱齿轮减速器。

SEW,HZW NGW属于行星减速器。

二、运转中的减速器故障诊断:

检查运行中机器的工作状况并做出相应的检测计划,是预防保养中重要的一环。前期的检测出机器的异常情况可以减少由于减速器的故障而造成的机械事故。

对于运转的减速器我们可以通过点检仪来测定减速器的轴承端盖的温度或者有其他的仪器测定相关的参数来判定减速器的工作状况。没有相关的检测仪器可以通过岗位工和检修工的经验通过观察、触摸、倾听来判断设备运行是否正常。

设备的密封性的好

1. 观察:

坏对设备保持正常运转有很大影响,通过观察轴承的是否磨损以及轴承与箱体结合部分是否有漏油,还有就是油塞是否漏油。若出现漏油现象应该马上检查油封是否损坏、油塞是否松动。检查通气孔是否有堵塞,油位是否正常。

2 . 触摸:

减速器在运转过程中温度过高是其发生故障的预兆,甚至会造成设备的停机。因此掌握轴承温度是必要的,通常的情况下我们可以通过经常触摸来判别减速器的温度的异常,从而减少故障的发生率。

3.倾听:

减速器正常运转的状况下减速器内部会发出很低的无无声响,若减速器运转不正常发生故障设备内部会发出很大的吱吱响声或者其他的不规则的噪音声响。测听机体内部的声音可以通过先进的仪器也可以通过改锥的金属头部放在端盖上,耳朵放在另一段来倾听。

三、减速器的故障分析处理:

由于减速器是一种传动装置,因此在工作过程中常因外部工作环境(承受较大载荷)和内部一些因素的制约。会出现很多的故障。

根据对DCY型减速器的检修总结出了主要故障形式:

1.噪音、异响、振动

减速器发生故障时往往伴随着异常的噪音及剧烈的振动。这些故障大部分是由内部的齿轮、轴系及轴承损坏导致。

1.1 齿轮损坏

现场最常见的减速器齿轮故障有断齿、轮齿非正常磨损、齿面点蚀和剥落等。

齿轮断齿主要有两个原因:

1)齿轮制造质量缺陷,如强度不够、韧性不够、铸造缺陷等;

2)超载荷运转。在运转过程中,齿轮突然承受过载或者,减速器超载荷断齿。

特别是当齿根有缺陷时或者重复受载后,不用超过多大载荷就会发生断齿现象。

3)齿根弯曲应力大、齿根应力集中。

解决办法:增大轴的刚性;采用热处理方法使齿芯材料具有足够的韧性,采用喷丸等工艺对齿根表面进行强化处理;禁止超负荷运行。

轮齿非正常磨损是指齿轮发生过早磨损,达不到齿轮应当具有的磨损寿命。发生非正常磨损主要有三个原因:

1)减速器加工制造质量。影响非正常磨损的工作质量;

2)减速器缺油,导致减速器在无润滑条件下工作,使其齿轮过早地磨损、失效;3)磨损掉的齿轮金属微粒混在半流体润滑液中,加剧了齿轮的磨损。

解决办法:使减速器里面的油保持正常油量,提高材料的表面加工质量。

齿面发生点蚀的主要原因有:

1)齿轮的接触疲劳强度不足。

2)齿轮精度较差。齿轮加工和装配精度不符合要求,

3)润滑油不符合要求。油品的粘度较低,润滑性能较差;

4)油位过高。

解决办法:提高材料的强度;加强润滑,提高油的粘度;油量保持正常油量。

1.2 轴承损坏

减速器轴承损坏多发生在输出轴上,一是因为输出轴受到的径向力大,二是因为轴承间隙调整不当。同轴度不好。

解决办法:针对对DCY型减速器的检修,选用调心滚子轴承作为减速器输出轴的轴承(DCY-400的Ⅰ轴轴承型号为20316 22316);这种轴承可承受较大的径向力和较小的轴向力,正好符合减速器的受力工况;在工作过程中要需要调整好轴承间隙,以及同轴度。

2. 高温:

减速器齿轮的间隙过小、润滑不足、轴承偏移、相关件不同心、润滑油太多(转速过高,负荷过大时散热效能较低),装配时各支撑轴承,预紧度过高;或较长时间超载运行,透气孔的堵塞等都易产生高温。

高温会对以下几个部位有影响:

1)齿轮的影响:高温后使齿面退火,齿面变软,磨损加速,机械性能降低,易断裂或产生胶合。

2)轴承的影响:,轴承温度过高会引起轴承退火,机械性能降低,高温后使轴承上的润滑油高度挥发和变质,润滑油膜厚度不好,磨损加剧;从而缩短轴承的寿命。

3)轴的影响:高速轴一般都经过调质处理,温度过高使轴退火,降低降低机械性能。

4)油封的影响:高温易产生老化变形,密封性下降。

解决办法:调整好各个间隙(齿轮间的间隙仅限于两轴垂直的齿轮之间),调整好加油量,我中心也对许多易高温的减速器采取了加装风扇的方法有效的控制了这些减速器的高温现象,为以后控制减速器的高温现象提供了很好的范例,同时也要对长期工作的减速器做好在线监控。

3. 漏油:

常见的漏油主要有以下几个原因:(1)减速器在组装合箱面时,端盖和箱体合箱面上存在高点或合箱面上留有铁屑或其他杂物, 箱体螺栓松动或脱扣,垫片有损坏处或接触不良有异物支垫,都会使得合箱不严而发生漏油;(2)合箱面上密封胶涂抹位置不对或出现断点,起不到密封作用而导致漏油;(3)涂抹密封胶的时候把端盖上面的回油孔堵塞而使油路会不出去油;(4)箱体本身存在一些结构缺陷,如导油槽和合箱面拉紧螺栓孔离的太近,导致油从油槽螺栓孔流出;(5)油池加油过量也会导致接触面或轴伸处漏油。

常见的漏油方式有以下几种:

1)最常见的是主动,从动轴的密封处漏油,尤其是主动轴密封圈处漏油最为严重;

解决办法:更换密封件,清洗装配到位,重新涂抹密封胶;涂抹时要注意涂抹位置正确、涂抹要均匀没有断点;加油要要适量。

2)减速器箱体各接触面(各端盖)漏油,;

解决办法将螺栓紧固或更换螺栓,清除表面异物,去除旧密封胶,重新涂抹密封胶;涂抹时要注意涂抹位置正确、涂抹要均匀没有断点;加油要要适量。3)减速器油窗,放油孔处漏油;

解决办法:检查油塞是否松动损坏,并将其紧固或更换。

减速器箱底漏油;

解决办法:检查箱体损坏情况,并具体作出修复处理。

目前,工厂班所维修的减速器在输入输出轴处采用的密封方式一般有三种:矩形槽式,O型密封圈式,骨架密封式。由于受减速器工作条件、环境、强度等影响,会加剧其密封件的磨损,所以密封件损坏是导致轴端漏油的的主要原因。例如O型密封圈式变形及撕裂,骨架密封的弹簧圈失去自补偿作用,矩形槽式密封若润滑油加过量就会沿轴端渗出。

5.油质

故障原因:油里含有磨损出来的金属碎片或者杂质,也可能为密封不严,进油口未紧固导致杂质进入。

解决办法:更换或修复受损零件,更换润滑油。

一般零部件在工作过程中都有其使用寿命,在工作期间启动、停止会使轴、轴承和齿轮产生机械疲劳,产生扭曲、裂痕、折断等失效形式。油封也会自然老化,这种现象为正常的故障。

四、减速器的轴承

轴承对于减速器而言是不可缺少的一部分,大多数减速器的维修是轴承的损坏,由机械部工厂班检修记录可知,减速器的维修主要为更换轴承,而在使用轴承中,轴承游隙的选择对于减速机的正常运行寿命,是至关重要的环节。在这里重点说明一下轴承的游隙

1.轴承游隙。

所谓轴承游隙,即指轴承在未安装于轴或轴承箱时,将其内圈或外圈的一方固定,然后便未被固定的一方做径向或轴向移动时的移动量。根据移动方向,可分为径向游隙和轴向游隙。

运转时的游隙(称做工作游隙)的大小对轴承的滚动疲劳寿命、温升、噪声、振动等性能有影响。

测量轴承的游隙时,为得到稳定的测量值,一般对轴承施加规定的测量负荷。因此,所得到的测量值比真正的游隙(称做理论游隙)大,即增加了测量负荷产生的弹性变形量。但对于滚子轴承来说,由于该弹性变形量较小,可以忽略不计。

安装前轴承的内部游隙一般用理论游隙表示。滚动轴承的游隙不能过大,也不能过小。游隙过大,将使同时承受负荷的滚动体减少,单个滚动体负荷增大,降低轴承寿命和旋转精度,引起振动和噪声。受冲击载荷时,尤为显著。游隙过小,则加剧磨损和发热,也会降低轴承的寿命。因此,轴承在装配时,应控制和调整合适的游隙,以保证正常工作并延长轴承使用寿命。

2. 游隙的选择

从理论游隙减去轴承安装在轴上或外壳内时因过盈配合产生的套圈的膨胀量或收缩后的游隙称做“安装游隙”

在安装游隙上加减因轴承内部温差产生的尺寸变动量后的游隙称做“有效游隙”。轴承安装有机械上承受一定的负荷放置时的游隙,即有效游隙加上轴承负荷产生的弹性变形量后的以便称做“工作游隙”。

当工作游隙为微负值时,轴承的疲劳寿命最长但随着负游隙的增大疲劳寿命同显著下降。因此,选择轴承的游隙时,一般使工作游隙为零或略为正为宜。

另外,需提高轴承的刚性或需降低噪声时,工作游隙要进一步取负值,而在轴承温升剧烈时,工作游隙则要进一步取正值等等,还必须根据使用条件做具体分析。

五、减速器的密封件

目前,工厂班所维修的减速器在输入输出轴处大多采用的密封方式一般有三种:矩形槽式,O型密封圈式,骨架密封式。由于受减速器工作条件、环境、强度等影响,会加剧其密封件的磨损,所以密封件损坏是导致轴端漏油的的主要原因。例如O型密封圈式变形及撕裂,骨架密封的弹簧圈失去自补偿作用,矩形槽式密封若润滑油加过量就会沿轴端渗出。

六、减速机的润滑

闭式减速器大多采用浸油润滑,即将齿轮、蜗杆或蜗轮等传动零件浸入油中,当传动零件回转时,沾在上面的油被带到啮合表面进行润滑。这种润滑方式适用于齿轮圆周速度,蜗杆(下置)圆周速度的传动。油池深度即要保证轮齿啮合处的充分润滑又应避免搅动的功率损耗过大。机械传动部分,各旋转零件的使用寿命直接受润滑的影响,润滑好的零件其寿命较长、反之则寿命较短,同时,

润滑还不助于各零件的散热、降温,使其在允许的工作温度下工作。因此,润滑是机械传动过程中一个不可缺少的重要环节,它对提高传动零件的使用寿命及机械传动效率都有很重要的作用。润滑方式目前国内外减速器的润滑方式有3种:飞溅润滑、强迫润滑和定期注油或脂润滑。

传动件的浸油深度,对于圆柱齿轮和蜗轮(或蜗杆)以一齿高为宜,但不小于10mm;对于圆锥齿轮,应使油浸到整个齿宽;对于多级传动,当高速级传动件侵油深度为一个齿高时,低速级传动件浸油深度还更深些,但不能越过(1/3-1/6)分度圆半径。

在设备事故中,因润滑不当而造成的事故占很大的比重,其中润滑剂选择不当是一个重要因素。下面简要说明选用润滑剂的基本原则:

(1)载荷大时宜选用粘度或稠度大的润滑油或脂,粘度强度越高,承载能力越大。

(2)转速高时宜选用粘度或稠度低的润滑油或脂,以避免过大的运动阻力和发热。

(3)工作温度高时宜选用粘度或稠度大的润滑油或脂,以保证在工作温度下要求的粘性。

总之,重载,低速和高温选用粘度或稠密度大的润滑剂,轻载、高速和低温宜于选用粘度或稠密度小的润滑剂;在实用中,不少机器的润滑剂量是根据使用经验来确定的。前几项原则并非一成不变,不应照搬照做。

七、减速器的安装与使用

正确的安装、使用和维护减速器,是保证机械设备正常运行的重要环节。因此,在您安装减速器时,请务必严格按照下面的安装使用相关事项,认真地装配和使用。:

第一步是安装前确认电机和减速器是否完好无损,并且严格检查电机与减速器相连接的各部位尺寸是否匹配,这里是电机的定位凸台、输入轴与减速器凹槽等尺寸及配合公差。

第二步是旋下减速器法兰外侧防尘孔上的螺钉,调整夹紧环使其侧孔与防尘孔对齐,插入内六角旋紧。之后,取走电机轴键。

第三步是将电机与减速器自然连接。连接时必须保证减速器输出轴与电机输

入轴同心度一致,且二者外侧法兰平行。如同心度不一致,会导致电机轴折断或减速机齿轮磨损。

八、减速器的日常维护

1.温度的控制

做好对减速器温度的监控工作,减速器最高温度:对于齿轮减速器,油池温升不得超过35℃,轴承温升不得超过40℃。(对于蜗杆减速器,油池温升不得超过85℃,轴承温升不得超过65℃),发现温度异常应及时查明原因排除故障。

经常的要观察减速器的润滑油油位,保证有合适的油位和润滑油不变质。

2.异常噪声的监控

减速器在工作过程中声音平稳,当轴承磨损或齿轮磨损严重时会有较大的异域常噪声,我们在工作中要密切监控减速器的噪声情况,如发现异常噪声应立刻停车,待查明原因并采取相关措施后方可再起动减速器。

3.润滑油的监控

日常检修中应做好对润滑油的油位、油质监控工作。若发现油位不足要查明漏油原因并及时处理;当发现油质发白、起泡现象时,说明润滑油进水,此时应及时的更换润滑油;若发润滑油液中含有铜末、铁末等杂质时,说明减速器内已有零件磨损严重,此时要立即查明原因并处理故障。此外还应做好密封工作,密封的目的是防止润滑剂流失,并防止灰尘、水分等杂质进入轴承污染润滑油。

4.保证轴承的最佳工作状态的方法:

1)选用正确的装配方法,尽量避免各零部件的损伤;。

2)选用合适的轴承;

3)正确使用,在生产现场做好防尘工作,防止异物进入轴承;禁止向运转中的减速器冲水,防止减速器骤冷而造成对轴承的挤压;平时在使用中及时的给减速器注油,保证轴承有良好的润滑。

九、结论:

1.在减速器装配好后应先放在实验平台上作空载试验。试验其灵活性、振动、温升、密封性、转速、态性能等。在额定转速下正反转,要求运转平稳,噪声小,联接固定处不松动,不漏油;在减速器安装到生产现场,要按时对其进行

点检,看它的运行状态是否良好。对于齿轮减速器,油池温升不得超过35℃,轴承温升不得超过40℃。(对于蜗杆减速器,油池温升不得超过85℃,轴承温升不得超过65℃),如果发现异常,及时进行处理。同时做好相关记录,整理好检修资料。最后喷漆,涂油、防锈等。

2.另外如果在条件允许的情况下,要对减速器的轴进行探伤,因为在长时间运转中,会出现疲劳损伤,轴内部会不同程度的扭曲出现细小的裂纹,这是用肉眼看不到的,所以为了更加延长其使用寿命要在使用一定期限探伤。所以,在我们日后的减速器预防性检修与维修当中应多多注意上述问题,把现有的检修工作做好。

参考文献

1. 成大先主编机械设计手册第三版化工工业出版社 1998

2. 周明衡主编减速器选用手册北京化学工业出版社 2002

3. 濮良贵主编机械设计第八版西安高等教育出版社 2005

减速器的机械设计

减速器的机械设计 仅供参考 一、传动方案拟定 第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器 (1)工作条件:使用年限10年,每年按300天运算,两班制工作,载荷平稳。 (2)原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s; 滚筒直径D=220mm。 运动简图 二、电动机的选择 1、电动机类型和结构型式的选择:按已知的工作要求和条件,选用Y系列三相异步电动机。 2、确定电动机的功率: (1)传动装置的总效率: η总=η带×η2轴承×η齿轮×η联轴器×η滚筒 =0.96×0.992×0.97×0.99×0.95 =0.86 (2)电机所需的工作功率: Pd=FV/1000η总 =1700×1.4/1000×0.86 =2.76KW 3、确定电动机转速: 滚筒轴的工作转速: Nw=60×1000V/πD =60×1000×1.4/π×220 =121.5r/min

按照【2】表2.2中举荐的合理传动比范畴,取V带传动比Iv=2~4,单级圆柱齿轮传动比范畴Ic=3~5,则合理总传动比i的范畴为i=6~20,故电动机转速的可选范畴为nd=i×nw=(6~20)×121.5=729~2430r/min 符合这一范畴的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表 方案电动机型号额定功率电动机转速(r/min)传动装置的传动比KW 同转满转总传动比带齿轮 1 Y132s-6 3 1000 960 7.9 3 2.63 2 Y100l2-4 3 1500 1420 11.68 3 3.89 综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。 4、确定电动机型号 按照以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为 Y100l2-4。 其要紧性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。 三、运算总传动比及分配各级的传动比 1、总传动比:i总=n电动/n筒=1420/121.5=11.68 2、分配各级传动比 (1)取i带=3 (2)∵i总=i齿×i 带π ∴i齿=i总/i带=11.68/3=3.89 四、运动参数及动力参数运算 1、运算各轴转速(r/min) nI=nm/i带=1420/3=473.33(r/min) nII=nI/i齿=473.33/3.89=121.67(r/min)

(完整版)中国铁塔动环常见告警处理指导手册

中国铁塔动环常见告警处理指导手册一、FSU离线告警 告警名称:FSU离线; 告警解释:FSU和铁塔集团平台连接通讯中断; 原因分析:1)信号差或不稳定;2)FSU设备掉电;3)无线模块硬件故障;4)FSU设备硬件故障;5)天线和无线模块连接中断,或天线丢失;6)VPN服务器连接不上;7)SIM卡被盗、欠费或故障。平台处理方法:查询历史告警记录,如频繁离线或长时间离线,需现场检查。 现场处理方法: 第一步检查供电: 1)在运维监控系统检查离线站点是否有停电告警,判断是否现场停电; 2)现场检查FSU指示灯不亮设备没有供电。 原因分析:FSU供电异常。 解决方案: 1)检查整个基站是否停电,如停电则通知相关人员取电; 2)检查FSU供电空开是否跳闸及通电线路是否正常。 第二步检查无线模块: 检查无线模块指示灯都不亮或都常亮。

原因分析:无线模块供电异常或无线模块故障。 解决方案: 1)无线模块供电故障,则检查给无线模块供电接线是否正常如正常,则用万用表测量给无线模块供电FSU输出端是否有12V,如没有则为FSU供电板问题,更换FSU供电板。 2)确认供电正常,则更换无线模块进行测试。 下站建议:下站时建议随身带上一套可以成功拨号的无线网卡和SIM 卡,下站的时候作对比验证,快速确认是SIM卡问题,还是无线模块问题。 第三步FSU检查 通过EISUConfig软件登陆FSU设备,点击设备诊断管理。 1)信号强度弱:通过设备软件登录设备,如信号强度小于15。

解决方案:更换运营商无线模块或将天线外延(室内站放到室外,室外柜放到底部隐蔽区域或有外层保护情况下放到机柜顶部) 2)铁塔VPN网络连接异常:铁塔VPN网络提示连接异常 3)铁塔网管未注册:铁塔网管提示连接异常(正常显示连接正常)解决方案: 确认总部平台正常,重启FSU(等待程序连接)。如重启后未恢复,联系厂家专业人员。 平台恢复确认:告警管理-活动告警监控-当前告警查询该站点,确认告警是否消除。 二、电源配套告警 2.1开关电源类告警: 2.1.1开关电源通信状态告警 告警名称:开关电源通信状态告警; 告警解释:开关电源和FSU之间的通讯中断; 原因分析:开关电源和FSU之间的通讯中断 平台处理方法:无 现场处理方法:检查开关电源屏幕是否显示正常,和FSU的监控线连接是否正常。

WatersE型高效液相作业指导书精编版

W a t e r s E型高效液相作业指导书 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

Waters E2695型高效液相作业指导书 1.目的 规范Waters E2695型高效液相色谱仪的操作,有利于仪器的使用和检测工作的开展。 使Waters E2695型高效液相色谱仪处于受控状态,保证检测结果的准确性和可靠性。 方便Waters E2695型高效液相色谱仪的日常维护及常见故障的检查和解决。 2.范围 本作业指导书适用于Waters E2695型高效液相色谱仪。 3.职责 检验室负责制定操作规程。 仪器负责人组织实施操作规程并保证仪器的有效使用。 质量员保证仪器处于受控状态并负责编写仪器的检定、期间核查计划并组织落实实施。 4.仪器组成 本仪器由waters2695分离单无、2489紫外可见光检测器、2424蒸发光散射检测器、Empower色谱工作站和打印机组成。2695分离单元包括四元梯度洗脱的溶剂输送系统,四通道在线真空脱气机,可容纳120个样品瓶的自动进样系统,柱温箱,内置的柱塞密封垫清洗系统,溶剂托盘,液晶显示器,键盘用户界面及软盘驱动器。 5.操作规程 开机 先打开电脑,再依次接通2695分离单元、检测器和打印机的电源(注:在打开2424蒸发光散射检测器电源之前,先开启气体供应)。接通2695分离单元后,约20秒仪器自检,约1分钟后,显示主屏幕,此时继续各部件的初始化,待主屏幕上主标题区出现“Idle”仪器自检通过,进入待命状态。

溶剂管理系统的准备 流动相的脱气 确认所有溶剂管路都充满溶剂,按[Menu/Status],进入“Status(1)”屏幕,光标选“Degasser”按[Enter]显示选项屏幕,Mode为“on”。 启动溶剂管理系统 干启动当溶剂的管路是干的或是需要更换溶剂时,在“Status(1)”屏幕下,按[Direct Function],光标选中“Dry Prime”,按[Enter],显示“Dry Prime”屏幕,按欲启动的溶剂管路的屏幕键,如[Open A],光标选“Duration”,按数字键输入时间(一般为5分钟),按[Continue],待限定时间结束后,重复操作,使实验所需的各溶剂管路均启动、排气并充满流动相。 湿启动在“Status(1)”屏幕下,光标选“Composition”中欲使用的流动相,输入100%,按[Direct Function],光标选“Wet prime”,按“Enter”,显示Wet prime”屏幕,输入流速和时间(5ml/min和5min)按[OK]。待限定时间结束后,对每种流动相重复操作。 样品管理系统的准备 A管带黄色标记、B管带蓝色标记号、C管带红色标记、D管带绿色标记,绿色管为冲洗泵头用,白色管为问冲洗进样器用,所用溶剂均为甲醇:水(1:1)。 将样品瓶插到样品盘合适的位置,打开样品仓门,显示“Door is Open”屏幕,装入样品盘,按[Next],直至所有样品盘装毕,关仓门。 编辑分析方法及执行样品分析表 创建项目双击电脑桌面图标“Empower”,用户名输入“system”密码输入“manager”选中操作项目和色谱系统→确定。在菜单栏“管理”→创建新项目→选择父项目→下一步→输入表空间值→按“下一步”逐步设置→完成→管理→改变/项目,在该窗口切换项。 编辑方法组调用方法组编辑向导→新建→设置检测器参数{2489检测器设置波长模式、波长、灯开启、采样速率;2424检测器[通用]里设置:检测器设置增益(0~1000)、数据率、灯开启,喷雾器设置模式(加热、关、冷却),漂

RV减速器参数计算

RV减速器具有齿隙小,扭转刚性大,减速比大,振动小以及在一定条件下具有自锁功能的传动机械,是最常用的减速机之一而且传动效率高,磨耗小,使用寿命长。RV减速器明显的优点,已广泛用于机械手和其它机电一体化机械设备中。本设计的底座旋转采用RV减速器传动。 一般的RV减速器为二级减速机构: 一级减速机构为行星齿轮减速机构,通过输入轴的旋转将动力从输入齿轮传递到行星齿轮,按齿数比进行减速,为第一级减速; 二级减速机构为摆线级减速机构,由行星轮带动旋转的偏心轴驱动两个摆线盘进行偏心运动,摆线盘成180°对称安装,使其受力均衡。偏心运动促使摆线盘与放置在针齿壳上的针齿销进行啮合。偏心轴旋转一周,摆线盘在相反方向上移动一个针齿位。 在RV减速器的实际应用中,不同的输入和输出方式可以得到不同的减速比,其主要有三种输入输出固定方式: 1.固定:针齿壳 输入:输入轴 输出:输出盘 减速比:i=1/R,R----速比值。 2. 固定:输出盘 输入:输入轴 输出:针齿壳 减速比:i=-1/(R-1),R----速比值。 3. 固定:输入轴 输入:针齿壳 输出:输出盘 减速比:i=(R-1)/R,R----速比值。 其中速比值R可以按以下公式进行计算:

式中:——行星轮齿数; ——输入齿轮齿数; ——针齿销数; R——速比值。 本设计采用是最为常见的第一种输入输出固定方式,针齿壳通过连接盘固定于机器人的基座上,底座旋转驱动电机通过平键传动作为动力来源的输入端,而输出盘作为整个RV减速器的输出端,将输出盘与底座通过螺钉连接固定。 本设计中速比值R=100;根据行星齿轮减速机构的工作环境选择不同的输入齿轮齿数,闭式齿轮传动一般转速较高,为了提高传动的稳定性,减小冲击振动,通常选择齿数多一点的齿轮,输入齿轮的齿数可取为Z1=20~40,而开式(半开式)齿轮传动,由于轮齿的磨损失效为主要因素,因此输入齿轮的齿数通常选用不多,一般可以输入齿轮的齿数Z1=17—20,且为了防止齿轮啮合时发生根切,应取Z1≥17。本设计中的RV减速器的工作环境为封闭的减速箱内,且齿轮传动的转速较高,因此选定输入齿轮的齿数Z1为20。 设计本RV减速器的针齿销数Z4=33,计算可得行星轮齿数Z2=60。 这里我们将底座旋转的运动参数和力矩参数,时间参数等归纳起来: 1.启动时负载转矩:T1= 2.稳定时负载转矩:T2= 3.停止时负载转矩:T3=瞬时最大转矩:Tem= 5.启动时平均转速:N1=2500r/min 6.稳定时转速:N2=3750 r/min 7.停止时平均转速:N3=2500r/min

中国铁塔动环常见告警处理指导手册

中国铁塔动环常见告警处理指导手册 一、FSU离线告警 告警名称:FSU?线; 告警解释:FSUffi铁塔集团平台连接通讯中断; 原因分析:1)信号差或不稳定;2)FSUI^备掉电;3)无线模块硬件故障;4) FSUI^备硬件故障;5)天线和无线模块连接中断,或天线丢失;6) VPM艮务器连接不上;7) SIM卡被盗、欠费或故障。 平台处理方法:查询历史告警记录,如频繁离线或长时间离线,需现场检查。 现场处理方法: 第一步检查供电: 1)在运维监控系统检查离线站点是否有停电告警,判断是否现场停 电; 2)现场检查FSU指示灯不亮设备没有供电。 原因分析:FSUtt电异常。 解决方案: 1)检查整个基站是否停电,如停电则通知相关人员取电; 2)检查FSU供电空开是否跳闸及通电线路是否正常。 第二步检查无线模块: 检查无线模块指示灯都不亮或都常亮。

原因分析:无线模块供电异常或无线模块故障。 解决方案: 1)无线模块供电故障,则检查给无线模块供电接线是否正常如正常, 则用万用表测量给无线模块供电FSLtt出端是否有12V,如没有则为FS姬电板问题,更换FSUf;电板。 2)确认供电正常,则更换无线模块进行测试。 下站建议:下站时建议随身带上一套可以成功拨号的无线网卡和SIM 卡,下站的时候作对比验证,快速确认是SIM卡问题,还是无线模块问题。 第三步FSU^查 解决方案:更换运营商无线模块或将天线外延(室内站放到室外,室外柜放到底部隐蔽区域或有外层保护情况下放到机柜顶部) 2)铁塔VPN网络连接异常:铁塔VPMW络提示连接异常 3)铁塔网管未注册:铁塔网管提示连接异常(正常显示连接正常) 解决方案: 确认总部平台正常,重启FSU(等待程序连接)。如重启后未恢复,联系厂家专业人员。 平台恢复确认:告警管理-活动告警监控-当前告警查询该站点,确认告警是否消除。

减速器参数表格

B.4 Gear reducer data sheet 加速器数据表 Manufacturers are recommended to use this form below when providing gear reducer information. 在提供减速器信息的时候,推荐制造商采用如下的表格 Manufactured by制造商: Date submitted提交日期 Nominal reducer size额定减速器尺寸 Calculated Values 计算值 Pitting resistance torque抗孔蚀性扭Units单位: Static torque矩静态扭矩Units: First reduction一级减速First reduction:一级减速 Second reduction二级减速Gear大齿轮Pinion小齿轮 Third reduction三级减速Second reduction: 二级减速 Bending strength torque弯曲强度扭矩Units: Gear Pinion First reduction一级减速: Third reduction:三级减速 Gear Pinion Gear Pinion Second reduction: Gear Pinion Third reduction: Gear Pinion Notes: 1. First reduction is high-speed reduction. 一级减速时高速减速 2. Second reduction is slow-speed reduction on double reduction gear reducers and the intermediate reduction on triple reduction gear reducers. 二级减速时双级减速器的低速和三级减速器的中级减速。 3. Third reduction is the slow-speed reduction on triple reduction reducers and is not applicable on double reduction reducers. 三级减速是指三级减速器的低速减速,不适用于双级减速。 Construction Features 结构数据 Type of reducer (Cross out if not applicable)减速器的类型(不接受交叉式) (Single) 单级(Double) 双级(Triple) Reduction 三级(Single) (Double) Helical gearing 螺线 Teeth齿轮齿 Number of teeth and normal diametral pitch or transverse diametral pitch: 齿轮齿数量和额定径节或是横向径节距 First reduction一级减速N p N g P nd P d Second reduction 二级减速N p N g P nd P d Third reduction 三级减速N p N g P nd P d Center distance and net face width:中心距和净面宽度 First reduction C s, W f Second reduction C s, W f Third reduction C s, W f Figure B.3 - Manufacturer’s gear reducer data sheet

常见告警故障处理及分析

···常见告警故障处理及分析 MOTOROLA基站的告警按故障设备可分为三类:设备告警、内部告警、外部告警。 一、设备常见告警 设备告警是硬件告警最常见也是最重要的告警,告警设备一般为基站的主要器件,它的告警类型就是它的设备类型。 1. DRI 29:[Front End Processor Failure - Watchdog Timer Expired] 前端处理器故障 DRI硬件故障,出现此告警时DRI可能会反复自启,可能会退服,应先reset or ins DRI应进行INS或RESET处理,若告警未消失,更换TCU。 2. DRI 40-47 :[Channel Coder Timeslot 0(-7) Failure] 0-7时隙信道编码器失败。 M-CELL基站经常出现此类告警,应进行INS或RESET处理,不行再更换TCU900。此告警在GSR4时出现,升级到GSR5可能会消失。 3. DRI 51 :[Baseband Hopping TDM Link Error]基带跳频TDM链路错误。 此告警有几种可能性:TDM-Highway BUS或KSW可能有问题。 DRIM的FEP,CCDSP可能有问题。 此告警须在现场具体测试分析。测试后判定故障点。 此告警在GSR4时出现,升级到GSR5可能会消失 TDM——Time Division Multiplexing时分复用:该总线用于把来自BTS的呼叫与信令数据传送到MSC,反之亦然。可分为两个独立的部分:交换机公共通路&出局公共通路。 交换机公共通路:处理路由到交换机的数据,数据来自外部信源 (通过E1/T1接口)或由GPROC内部产生。 出局公共通路:这是一个被交换的数据,现在被路由出BSC/RXCDR (通过E1/T1接口)或通向内部GPROC。 4. DRI 81:[Transmitter Synthesizer Failure]收发单元故障 此告警为收发单元TCU故障,故障原因有可能为: -接收Calibration频点丢失 -信道盘的CEB故障 -射频电缆连接失败 处理方法:远程ins或reset TCU,告警消失并监测;若告警未消失,更换TCU 5. DRI 86 :[Transmitter Failure]输出功率失败,引起DRI退出服务。状态:

常见报警及处理办法

附录三常见报警及处理办法 1、Light barrier 机械手到位报警,当机械手在取放刀区域上位时,系统将忽略这一信号,以使取放刀正常。当机械手不在取放刀区域时,只要机械手离开下限位,就产生Light barrier报警,并停止机器。 处理办法:检查机械手是否在上限位,在上限位放下机械手即可。若仍然报警,查看机械手下限位传感器灯是否亮,检查传感器螺丝是否松动,传感器是否故障,检查线路是否断开。 2、Position stop 人身安全保护对射灯,当有人或物体进入机器内并当住对射光线时,机器停止,清除障碍物或人离开后,机器才能正常工作,有两种选择:一是清除障碍物或人离开后机器立即接着工作,二是清除障碍物或人离开后按空格键才能继续工作。 3、Table stop 当主轴有转动和PIN夹打开时机器就产生Table Stop报警,并停止机器。检查PIN夹是否打开,关闭PIN夹并按空格键即可。 4、EMERGENCY STOP 机器的紧急停止信号,当急停按钮按下时即产生此报警信号,能有效中断X、Y、Z轴的伺服电机供给,所有的轴开始变得不能动作,主轴也不能运转。在检查作业时进入机器前,确认本功能有效才可进入机器作业。X、Y、Z轴驱动器及变频器亦能产生EMG此报警信号,所以在释放急停按钮,按下电脑键盘ESC后仍产生EMG报警,则检查是否有其它故障导致驱动器报警。 5、SPINPLE AIR 总气阀报警,当主气压不足时,机器停止,主轴停止,主气压满足要求,按ESC键清除报警信号,机器才能工作。 6、QIC limit alarm 压脚切换报警,指定的压脚切换到系统指定位置(大孔或者小孔),如果切换不到位即产生报警。或是如果压脚在钻板过程中离开指定位置,系统亦会报警,并停止机器。 找到故障轴后排除压脚切换故障时,检查压脚切换单元电磁阀是否动作,压脚切换装置是否有异物卡住,是否有外力撞击而导致装置无法定位。检查切换汽缸位置传感器是否有亮,传感器是否故障,传感器固定螺丝是否有松动,传感器电源线是否断路。 7、SPIN THERMAL 主轴过载报警,当任一主轴电流过大时,电机保护继电器将脱扣,这时将产生过载报警。检查主轴是否异常,排除异常之后,打开机器后背门,按下电机保护继电器黑色RESET按钮可使跳脱的开关复位。 8、Cooling Unit 冷却机异常,检查冷水机是否打开,冷水机故障依照冷水机手册进行排除。 9、Circumstance temperature 环境温度报警,当机器工作的环境温度超过28℃时即产生环境温度报警,请检测环境温度是否已超过28℃。 10、COLLET_AIR 主轴夹头报警,在主轴有转动时,若主轴夹头总气压大于0.3kg时产生此报警。检查夹头张开总气阀是否关闭或者检查线路。 11、Machine stop 当电源异常、主轴、电机、驱动器发生故障时均产生此报警,如温度过高等,检查电源线路,各驱动器、主轴、电机温度是否异常,温度线是否断开。平台或者横梁使用直线电机时增加第二级位置保护,一旦电机超过限位触发,将中断整机供电,显示此报警。 12、NO CONTACT T 接触钻断刀报警,报警后机器会自动量刀,若断刀则更换刀具,若量刀判断刀未断则为断刀误报警,检查压脚是否接地,钻板时压脚是否与板接触良好,仍有此现象发生则更换断刀检测板。 13、GRIPPER NOT UP

WATERS 2695-2487 HPLC 仪器操作简明流程

WATERS 2695-2487 HPLC 仪器操作简明流程 WATERS 2695-2487 HPLC 仪器操作简明流程 1、2487检测器开、关机及使用: 打开电源仪器自检1-2min 预热5min 稳定约30min 设定通道、波长模式、波长(也可在工作站上设置)回零(Auto Zero)分析检测实验完毕关掉电源开关即退出。 2、2695分离单元使用操作: 1) 开机自检 打开电源开关,仪器开始自检(4-5min),待屏幕上方出现“Idle”字样表示自检成功。 2) 脱气(Degas) 按面板右下方“Menu/Status”键进入“Status(1)”界面,移动光标至“Degasser Mode”,按Enter 选择“On”,打开在线脱气。 3) 设定柱温(可选项) 在“Status(1)”界面,移动光标至“Col Htr Set”,输入目标温按Enter即可。(可在工作站方法中设置) 4) Prime Seal Wash(清洗柱塞杆) 按“Menu/Status”键回到“Menu”界面,按下排功能键“Diag”,然后再按下排功能键“Prime Seal Wsh”,“Start”,冲洗1~2min后,“HALT”,“CLOSE”。 5) Wet Prime 在“Status(1)”界面中“Composition”下,选择将用到的溶剂通道为“100%”,按液晶屏幕右下角“Direct Function”键,移动光标选择“2 Wet Prime”,“OK”,流速及时间可使用默认值,也可自行设定(如:5ml/min,3min),“OK”即可。 将每一个会用到的溶剂通道按照上述操作一次。 6) Purge Injector(注射器排气泡及清洗) 进入“Direct Function”界面后,选择“3 Purge Injector”,“OK”,默认数值为6,“OK”。 7) Prime Needle Wash(清洗注射针) 进入“Diagnostics”界面,按下排功能键之“Prime Ndl Wsh”,“Start”,默认30秒钟,“Close”,即可返回“Diagnostics”界面。 注:以上4)-7)为溶剂系统前处理过程,建议每天开机后依次进行。若发现注射器中有气泡,则可重复6)直至排除。如果流动相中含有盐类,则实验结束后必须用水清洗柱塞杆(即操作4))。 8) 平衡柱子 在“Status(1)”界面上,按流动相比例设定各通道溶剂比例后,再Wet Prime操作一次,然后设置流速,平衡色谱柱30-60min。 9) 放置样品 拉开样品转盘舱门,将盛有待测样品溶液的样品瓶放入转盘中,记下样品瓶号,关上舱门。 10) 检测样品 打开工作站,设置仪器方法、方法组、自动进样序列等,监视基线、检测样品。 11) 分析处理数据、打印报告 12) 清洗注射器、针、柱塞杆 参见上述4)、7)。 13) 清洗色谱柱 用水冲洗柱子40-60min(视柱子规格不同,流速通常1ml/min);然后用甲醇或乙腈冲洗柱子40min(流速

RV减速器参数计算

3.2 RV减速器参数的确定 RV减速器具有齿隙小,扭转刚性大,减速比大,振动小以及在一定条件下具有自锁功能的传动机械,是最常用的减速机之一而且传动效率高,磨耗小,使用寿命长。RV减速器明显的优点,已广泛用于机械手和其它机电一体化机械设备中。本设计的底座旋转采用RV减速器传动。 一般的RV减速器为二级减速机构: 一级减速机构为行星齿轮减速机构,通过输入轴的旋转将动力从输入齿轮传递到行星齿轮,按齿数比进行减速,为第一级减速; 二级减速机构为摆线级减速机构,由行星轮带动旋转的偏心轴驱动两个摆线盘进行偏心运动,摆线盘成180°对称安装,使其受力均衡。偏心运动促使摆线盘与放置在针齿壳上的针齿销进行啮合。偏心轴旋转一周,摆线盘在相反方向上移动一个针齿位。 在RV减速器的实际应用中,不同的输入和输出方式可以得到不同的减速比,其主要有三种输入输出固定方式: 1.固定:针齿壳 输入:输入轴 输出:输出盘 减速比:i=1/R,R----速比值。 2.固定:输出盘 输入:输入轴 输出:针齿壳 减速比:i=-1/(R-1),R----速比值。 3.固定:输入轴 输入:针齿壳 输出:输出盘 减速比:i=(R-1)/R,R----速比值。

其中速比值R可以按以下公式进行计算: R=1+Z2 1 ×Z4 式中:Z2——行星轮齿数; Z1——输入齿轮齿数; Z4——针齿销数; R——速比值。 本设计采用是最为常见的第一种输入输出固定方式,针齿壳通过连接盘固定于机器人的基座上,底座旋转驱动电机通过平键传动作为动力来源的输入端,而输出盘作为整个RV减速器的输出端,将输出盘与底座通过螺钉连接固定。 本设计中速比值R=100;根据行星齿轮减速机构的工作环境选择不同的输入齿轮齿数,闭式齿轮传动一般转速较高,为了提高传动的稳定性,减小冲击振动,通常选择齿数多一点的齿轮,输入齿轮的齿数可取为Z1=20~40,而开式(半开式)齿轮传动,由于轮齿的磨损失效为主要因素,因此输入齿轮的齿数通常选用不多,一般可以输入齿轮的齿数Z1=17—20,且为了防止齿轮啮合时发生根切,应取Z1≥17。本设计中的RV减速器的工作环境为封闭的减速箱内,且齿轮传动的转速较高,因此选定输入齿轮的齿数Z1为20。 设计本RV减速器的针齿销数Z4=33,计算可得行星轮齿数Z2=60。 这里我们将底座旋转的运动参数和力矩参数,时间参数等归纳起来: 1.启动时负载转矩:T1=4N.M 2.稳定时负载转矩:T2=2N.M 3.停止时负载转矩:T3=3.2N.M 4.瞬时最大转矩:Tem=16N.M 5.启动时平均转速:N1=2500r/min 6.稳定时转速:N2=3750r/min 7.停止时平均转速:N3=2500r/min

安捷伦1100及安捷伦1200高效液相色谱仪泵的日常维护

安捷伦1100及1200液相泵的日常维护 安捷伦, 液相, 日常, 维护 安捷伦1100及1200液相泵的日常维护 泵是液相色谱的核心,泵将流动相从溶剂瓶输送到液相流路系统中,并要在高压下保持流量和压力的稳定。泵的状态正常是液相色谱准确分析的基础,所以平日一定要重视对泵的维护。下面就安捷伦1100/1200液相色谱泵的日常维护进行简要的介绍。 1. 流动相的准备 为了防止颗粒性物质对泵组件的磨损,流动相(特别是水相)应该新鲜配置并且过滤。上机前对流动相进行适当的超声脱气,以保证更好的在线脱气和在线混合的效果。 2.比例阀溶剂通道的分配 四元泵的比例阀有A、B、C、D四个通道,建议将盐溶液接在下面的通道(A或D),将有机溶剂接在上面的通道(B 或C)上,也就是有机通道最好在盐溶液通道的上面。且建议用水定期冲洗所有比例阀通道除去可能在阀口析出的盐结晶。 3.过滤白头的维护 过滤白头位于排气阀内,是一种聚四氟乙烯材质的微孔过滤芯,用于过滤流动相中的微粒,是经常需要维护的地方。当系统压力有异常增高时,首先需要检查过滤白头是否阻塞了。判断的方法是:打开排气阀,以纯水作流动相,将流速设为5mL/min,如果泵压超过10bar,则说明过滤白头需要更换了。对过滤白头的预防性维护通常可以是1~2个月更换1次,更换时同时检查一下过滤白头前面的密封金垫,如果发现变形,也应及时更换。如果过滤白头更换过于频繁,则需要认真检查一下流动相的品质,确保流动相上机前过滤,确保使用了合适的过滤膜。如果流动相有长菌现象,除了配置新的溶剂,还应对相应的溶剂管线和脱气机通道进行彻底的清洗。 4.柱塞杆与柱塞密封圈的维护 柱塞密封圈套在柱塞杆上用于隔离泵与外界,工作时,它和柱塞杆进行频繁的往复摩擦,使用一段时间后,会有一定的磨损,因而密封圈需要定期更换以保证系统的密封性。更换活塞密封垫时检查活塞杆上是否有

Waters 液质联用仪的使用与维护保养标准操作规程

Waters Quattro Premier液质联用仪的使用与维护保养标准操作规程(SOP) 2004-11-09

目录 1.简述 (1) 1.1样品入口 (2) 1.2真空系统 (2) 1.3数据系统 (2) 2.环境要求 (3) 3.仪器使用 (3) 3.1开机步骤 (3) 3.2质谱调谐窗口各项参数设定 (5) 3.3创建项目 (6) 3.4质量校正 (7) 3.5调谐(Tuning) (14) 3.6信号采集 (15) 3.7 2695型液相色谱(Inlet Method) (19) 3.8创建质谱方法 (25) 3.9创建样品列表 (27) 3.10 运行样品列表( Sample List) (30) 3.11 QuanLynx来编辑定量方法 (39) 3.12 用QuanLynx进行批处理 (44) 3.13 查看QuanLynx定量结果 (47) 3.14关机 (52) 4.注意事项 (53) 5.维护与保养 (54)

1. 简述 Quattro Premier (Figure 1-1 )是一台高效串联四极杆质谱仪,用于常规LC/MS/MS分析。 Figure 1-1 Quattro Premier Mass Spectrometer 样品的离子化发生在处于大气压状态下的离子源中。离子通过取样锥孔进入真空系统,然后穿过源travelling-wave(T-Wave TM)进入第一级四极杆,在此按照质/荷比(m/z)过滤(Figure 1-2 )。按照质量数分开的离子进入T-Wave碰撞室,进一步发生碰撞诱导裂解(CID)或者直接进入第二级四极杆。碎片离子通过第二级四极杆进行质量分析。离子最后经过倍增电极,phosphor和光电倍增器检测系统检测。输出信号被放大,数字化后传给信号系统。

ZQ使用waters液质联用仪的使用

开机步骤 1. 分别打开质谱、液相色谱和计算机电源,此时质谱主机内置的CPU会通过网线与计算机 主机建立通讯联系,这个时间大约需要1至2分钟。 2. 等液相色谱通过自检后,进入Idle状态,依照液相色谱操作程序,依次进行操作。(具 体根据液相色谱不同型号来执行,下面以2695为例)。 a. 打开脱气机(DegasserOn)。 b. 湿灌注(WetPrime)。 c. PurgeInjector。 d. 平衡色谱柱。 3. 双击桌面上的MassLynx 4.0图标进入质谱软件。 注:如果进入Masslynx软件时出现提示: “Theembeddedsystemisnotresponding,Thesystemwillruninstandalonemode”,则说明质谱内置的 CPU(EPC)与电脑主机的通讯联系还未建立,此时无法控制质谱,请稍等后再进入软件,如果打开软件仅为处理数据则没有关系(质谱主机电源未开时进入软件也会有同样提示)。 4. 检查机械泵的油的状态(每星期),如果发现浑浊、缺油等状况,或者已经累积运行超过 3000小时,请及时更换机械泵油。 5. 点击质谱调谐图标(MSTune)进入质谱调谐窗口。 6. 选择菜单“Options–Pump”,这时机械泵将开始工作,同时分子涡轮泵会开始抽真空。 几分钟后,ZQ就会达到真空要求,ZQ前面板右上角的状态灯“Vacuum”将变绿。 7. 点击真空状态图标,检查真空规的状态,以确认真空达到要求。 8. 确认氮气气源输出已经打开,气体输出压力为90psi。 9. 设置源温度(SourceTemp)到目标温度。 质谱调谐窗口各项参数设定 电喷雾电离源(ESI)

减速器数据

一、相关参数如下:圆周力F=1600N=1.6KN,转速0.6m/s,滚筒直径:250mm,每天工作8小时, 工 作年限15年 二、传动装置总体设计 考虑电机转速高,传动功率大,将V带设置在高速级 三、电机选择 1、选用三相笼型异步电机,封闭型结果,电压380V,Y型 2、电动机所需功率Pd=Pw/ n a ,Pw=FV/1000,贝y Pd=FV/1000 n a 由电动机到运输带传动总效率为n a = 0.82 Pd=1.1757KW 3、电动机转速 卷筒工作转速为n=60X 1000V/ n D=45.84r/min 电机可选范围为n=n x i=(16~1600 )x n=733.44~7334.4r/min , 选择电机Y132M1-6,主要参数如下: 额定功率:4KW 同步转速1000r/min 额定转速960r/mi n 总传动比i=960/45.84=20.94, 轴外径长度38,轴外伸长度80 四、传动装置总传动比和分配传动比 总传动机i=20.94,高速级传动比i1= i 1.3=5.22 低速级传动比i2=i/i1=4.01 五、计算传动装置参数各轴运动及动力参数如下 轴号转速功率转矩传动比 I960 1.16 11.58 5.22 n183.98 1.11 57.43 出45.84 1.05 219.13 4.01 IV45.84 1.02 212.6 1 其中P仁Pd x n 1=1.17x 0.99=11.58 , Td=9550 x 1.16/960=11.58N.m 六、齿轮设计 1、高速轴大小齿轮设计(斜齿圆柱齿轮),精度等级8级 1)材料选择:大齿轮为45钢,调质处理,硬度为240HBS 小齿轮为40Cr (调质),硬度为280HBS 2)初选小齿轮齿数为Z仁20,则大齿轮齿数Z2=104.4,取整为105 3)初选螺旋角3 =14o=0.24rad 设计计算公式: d 1 2、接触强度设计 1)初选Kt=1.6,区域系数ZH=2.433 端面重合度e a仁0.749, e a2=0.87, & a=1.619

加工中心常见报警及解决方法51829

旺磐加工中心的常见报警解决方法 序号报警内容含义解决方法 <一> plc报警问题 1.1 LUB LOW (油量过少) 1.11 检查润滑油泵的油位 1.12 检查油位传感器是否正常 1.13检查油位报警线路电源及输入电路是否正常(号码管为DC24V及LUB LOW) 1.2COOLANT OVERLOAD (切削液马达过载) 1.21 检查动力线是否有缺, 1.22 检查电源电压是否为额定电压 1.23 过载保护器的过载系数是否设定过小,正常为 2.5 1.24 马达是否为反转或者有烧毁 1.25 将上序问题排除后,将过载保护器上的复位按钮按下,再确定信号线是否有24V电源输入(号码管为COOLANT OVERLOAD) 1.3 AXIS NOT HOME (3轴未归零) 1.31 在原点复归模式下分别将三轴归零,归完成报警信号即完成零 1.32 ATC NOT READY 刀库未准备好 1.33 刀库记数信号未到位,检查COUNTER信号 1.34 刀杯原位信号错误,检查TOOL CUP UP 信号 1.35 刀臂持刀点位置不正确,检查121点信号 1.4 THE CLAMP SIGNAL ERROR (夹刀信号错误) 1.41 检查夹刀到位信号线是否有异常 1.42 检查打刀缸夹刀开关是否正常 1.43 检查I/F诊断中X4的信号是否为1 1.5 AIR PRESSURE LOW (空气压力低) 1.51 检查空气压力是否5MP以上 1.52 检查空气压力输入信号的线路是否有DC24VV电压 1.6 ATC COUNTER SINGAL ERROR (刀库记数信号错误)

减速机详细的选型计算及练习

目录(Contents) 1 练习简介(Brief description of the exercises) (1) 2 实用工具(Aids) (2) 3 练习(Exercises) (3) 3.1 结构设计形式为M的减速电机(Geared motor design M) (3) 3.2 结构设计动工为N的减速电机(Geared motor design N) (4) 3.3 制动单元练习1 (Braking unit 1) (5) 3.4 制动单元练习2(Braking unit 2) (6) 3.5 传动轴(Spindle) (7) 4 练习答案(Solutions) (8) 4.1 结构设计形式为M的减速电机(Geared motor design M) (8) 4.2 结构设计形式为N的减速电机(Geared motor design N) (10) 4.3 制动单元练习1 (Braking unit 1) (12) 4.4 制动单元练习2(Braking unit 2) (14) 4.5 传动轴(Spindle) (15) 1 练习简介(Brief description of the exercises)

2 实用工具(Aids) ?计算器(Pocket calculator) ?Lenze选型手册(Lenze catalogues) ?Lenze公式集(Lenze formula collection)

3 练习(Exercises) 3.1设计形式为M的Lenze减速电机的选型(Geared motor design M) 减速电机按S2方式进行传动(运行时间=10min),此时,可采用常规运行方式。[A geared motor is to drive a load in S2 operation (operating time = 10 min). In this case, a regular operation is given.] 具体数据(Detailed data): 转矩(Process torque): M2 = 580 Nm 速度(Process speed): n2 = 100 rev/min 主电压(Mains voltage): V Mains = 400 V 主电源频率(Mains frequency): f Mains = 50 Hz 运行时间(Operating time/day): 8 h 所需部件(Searched components): Lenze异步电机(Lenze asynchronous motor) GST减速器(Gearbox GST)

减速器相关计算

1.减速器的概述 减速器原理减速器是指原动机与工作机之间独立封闭式传动装置。此外,减速器也是一种动力传达机构,利用齿轮的速度转换器,将马达的问转数减速到所要的回转数,并得到较大转矩的机构。降速同时提高输出扭矩,扭矩输出比例按电机输出乘减速比,但要注意不能超出减速器额定扭矩。 减速器的作用减速器的作用就是减速增矩,这个功能完全靠齿轮与齿轮之间的啮合完成,比较容易理解。 减速器的种类很多,按照传动类型可分为齿轮减速器、蜗杆减速器和行星减速器以及它们互相组合起来的减速器;按照传动的级数可分为单级和多级减速器;按照齿轮形状可分为圆柱齿轮减速器、圆锥齿轮减速器和圆锥一圆柱齿轮减速器;按照传动的布置形式又可分为展开式、分流式和同轴式减速器。 (1)蜗轮蜗杆减速器的土要特点是具有反向自锁功能,可以有较大的减速比,输人轴和输出轴不在同一轴线上,也不在同一平面上。但是一般体积较大,传动效率不高,精度不高。 (2)谐波减速器的谐波传动是利用柔性元件可控的弹性变形来传递运动和动力的,体积不大、精度很高,但缺点是柔轮寿命有限、不耐冲击,刚性与金属件相比较差。输入转速不能太高。 (3)行星齿轮减速器行星减速器一般用于在有限的空间里需要较高的转矩时,即小体积大转矩,而且它的可靠性和寿命都比正齿轮减速器要好。 (4)展开式两级圆柱齿轮减速器展开式两级圆柱齿轮减速器是两级减速器中最简单、应用最广泛的一种。 (5)两级圆锥-圆柱齿轮减速器单级圆锥齿轮减速器及两级圆锥-圆柱齿轮减速器用于需要输人轴与输出轴成90D配置的传动中。 (6)同轴式两级圆柱减速器同轴式两级圆柱减速器的径向尺寸紧凑,但径向尺寸较大。 减速器的种类繁多,如今应用于各个领域,总体的发展趋势如下: ①高水平、高性能。圆柱齿轮普遍采用渗碳淬火、磨齿,承载能力提高4 倍以上,体积小、重量轻、噪声低、效率高、可靠性高。 ②积木式组合设计。基本参数采用优先数,尺寸规格整齐,零件通用性和互换性强,系列容易扩充和花样翻新,利于组织批量生产和降低成本。

减速器全部计算

以知条件 1.输送带工作拉力:F=2700KN 2.输送带运动速度:V=1.3M/S 3.滚筒直径:D=350mm 4.卷筒效率η=0.95 工作情况: 5.两班制工作,连续单向运转。 6.工作环境:室内,灰尘较大,环境最高温度35度 7.使用期限:4年一次大修,每年280个工作日,寿命8年。 一、传动方案拟定 第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器 (1)工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。(2)原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s; 滚筒直径D=220mm。 运动简图 二、电动机的选择 1、电动机类型和结构型式的选择:按已知的工作要求和条件,选用Y系列三相异步电动机。 2、确定电动机的功率: (1)传动装置的总效率: η总=η带×η2轴承×η齿轮×η联轴器×η滚筒 =0.96×0.992×0.97×0.99×0.95 =0.86 (2)电机所需的工作功率: Pd=FV/1000η总 =1700×1.4/1000×0.86 =2.76KW 3、确定电动机转速: 滚筒轴的工作转速: Nw=60×1000V/πD =60×1000×1.4/π×220 =121.5r/min 根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min 符合这一范围的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表 方案电动机型号额定功率电动机转速(r/min)传动装置的传动比 KW 同转满转总传动比带齿轮 1 Y132s-6 3 1000 960 7.9 3 2.63

相关主题
文本预览
相关文档 最新文档