当前位置:文档之家› 求数列通项公式的十种方法

求数列通项公式的十种方法

求数列通项公式的十种方法
求数列通项公式的十种方法

求数列通项公式的十一种方法(方法全,例子全,归纳细)

总述:一.利用递推关系式求数列通项的11种方法:

累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、

换元法(目的是去递推关系式中出现的根号)、 数学归纳法、

不动点法(递推式是一个数列通项的分式表达式)、 特征根法

二。四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。等差数列、

等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。 三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法

1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。 2.若1()n n a a f n +-=(2)n ≥,

21321(1)

(2) ()

n n a a f a a f a a f n +-=-=-

=

两边分别相加得 111

()n

n k a a f n +=-=

例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则

11232211

2

()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1

(1)2(1)1

2

(1)(1)1n n n n n a a a a a a a a a a n n n n n n n

n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2

n a n =。

例2 已知数列{}n a 满足112313n

n n a a a +=+?+=,,求数列{}n a 的通项公式。

解法一:由1231n n n a a +=+?+得1231n

n n a a +-=?+则

11232211122112211()()()()(231)(231)(231)(231)3

2(3333)(1)3

3(13)2(1)3

13

331331

n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=?++?+++?++?++=+++++-+-=+-+-=-+-+=+-

所以3 1.n

n a n =+-

解法二:13231n n n a a +=+?+两边除以1

3n +,得

11

121

3333

n n n n n a a +++=++, 则

111

21

3333n n n n n a a +++-=+

,故 11223

211

2232

111122122()()()(

)33333

333

212121213

()()()()3333333332(1)11111()1

333333

n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++

因此1

1(13)

2(1)2113133133223

n n n n n

a n n ---=++=+--?, 则211

33.322

n n n a n =

??+?- 练习

1.已知数列{}n a 的首项为

1,且

*12()

n n a a n n N +=+∈写出数列

{}n a 的通项公式.

答案:12

+-n n

练习2.已知数列

}

{n a 满足31=a ,

)

2()1(1

1≥-+

=-n n n a a n n ,求此数列的通项公式.

答案:裂项求和

n a n 1

2-

=

评注:已知a a =1,)

(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函

数、分式函数,求通项

n

a .

①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;

③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。

例3.已知数列

}

{n a 中,

>n a 且

)(21n n n a n

a S +=

,求数列}{n a 的通项公式.

解:由已知

)(21n n n a n a S +=

得)(2111---+-=n n n n n S S n

S S S ,

化简有

n

S S n n =--2

12,由类型(1)有

n

S S n ++++= 32212

,

又11a S =得11=a ,所以

2)

1(2

+=

n n S n ,又0>n a ,

2)

1(2+=

n n s n ,

2)

1(2)1(2--+=

n n n n a n

此题也可以用数学归纳法来求解.

二、累乘法

1.适用于: 1()n n a f n a += ----------这是广义的等比数列 累乘法是最基本的二个方法之二。

2.若

1()n n a f n a +=,则31212(1)(2)()n n

a a

a

f f f n a a a +===,,, 两边分别相乘得,1

11

1()n

n k a a f k a +==?∏ 例4 已知数列{}n a 满足112(1)53n

n n a n a a +=+?=,,求数列{}n a 的通项公式。

解:因为112(1)53n

n n a n a a +=+?=,,所以0n a ≠,则

1

2(1)5n n n

a n a +=+,故1

32

112

21

12211(1)(2)21

(1)1

2

[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53

32

5

!

n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=

???

??=-+-+??+?+??=-?????=???

所以数列{}n a 的通项公式为(1)1

2

32

5

!.n n n n a n --=???

例5.设{}n a 是首项为1的正项数列,且

()0

112

21=+-+++n n n n a a na a n (n =1,2, 3,…),

则它的通项公式是n a =________.

解:已知等式可化为:

[]0

)1()(11=-++++n n n n na a n a a

0>n a (*

N n ∈)∴(n+1)01=-+n n na a , 即

1

1+=+n n

a a n n

∴2≥n 时,

n

n a a n n 1

1-=-

112211a a a a a a a a n n n n n ????=

--- =121121??--?- n n n

n =n 1.

评注:本题是关于

n

a 和

1

+n a 的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到

n

a 与

1

+n a 的更为明显的关系式,从而求出

n

a .

练习.已知

1

,111->-+=+a n na a n n ,求数列{an}的通项公式.

答案:

=n a )

1()!1(1+?-a n -1.

评注:本题解题的关键是把原来的递推关系式

,

11-+=+n na a n n 转化为

),

1(11+=++n n a n a 若令

1

+=n n a b ,则问题进一步转化为

n

n nb b =+1形式,进而应用累乘法求

出数列的通项公式.

三、待定系数法 适用于1()n n a qa f n +=+

基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。

1.形如

(,1≠+=+c d ca a n n ,其中a a =1)型

(1)若c=1时,数列{

n a }为等差数列;

(2)若d=0时,数列{n

a }为等比数列;

(3)若01≠≠且d c 时,数列{n

a }为线性递推数列,其通项可通过待定系数法构造辅助数列

来求.

待定系数法:设

)

(1λλ+=++n n a c a ,

λ

)1(1-+=+c ca a n n ,与题设

,

1d ca a n n +=+比较系数得

d c =-λ)1(,所以

)0(,1≠-=

c c

d λ所以有:)1(11-+=-+-c d a c c d a n n

因此数列????

??-+1c d a n 构成以11-+c d a 为首项,以c 为公比的等比数列,

所以

11)1(1-?-+=-+

n n c c d a c d a 即:

1)1(11--?-+=-c d c c d a a n n . 规律:将递推关系

d

ca a n n +=+1化为

)1(11-+=-+

+c d

a c c d a n n ,构造成公比为c 的等比数列

}1{-+

c d a n 从而求得通项公式)1(1111-++-=-+c d

a c c d a n n

逐项相减法(阶差法):有时我们从递推关系d

ca a n n +=+1中把n 换成n-1有

d

ca a n n +=-1,

两式相减有

)

(11-+-=-n n n n a a c a a 从而化为公比为c 的等比数列

}

{1n n a a -+,进而求得通项公式.

)

(121a a c a a n n n -=-+,再利用类型(1)即可求得通项公式.我们看到此方法比较复杂.

例6已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。 解法一:

121(2),n n a a n -=+≥

112(1)n n a a -∴+=+ 又

{}112,1n a a +=∴+是首项为2,公比为2的等比数列

12n n a ∴+=,即21n

n a =-

解法二:

121(2),n n a a n -=+≥

121n n a a +∴=+

两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等

比数列,再用累加法的……

练习.已知数列

}

{n a 中,

,2121,211+=

=+n n a a a 求通项n a 。

答案:1

)21

(1+=-n n a

2.形如:

n

n

n

q

a

p

a+

?

=

+1(其中q是常数,且n≠0,1)

①若p=1时,即:

n

n

n

q

a

a+

=

+1,累加即可.

②若

1

p时,即:n

n

n

q

a

p

a+

?

=

+1,

求通项方法有以下三种方向:i. 两边同除以

1+

n

p.目的是把所求数列构造成等差数列

即:

n

n

n

n

n

q

p

p

q

a

p

a

)

(

1

1

1?

+

=

+

+

,令

n

n

n p

a

b=

,则

n

n

n q

p

p

b

b)

(

1

1

?

=

-

+

,然后类型1,累加求通项.

ii.两边同除以

1+

n

q. 目的是把所求数列构造成等差数列。

即:

q

q

a

q

p

q

a

n

n

n

n

1

1

1+

?

=

+

+

,

n

n

n q

a

b=

,则可化为

q

b

q

p

b

n

n

1

1

+

?

=

+

.然后转化为类型5来解,

iii.待定系数法:目的是把所求数列构造成等差数列

)

(

1

1

n

n

n

n

p

a

p

q

a?

+

=

?

++

+

λ

λ

.通过比较系数,求出λ,转化为等比数列求通项.

注意:应用待定系数法时,要求p≠q,否则待定系数法会失效。

例7已知数列{}

n

a

满足

1

11

2431

n

n n

a a a

-

+

=+?=

,求数列

{}

n

a

的通项公式。

解法一(待定系数法):设

1

112

3(3

n n

n n

a a

λλλ-

+

+=+?)

,比较系数得12

4,2

λλ

=-=

则数列{}1

43n

n

a-

-?

是首项为

11

1

435

a-

-?=-

,公比为2的等比数列,

所以

11

4352

n n

n

a--

-?=-?

,即

11

4352

n n

n

a--

=?-?

解法二(两边同除以

1+

n

q):两边同时除以1

3n+得:

1

12

24

3333

n n

n n

a a

+

+

=?+

,下面解法略

解法三(两边同除以

1+

n

p):两边同时除以1

2+n得:

n

n

n

n

n

a

a

)

2

3

(

3

4

2

21

1?

+

=

+

+

,下面解法略

练习.(2003天津理)

设0a 为常数,且

)(2311

N n a a n n n ∈-=--.证明对任意n ≥1,0

12)1(]2)1(3[51

a a n n n n n n ?-+?-+=-;

3.形如

b

kn pa a n n ++=+1 (其中k,b 是常数,且0≠k )

方法1:逐项相减法(阶差法) 方法2:待定系数法 通过凑配可转化为 )

)1(()(1y n x a p y xn a n n +-+=++-;

解题基本步骤: 1、确定()f n =kn+b

2、设等比数列

)

(y xn a b n n ++=,公比为p

3、列出关系式

)

)1(()(1y n x a p y xn a n n +-+=++-,即

1

-=n n pb b

4、比较系数求x,y

5、解得数列

)

(y xn a n ++的通项公式

6、解得数列

{}n a 的通项公式

例8 在数列}

{n a 中,

,

23,111n a a a n n +==+求通项

n

a .(逐项相减法)

解: ,

,

231n a a n n +=+ ①

∴2≥n 时,)1(231-+=-n a a n n ,

两式相减得

2

)(311+-=--+n n n n a a a a .令

n

n n a a b -=+1,则

2

31+=-n n b b

利用类型5的方法知2

351+?=-n n b 即

1

3511-?=--+n n n a a ②

再由累加法可得

213251--?=

-n a n n . 亦可联立 ① ②解出21

3251--?=-n a n n .

例9. 在数列{}n a 中,

362,23

11-=-=

-n a a a n n ,求通项n a .(待定系数法)

解:原递推式可化为

y

n x a y xn a n n ++-+=++-)1()(21

比较系数可得:x=-6,y=9,上式即为

1

2-=n n b b

所以

{}n b 是一个等比数列,首项

299611=

+-=n a b ,公比为21.1

)21

(29-=∴n n b 即:

n

n n a )21

(996?=+-

故9

6)21

(9-+?=n a n n .

4.形如

c

n b n a pa a n n +?+?+=+21 (其中a,b,c 是常数,且0≠a )

基本思路是转化为等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。

例10 已知数列{}n a 满足2

1123451n n a a n n a +=+++=,,求数列{}n a 的通项公式。

解:设22

1(1)(1)2()n n a x n y n z a xn yn z ++++++=+++

比较系数得3,10,18x y z ===,

所以22

13(1)10(1)182(31018)n n a n n a n n ++++++=+++

由213110118131320a +?+?+=+=≠,得2

310180n a n n +++≠

则212

3(1)10(1)18231018

n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为以21311011813132a +?+?+=+=为首项,以2为公比的等比数列,因此2131018322n n a n n -+++=?,则42231018n n a n n +=---。

5.形如21 n n n a pa qa ++=+时将n a 作为()f n 求解

分析:原递推式可化为211()() n n n n a a p a a λλλ++++=++的形式,比较系数可求得λ,数列

{}1n n a a λ++为等比数列。

例11 已知数列

{}

n a 满足

211256,1,2

n n n a a a a a ++=-=-=,求数列

{}

n a 的通项公式。

解:设

211(5)()

n n n n a a a a λλλ++++=++

比较系数得3λ=-或2λ=-,不妨取2λ=-,(取-3 结果形式可能不同,但本质相同)

21123(2)

n n n n a a a a +++-=-,则

{}12n n a a +-是首项为4,公比为3的等比数列

1

1243n n n a a -+∴-=?,所以

11

4352n n n a --=?-?

练习.数列{}n a 中,若2,821==a a ,且满足03412=+-++n n n a a a ,求n a .

答案:

n

n a 311-=.

四、迭代法

r

n

n pa a =+1(其中p,r 为常数)型

例12 已知数列

{}

n a 满足

3(1)2

115n

n n n a a a ++==,,求数列{}n a 的通项公式。 解:因为3(1)2

1n

n n n a a ++=,所以

1

21

2(2)(1)

3

2

(2)(1)

3(3)(2)(1)

1

12(3)(32

3(1)232

3(1)2

1

2

2

3(2)23

(1)23

3(2)(1)23

323

(2)(1)21[] [] n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n a a a a a a a ----+---+--+-+--++

+-+?-??-??----?-??---?-??-?-??======

=2)(1)

(1)1

2

3

!21 n n n n n a -+---??=

15

a =,所以数列

{}

n a 的通项公式为

(1)1

2

3

!25n n n n n a --??=。

注:本题还可综合利用累乘法和对数变换法求数列的通项公式。

例13.(2005江西卷)

已知数列:,}{且满足的各项都是正数n a N n a a a a n n n ∈-==+),4(21

,110

(1)证明

12,;

n n a a n N +<<∈ (2)求数列

}

{n a 的通项公式an.

解:(1)略(2)

],4)2([21

)4(2121+--=-=

+n n n n a a a a 所以 2

1)2()2(2--=-+n n a a

n

n n n n n n n n b b b b b a b 222121

22222112)21()21(21)21(2121,2-+++----==?-=--=-=-= 则令又bn=-1,

所以1

212)21(22,)21(---=+=-=n

n n n n b a b 即.

方法2:本题用归纳-猜想-证明,也很简捷,请试一试.解法3:设c n

n b -=,则c

2121-=

n n c ,转化为上

面类型(1)来解

五、对数变换法 适用于

r

n

n pa a =+1(其中p,r 为常数)型 p>0,

>n a

例14. 设正项数列{}n a 满足11=a ,2

12-=n n a a (n ≥2).求数列{}n a 的通项公式.

解:两边取对数得:122log 21log -+=n n a a ,)1(log 21log 1

22+=+-n n a a ,设1log 2+=n a n

b ,则1

2-=n n b b {}n b 是以2为公比的等比数列,11log 1

21=+=b 11221--=?=n n n b ,

1221log -=+n a n

,12log 12-=-n a n ,∴

1

21

2--=n n a

练习 数列

{}n a 中,11=a ,1

2

-=n n a a (n ≥2),求数列

{}n a 的通项公式.

答案:n

n a --=22

22

例15 已知数列{}n a 满足5

123n n n a a +=??,17a =,求数列{}n a 的通项公式。

解:因为5

11237n n n a a a +=??=,,所以100n n a a +>>,。

两边取常用对数得1lg 5lg lg3lg 2n n a a n +=++

设1lg (1)5(lg )n n a x n y a xn y ++++=++ (同类型四)

比较系数得, lg3lg3lg 2

,4164

x y ==+

由1lg3lg3lg 2lg3lg3lg 2lg 1lg 71041644164a +

?++=+?++≠,得lg3lg3lg 2lg 04164

n a n +++≠, 所以数列lg3lg3lg 2{lg }4164n a n +

++是以lg3lg3lg 2

lg 74164

+++

为首项,以5为公比的等比数列,则1

lg3lg3lg 2lg3lg3lg 2lg (lg 7)541644164

n n a n -+++=+++,因此

111111111

16

164

4

44

1111

15

1616

444

4

541515116

4

lg 3lg 3lg 2lg 3lg 3lg 2

lg (lg 7)54164464

[lg(7332)]5lg(332)

lg(7332)lg(332)lg(73

2

)

n n n n n n n n n n a n --------=+

++---=???-??=???-??=??

则11

54151516

4

732

n n n n n a -----=??。

六、倒数变换法 适用于分式关系的递推公式,分子只有一项 例16 已知数列{}n a 满足112,12

n

n n a a a a +=

=+,求数列{}n a 的通项公式。 解:求倒数得

11111111111,,22n n n n n n a a a a a a +++??=+∴-=∴-????

为等差数列,首项111a =,公差为1

2,

112

(1),21

n n n a a n ∴

=+∴=+

七、换元法 适用于含根式的递推关系 例17 已知数列{}n a

满足111

(14116n n a a a +=

+=,,求数列{}n a 的通项公式。

解:令n b =2

1(1)24

n n a b =-

代入11

(1416

n n a a +=

++得 22

1111(1)[14(1)]241624

n n n b b b +-=+-+ 即2214(3)n n b b +=+

因为0n b =≥, 则123n n b b +=+,即11322

n n b b +=+, 可化为11

3(3)2

n n b b +-=

-, 所以{3}n b -

是以13332b -==为首项,以

2

1

为公比的等比数列,因此121132()()22n n n b ---==,则21()32n n b -=+

21

()32n -=+,得

2111

()()3423

n n n a =++。

八、数学归纳法 通过首项和递推关系式求出数列的前n 项,猜出数列的通项公式,再用数学归纳

法加以证明。 例18 已知数列{}n a 满足11

228(1)8

(21)(23)9

n n n a a a n n ++=+

=++,,求数列{}n a 的通项公式。 解:由122

8(1)(21)(23)n n n a a n n ++=+

++及189

a =,得 2122

3222

43228(11)88224

(211)(213)992525

8(21)248348

(221)(223)25254949

8(31)488480

(231)(233)49498181a a a a a a +?=+

=+=?+?+?+?=+=+=?+?+?+?=+=+=

?+?+?

由此可猜测22(21)1

(21)n n a n +-=+,下面用数学归纳法证明这个结论。

(1)当1n =时,212

(211)18

(211)9

a ?+-==?+,所以等式成立。 (2)假设当n k =时等式成立,即22

(21)1

(21)k k a k +-=+,则当1n k =+时,

122

2222222

222222

8(1)(21)(23)[(21)1](23)8(1) (21)(23)(21)(23)(21) (21)(23)(23)1 (23)[2(1)1]1 [2(1)1]k k k a a k k k k k k k k k k k k k k k k ++=+

+++-+++=

++++-+=

+++-=

+++-=

++

由此可知,当1n k =+时等式也成立。

根据(1),(2)可知,等式对任何*

n N ∈都成立。 九、阶差法(逐项相减法) 1、递推公式中既有n S ,又有n a

分析:把已知关系通过11,1

,2n n

n S n a S S n -=?=?-≥?转化为数列{}n a 或n S 的递推关系,然后采用相应的

方法求解。

例19 已知数列{}n a 的各项均为正数,且前n 项和n S 满足1

(1)(2)6

n n n S a a =++,且249,,a a a 成等比数列,求数列{}n a 的通项公式。 解:∵对任意n N +

∈有1

(1)(2)6

n n n S a a =++ ⑴ ∴当n=1时,11111

(1)(2)6

S a a a ==

++,解得11a =或12a =

当n ≥2时,1111

(1)(2)6

n n n S a a ---=

++ ⑵ ⑴-⑵整理得:11()(3)0n n n n a a a a --+--= ∵{}n a 各项均为正数,∴13n n a a --=

当11a =时,32n a n =-,此时2

429a a a =成立

当12a =时,31n a n =-,此时2

429a a a =不成立,故12a =舍去

所以32n a n =-

练习。已知数列}{n a 中, 0>n a 且2)1(2

1

+=

n n a S ,求数列}{n a 的通项公式. 答案:n n n a S S =--1 2

12)1()1(+=--n n a a 12-=n a n

2、对无穷递推数列

例20 已知数列{}n a 满足112311

23(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式。

解:因为123123(1)(2)n n a a a a n a n -=++++-≥

所以1123123(1)n n n a a a a n a na +-=+++

+-+

用②式-①式得1.n n n a a na +-=

则1(1)(2)n n a n a n +=+≥ 故

1

1(2)n n

a n n a +=+≥ 所以1

3

22212

2

!

[(1)43].2

n n n n n a a a n a a n n a a a a a ---=

???

?=-???=

由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a =,

则21a =,代入③得!13452

n n a n =?????=

。 所以,{}n a 的通项公式为!.2

n n a =

十、不动点法 目的是将递推数列转化为等比(差)数列的方法

不动点的定义:函数()f x 的定义域为D ,若存在0()f x x D ∈,使00()f x x =成立,则称0x 为

()f x 的不动点或称00(,())x f x 为函数()f x 的不动点。

分析:由()f x x =求出不动点0x ,在递推公式两边同时减去0x ,在变形求解。 类型一:形如1 n n a qa d +=+

例21 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。 解:递推关系是对应得递归函数为()21f x x =+,由()f x x =得,不动点为-1 ∴112(1)n n a a ++=+,…… 类型二:形如1n n n a a b

a c a d

+?+=

?+

分析:递归函数为()a x b

f x c x d

?+=

?+

(1)若有两个相异的不动点p,q 时,将递归关系式两边分别减去不动点p,q ,再将两式相除得

11n n n n a p a p k a q a q ++--=?--,其中a pc k a qc -=-,∴1111

11()()

()()

n n n a q pq k a p pq a a p k a q -----=--- (2)若有两个相同的不动点p ,则将递归关系式两边减去不动点p ,然后用1除,得

111n n k a p a p +=+--,其中2c

k a d

=+。

例22. 设数列{}n a 满足7

24

5,211++=

=+n n n a a a a ,求数列{}n a 的通项公式.

分析:此类问题常用参数法化等比数列求解. 解:对等式两端同时加参数t,得:

7

2524

7)52(727)52(72451

++++

+=+++=+++=++n n n n n n n a t t a t a t a t t a a t a , 令5

24

7++=

t t t , 解之得t=1,-2 代入72)52(1+++=++n n n a t a t t a 得

7213

11+-=-+n n n a a a ,7

22

921++=++n n n a a a ,

相除得

21312111+-?=+-++n n n n a a a a ,即{21+-n n a a }是首项为4

1

2111

=+-a a , 公比为31

的等比数列, 21+-n n a a =n -?1341, 解得1

342341

1-?+?=--n n n a . 方法2:,

7

213

11+-=-+n n n a a a ,

两边取倒数得

1

3

32)1(39)1(2)1(3721

11-+=-+-=-+=

-+n n n n n n a a a a a a ,

令b 1

1

-=

n n a ,则b =n n b 33

2

+,, 转化为累加法来求. 例23 已知数列{}n a 满足112124

441

n n n a a a a +-=

=+,,求数列{}n a 的通项公式。

解:令212441x x x -=

+,得2

420240x x -+=,则1223x x ==,是函数2124()41

x f x x -=+的两个不

动点。因为

112124

2

24121242(41)13262

132124321243(41)92793341

n n n n n n n n n n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+。所以数列23n n a a ??-??-??

112422343a a --==--为首项,以913

为公比的等比数列,故12132()39

n n

n a a --=-,则11313

2()19

n n a -=

+-。

练习1:已知{}n a 满足1112

2,(2)21

n n n a a a n a --+==

≥+,求{}n a 的通项n a

答案:3(1)3(1)

n n

n n n

a --∴=+- 练习2。已知数列{}n a 满足*1121

2,()46

n n n a a a n N a +-==

∈+,求数列{}n a 的通项n a

答案:135106

n n

a n -∴=

-

练习3.(2009陕西卷文)

已知数列{}n a 满足, *1

1212,,2

n n n a a a a a n N ++=∈’+2==

. ()I 令1n n n b a a +=-,证明:{}n b 是等比数列;

(Ⅱ)求{}n a 的通项公式。 答案:(1){}n b 是以1为首项,12-

为公比的等比数列。(2)1*

521()()332

n n a n N -=--∈。 十一。特征方程法 形如21(,n n n a pa qa p q ++=+是常数)的数列

形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特征根法求得通项

n a ,其特征方程为2x px q =+…①

若①有二异根,αβ,则可令1212(,n n

n a c c c c αβ=+是待定常数) 若①有二重根αβ=,则可令1212()(,n

n a c nc c c α=+是待定常数)

再利用1122,,a m a m ==可求得12,c c ,进而求得n a

例24 已知数列{}n a 满足*

12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a

解:其特征方程为2

32x x =-,解得121,2x x ==,令1212n n n a c c =?+?,

由1122122243a c c a c c =+=??=+=?,得121

12

c c =???=??, 112n n a -∴=+

例25 已知数列{}n a 满足*

12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a

解:其特征方程为2

441x x =-,解得1212x x ==,令()1212n

n a c nc ??=+ ???

由1122121()121(2)2

4

a c c a c c ?

=+?=????=+?=??,得1246c c =-??=?, 1322n n n a --∴=

练习1.已知数列{}n a 满足*

12211,2,441()n n n a a a a a n N ++===--∈,求数列{}n a 的通项

练习2.已知数列{}n a 满足

*12211,2,444()n n n a a a a a n n N ++===---∈,求数列{}n a 的通项

说明:(1)若方程2

x px q =+有两不同的解s , t, 则)(11-+-=-n n n n ta a s ta a , )(11-+-=-n n n n sa a t sa a ,

由等比数列性质可得1121)(-+-=-n n n s ta a ta a , 1

121)(-+-=-n n n t sa a sa a ,

,s t ≠ 由上两式消去1+n a 可得()()()

n

n n t t s t sa a s t s s ta a a ..1212-----=

.

(2)若方程2

x px q =+有两相等的解t s =,则

()()12121211)(ta a s ta a s ta a s ta a n n n n n n n -==-=-=-----+ ,

21211s ta a s a s a n n n n -=-∴

++,即?

??

???n n s a 是等差数列, 由等差数列性质可知

()2

1

21.1s sa a n s a s a n n --+=, 所以n n s n s sa a s sa a s a a ??

????-+??? ??--=.2

122121. 例26、数列{}n a 满足1512a =-,且2

125

42924

n n n a a a +-

=+求数列{}n

a 的通项。 解:22

11252925244429292244

n n n n n n n a a a a a a a λλλλ++-++-

+==

+=++

……① 令2

29254λλ-=,解得12251,4

λλ==,将它们代回①得,

()21112924

n n n a a a +++=

+

……②,2

12525429424n

n n a a a +??+ ???+=+……③, ③÷②,得2

1125254411n n n n a a a a ++??

++ ?= ?++ ?

??

, 则11252544lg 2lg 11n n n n a a a a +++

+=++,∴数列254lg 1n n a a ?

?+????+??

??

成等比数列,首项为1,公比q =2

所以1254lg 21n n n a a -+

=+,则12254101n n n a a -+=+,1

1

222510

4101

n n n a ---∴=-

十二、四种基本数列

1.形如)(1n f a a n n =-+型 等差数列的广义形式,见累加法。 2.形如

)(1

n f a a n

n =+型 等比数列的广义形式,见累乘法。 3.形如)(1n f a a n n =++型

(1)若d a a n n =++1(d 为常数),则数列{n a }为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;

(2)若f(n)为n 的函数(非常数)时,可通过构造转化为)(1n f a a n n =-+型,通过累加来求出通项;或用逐差法(两式相减)得)1()(11--=--+n f n f a a n n ,,分奇偶项来分求通项. 例27. 数列{n a }满足01=a ,n a a n n 21=++,求数列{a n }的通项公式. 分析 1:构造 转化为)(1n f a a n n =-+型

解法1:令n n

n a b )1(-=

则n a a a a b b n n n n n n n n n n 2)1()()1()1()1(1

11111?-=+-=---=-++++++.

2

≥n 时,

????

?????=-=??-=--?-=--?-=-----01

2)1()2(2)1()1(2)1(11212

1

211a b b b n b b n b b n n n n n n

各式相

加:[]

1)1(2)1()2()1()1()1(22

31?-+?-++--+--=- n n b n n n

当n 为偶数时,n n n b n =??

?

???-?

-+-=22)1()1(2. 此时n b a n n == 当n 为奇数时,1)2

1

(2+-=--

=n n b n 此时n n a b -=,所以

1-=n a n .故

???-=.

,,,1为偶数为奇数n n n n a n 解法

2:

n

a a n n 21=++

求数列通项公式方法大全

求数列通项公式的常用方法 类型1、()n n S f a = 解法:利用???≥???????-=????????????????=-)2() 1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消去 n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例 1 已知无穷数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项公式? 1n n S a =-,∴ 111n n n n n a S S a a +++=-=-,∴ 112n n a a +=,又112a =,12n n a ??= ??? . 变式 1. 已知数列{}n a 中,3 1 1= a ,前n 项和n S 与n a 的关系是 n n a n n S )12(-= ,求n a 变式2. 已知数列}{n a 的前n 项和为n S ,且满足322-=+n a S n n )(*N n ∈. 求数列}{n a 的通项公式 变式3. 已知数列{}a n 的前n 项和S n b n n =+()1,其中{}b n 是首项为1,公差为2的等差数列. 求数列{}a n 的通项公式; 变式4. 数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N .求数列{}n a 的通项n a 变式5. 已知数列}{n a 的前n 项和为n S ,且满足322-=+n a S n n )(*N n ∈. 求数列}{n a 的通项公式; 变式6. 已知在正整数数列}{n a 中,前n 项和n S 满足2 )2(81+=n n a S (1)求证:}{n a 是等差数列 (2)若n b 3021 -=n a ,求}{n b 的前n 项 和的最小值

数列通项公式方法大全很经典

1,数列通项公式的十种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222 n n n n a a ++-= ,故数列{}2n n a 是以1 2 22a 11==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31 ()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22 n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出 11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法 例3已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。

求数列通项公式的方法教案例题习题定稿版

求数列通项公式的方法 教案例题习题 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

求数列的通项公式的方法 1.定义法:①等差数列通项公式;②等比数列通项公式。 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列, 255a S =.求数列{}n a 的通项公式. 解:设数列{}n a 公差为)0(>d d ∵931,,a a a 成等比数列,∴9123 a a a =, 即)8()2(1121d a a d a +=+d a d 12=? ∵0≠d , ∴d a =1………………………………① ∵255a S = ∴211)4(2 455d a d a +=??+…………② 由①②得:531=a ,5 3=d ∴n n a n 5 353)1(53=?-+= 点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。 练一练:已知数列 ,32 19,1617,815,413试写出其一个通项公式:__________; 2.公式法:已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2) n n n S n a S S n -==-≥。

例2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式。 解:由1121111=?-==a a S a 当2≥n 时,有 ,)1(2)(211n n n n n n a a S S a -?+-=-=-- ,)1(22221----?+=n n n a a ……,.2212-=a a 经验证11=a 也满足上式,所以])1(2[3 212---+=n n n a 点评:利用公式???≥???????-=????????????????=-2 11n S S n S a n n n n 求解时,要注意对n 分类讨论,但若能 合写时一定要合并. 练一练:①已知{}n a 的前n 项和满足2log (1)1n S n +=+,求n a ; ②数列{}n a 满足11154,3 n n n a S S a ++=+=,求n a ; 3.作商法:已知12()n a a a f n =求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =??=?≥?-?。 如数列}{n a 中,,11=a 对所有的2≥n 都有2321n a a a a n = ,则=+53a a ______ ; 4.累加法: 若1()n n a a f n +-=求n a :11221()()()n n n n n a a a a a a a ---=-+-+ +-1a +(2)n ≥。 例3. 已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。

求数列通项公式常用的七种方法

创作编号:GB8878185555334563BT9125XW 创作者: 凤呜大王* 求数列通项公式常用的七种方法 一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式 ()d n a a n 11-+=或1 1-=n n q a a 进行求解. 例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式. 分析:设数列{}n a 的公差为d ,则?? ?-=+=+5411 1d a d a 解得???-==23 1d a ∴ ()5211+-=-+=n d n a a n 二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =( )( ) 32 321 ----n n =1 2 -n 而111-==s a 不适合上式,() () ???≥=-=∴-22111n n a n n 三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 3 1 1= +,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a 即 341=+n n a a ()2≥n 又1123 1 31a s a ==不适合上式 ∴ 数列{}n a 从第2项起是以 3 4 为公比的等比数列 ∴ 2 2 2343134--?? ? ??=? ? ? ??=n n n a a ()2≥n ∴()()??? ??≥?? ? ??==-23431112n n a n n 注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项. 四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时, 可以用这种方法. 例4: ()12,011-+==+n a a a n n ,求通项n a 分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a ┅ 321-=--n a a n n ()2≥n 以上各式相加得()()2 11327531-=-+++++=-n n a a n ()2≥n 又01=a ,所以()2 1-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()2 1-=n a n ( ∈N n 五、累乘法:它与累加法类似 ,当数列{}n a 中有 ()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“律”的数时,就可以用这种方法. 例5:111,1 n n n a a a n -==- ()2,n n N *≥∈ 求通项n a 分析: 11 n n n a a n -= - ∴11n n a n a n -=- ()2,n n N * ≥∈

数列求通项公式及求和9种方法

数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型一、 n S是数列{}n a的前n项的和 1 1 (1) (2) n n n S n a S S n - = ? =? -≥ ? 【方法】:“ 1 n n S S - -”代入消元消n a 。 【注意】漏检验n的值 (如1 n=的情况 【例1】.(1)已知正数数列{} n a的前n项的和为n S, 且对任意的正整数n满足1 n a =+,求数列{} n a的通项公式。 (2)数列{} n a中,1 1 a=对所有的正整数n都有 2 123n a a a a n ????=,求数列{}n a的通项公式 【作业一】 1- 1.数列{} n a满足 21* 123 333() 3 n n n a a a a n N - ++++=∈,求数列{}n a的通 项公式.

(二).累加、累乘 型如1()n n a a f n --=, 1 ()n n a f n a -= 1()n n a a f n --= ,用累加法求通项公式(推导等差数列通项公式的方法) 【方法】 1()n n a a f n --=, 12(1)n n a a f n ---=-, ……, 21(2)a a f -=2n ≥, 从而1()(1)(2)n a a f n f n f -=+-+ +,检验1n =的情 况 ()f n =,用累乘法求通项公式(推导等比 数列通项公式的方法) 【方法】2n ≥, 1 2 12 1 ()(1)(2)n n n n a a a f n f n f a a a ---??? =?-??

数列通项公式和前n项和求解方法全

数列通项公式的求法详解 一、 观察法(关键是找出各项与项数n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999, (2) ,1716 4,1093 ,542,21 1(3) ,52,21,32 ,1(4) ,5 4 ,43,32 ,21-- 答案:(1)110-=n n a (2);122++=n n n a n (3);12+=n a n (4)1 )1(1+? -=+n n a n n . 二、 公式法 公式法1:特殊数列 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2 ,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),求数列{ a n }和{ b n }的通项公式。 答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1 例3. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是( ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 答案:(D) 例4. 已知等比数列{}n a 的首项11=a ,公比10<

求数列通项公式的十种方法(例题+详解)

求数列通项公式的十种方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以1 2 n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2 n n a 是以1222a 11==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22 n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 二、利用 { 1(2)1(1) n n S S n S n n a --≥== 例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数 2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式; 解: 22(1)4 2 31a n a d S n n n n =-+∴=-=-=-- 23435T S n n n n n ∴=+=--……2分 当1,35811n T b ===--=-时 当2,626 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分 练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n 解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),② 由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2) 当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3; 当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3 三、累加法

数列通项公式的十种方法(已打)

递推式求数列通项公式常见类型及解法 对于由递推式所确定的数列通项公式问题,通常可通过对递推式的变形转化成等差数列或等比数列,也可以通过构8造把问题转化。下面分类说明。 一、型 例1. 在数列{a n}中,已知,求通项公式。 解:已知递推式化为,即, 所以 。 将以上个式子相加,得 ,

所以。 二、型 例2. 求数列的通项公式。解:当, 即 当,所以。

三、型 例3. 在数列中,,求。解法1:设,对比 ,得。于是,得 ,以3为公比的等比数列。 所以有。 解法2:又已知递推式,得 上述两式相减,得,因此,数列是以 为首项,以3为公比的等比数列。 所以,所以 。

四、型 例4. 设数列,求通项公式。 解:设,则, , 所以, 即。 设这时,所以。 由于{b n}是以3为首项,以为公比的等比数列,所以有。 由此得:。 说明:通过引入一些尚待确定的系数转化命题结构,经过变形与比较,把问题转化成基本数列(等差或等比数列)。

五、型 例5. 已知b≠0,b≠±1,,写出用n和b表示a n的通项公式。 解:将已知递推式两边乘以,得 ,又设, 于是,原递推式化为,仿类型三,可解得,故。 说明:对于递推式,可两边除以,得 ,引入辅助数列 ,然后可归结为类型三。

六、型 例6. 已知数列,求。 解:在两边减去。 所以为首项,以 。 所以令上式,再把这个等式累加,得 。所以。 说明:可以变形为,就是 ,则可从,解得,于是是公比为的等比数列,这样就转化为前面的类型五。 等差、等比数列是两类最基本的数列,是数列部分的重点,自然也是高考考查的热点,而考查的目的在于测试灵活运用知识的能力,这个“灵活”往往集中在“转化”的水平上。 转化的目的是化陌生为熟悉,当然首先是等差、等比数列,根据不同的递推公式,采用相应的变形手段,达到转化的目的。

求数列通项公式及求和的基本方法

求数列通项公式及求和的基本方法 1.公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有 1n n n a S S -=-(2)n ≥,等差数列或等比数列的通项公式。 例一 已知无穷数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项 公式? 12n n a ?? = ??? . 反思:利用相关数列{}n a 与{}n S 的关系:11a S =,1n n n a S S -=-(2)n ≥与提设条件,建立递推关系,是本题求解的关键. 2.累加法:利用1211()()n n n a a a a a a -=+-+???-求通项公式的方法称为累加法。累加法是求型如1()n n a a f n +=+的递推数列通项公式的基本方法(()f n 可求前n 项和). 已知112a =,112n n n a a +?? =+ ??? *()n N ∈,求数列{}n a 通项公式. 3. 累乘法:利用恒等式3 21 121 (0,2)n n n n a a a a a a n a a a -=???≠≥求通项公式的方法称为累乘法,累乘法是求型如: 1()n n a g n a +=的递推数列通项公式的基本方法(数列()g n 可求前n 项积). 已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式. n a n =. 反思: 用累乘法求通项公式的关键是将递推公式变形为1()n n a g n a +=.

4.构造新数列: 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1:已知数列{}n a 满足2 11=a ,n n a a n n ++ =+211 ,求n a 1131122n a n n =+-=- 解: 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例2:已知数列{}n a 满足3 21=a ,n n a n n a 11+= +,求n a 。23n a n = 解: 变式:(全国I,)已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a (n ≥2),则{a n }的 通项1___n a ?=?? 12 n n =≥ 2!n a n =)2(≥n 解

求数列通项公式的种方法

求数列通项公式的十一种方法(方法全,例子全,归纳细) 总述:一.利用递推关系式求数列通项的7种方法: 累加法、 累乘法、 待定系数法、 倒数变换法、 由和求通项 定义法 (根据各班情况适当讲) 二。基本数列:等差数列、等比数列。等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。 三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。 四.求数列通项的基本方法是:累加法和累乘法。 五.数列的本质是一个函数,其定义域是自然数集的一个函数。 一、累加法 1.适用于:1()n n a a f n +=+----------这是广义的等差数列累加法是最基本的二个方法之一。 例1已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 例2已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解法一:由1231n n n a a +=+?+得1231n n n a a +-=?+则 11232211122112211()()()()(231)(231)(231)(231)3 2(3333)(1)3 3(13)2(1)3 13 331331 n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=?++?+++?++?++=+++++-+-=+-+-=-+-+=+- 所以3 1.n n a n =+- 解法二:13231n n n a a +=+?+两边除以13n +,得 11 121 3333 n n n n n a a +++=++, 则 111 21 3333n n n n n a a +++-=+ ,故 因此11 (13)2(1)211 3133133223 n n n n n a n n ---=++=+--?, 则21133.322 n n n a n =??+?- 练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 答案:12 +-n n 练习2.已知数列}{n a 满足31=a ,) 2()1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式. 答案:裂项求和 n a n 12- = 评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .

求数列通项公式常用的八种方法

求数列通项公式常用八种方法 一、 公式法: 已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解. 二、前n 项和法: 已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步) 三、n s 与n a 的关系式法: 已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步) 四、累加法: 当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时, 就可以用这种方法. 五、累乘法:它与累加法类似 ,当数列{}n a 中有()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 六、构造法: ㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面 形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的 方法:------+常数P

㈡、取倒数法:这种方法适用于1 1c --=+n n n Aa a Ba ()2,n n N * ≥∈(,,k m p 均为常数 0m ≠) ,两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子. ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a 分析:由()2113,2n n a a a n -==≥知0n a > ∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a a a --== 即1 lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列 故1 12lg 2lg3lg3n n n a --== ∴123n n a -= 七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。 八、形如21a n n n pa qa ++=+型,可化为211a ()()n n n n q xa p x a a p x ++++=+++ ,令x=q p x + ,求x 的值来解决。 除了以上八种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这8种方法是经常用的,将其总结到一块,以便于学生记忆和掌握。

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法 一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式 ()d n a a n 11-+=或11-=n n q a a 进行求解. 例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式. 分析:设数列{}n a 的公差为d ,则???-=+=+5411 1d a d a 解得???-==23 1d a ∴ ()5211+-=-+=n d n a a n 二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =( )( ) 32 321 ----n n =12-n 而111-==s a 不适合上式,() () ???≥=-=∴-22111n n a n n 三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 3 1 1= +,其中11=a ,求n a . 分析:Θ 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a 即 341=+n n a a ()2≥n 又1123 1 31a s a ==不适合上式 ∴ 数列{}n a 从第2项起是以 3 4 为公比的等比数列 ∴ 2 2 2343134--?? ? ??=? ? ? ??=n n n a a ()2≥n ∴()()??? ??≥? ? ? ??==-23431112n n a n n 注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1 -n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项. 四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就 可以用这种方法. 例4: ()12,011-+==+n a a a n n ,求通项n a 分析:Θ 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a ┅ 321-=--n a a n n ()2≥n 以上各式相加得()()2 11327531-=-+++++=-n n a a n Λ ()2≥n 又01=a ,所以()2 1-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()2 1-=n a n ( )* ∈N n 五、累乘法:它与累加法类似 ,当数列{}n a 中有 ()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 例5:111,1 n n n a a a n -==- ()2,n n N *≥∈ 求通项n a 分析:Q 11 n n n a a n -= - ∴11n n a n a n -=- ()2,n n N * ≥∈ 故3241123123411231 n n n a a a a n a a n a a a a n -===-g g g g L g g g g L g () 2,n n N *≥∈ 而11a =也适合上式,所以() n a n n N *=∈ 六、构造法: ㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是 关于1n a -的“一次函数”的形式,这时用下面的方法: 一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k = - 故111n n b b a k a k k -? ?+=+ ?--? ?

求数列通项公式的十种方法

1. 观察法(求出a1、a2、a3,然后找规律) 即归纳推理,就是观察数列特征,找出各项共同的构成规律,然后利用数学归纳法加以证明即可。 例1.设11=a ,)(222 1*+∈++-= N n b a a a n n n ,若1=b ,求32,a a 及数列}{n a 的通项公式. 解:由题意可知:11111+-==a , 112212212 12+-==++-=a a a , 113121222223+-=+=++-=a a a . 因此猜想11+-=n a n . 下面用数学归纳法证明上式. (1)当n =1时,结论显然成立. (2)假设当n =k 时结论成立,即11+-=k a k . (3)则11)1(11)1(11)1(12222 1+-+=++-=++-=++-=+k k a a a a k k k k , 即当n =k +1时结论也成立. 由(1)、(2)可知,对于一切正整数n ,都有)(11* ∈+-=N n n a n .(最后一句总结很重要) 2.定义法(已知数列为等差或者等比) 直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目。 例2.已知等差数列{}n a 满足1210a a +=,432a a -=,求{}n a 的通项公式。 解:设等差数列{}n a 的公差为d . 因为432a a -=,所以2d =. 又因为1210a a +=,所以1210a d +=,故14a =. 所以42(1)22n a n n =+-=+(1,2,)n = .

3.公式法 若已知数列的前n 项和与的关系,求数列的通项可用公式 求解。(一定要讨论n=1,n≥2) 例3.设数列{}n a 的前n 项和为n S ,已知23 3.n n S =+ (Ⅰ)求数列{}n a 的通项公式。 解:(Ⅰ)由 233n n S =+ 可得:当1=n 时, 111(33)32 a S == +=, 当2≥n 时,11111(33)(33)3(2)22n n n n n n a S S n ---=-=+-+=≥ 而 11133a -=≠, 所以 13,1,3, 1.n n n a n -=?=?>? 4.累加法 当递推公式为)(1n f a a n n +=+时,通常解法是把原递推公式转化为。 例4.数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列{a n }的前10项和为 解:由题意得: 112211)()()(a a a a a a a a n n n n n +-++-+-=--- 12)1(+++-+= n n 2 )1(+=n n 5.累乘法 当递推公式为)(1n f a a n n =+时,通常解法是把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 n s n a {}n a n a 1()n n a a f n +-=

求数列通项公式的11种方法

求数列通项公式的11种方法方法 总述:一.利用递推关系式求数列通项的11种方法: 累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、 换元法(目的是去递推关系式中出现的根号)、 数学归纳法(少用) 不动点法(递推式是一个数列通项的分式表达式)、 特征根法 二.四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。等差数列、 等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。 三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。 四.求数列通项的基本方法是:累加法和累乘法。 五.数列的本质是一个函数,其定义域是自然数集的一个函数。 一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。 2.若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) () n n a a f a a f a a f n +-=-=-=L L 两边分别相加得 111 ()n n k a a f n +=-= ∑ 例1 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 例2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解法一:由1231n n n a a +=+?+得1231n n n a a +-=?+则 11232211 122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)3 13 331331 n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=?++?+++?++?++=+++++-+-=+-+-=-+-+=+-L L L 所以3 1.n n a n =+- 解法二:13231n n n a a +=+?+两边除以1 3n +,得 111 21 3333n n n n n a a +++=++, 则 11121 3333 n n n n n a a +++-=+,故 因此1 1(13) 2(1)2113133133223 n n n n n a n n ---=++=+--?, 则211 33.322 n n n a n = ??+?- 练习 1.已知数列{}n a 的首项为 1,且 *12() n n a a n n N +=+∈写出数列 {}n a 的通项公式. 答案:12 +-n n 练习2.已知数列 } {n a 满足31=a , ) 2()1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式. 答案:裂项求和 n a n 1 2- = 评注:已知a a =1,) (1 n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、

高中数学 数列通项公式的求法集锦论文

数列通项公式的求法集锦 非等比、等差数列的通项公式的求法,题型繁杂,方法琐碎,笔者结合近几年的高考情况,对数列求通项公式的方法给以归纳总结。 一、累加法 形如1()n n a a f n --= (n=2、3、4…...) 且(1)(2)...(1)f f f n +++-可求,则用累加法求n a 。有时若不能直接用,可变形成这种形式,然后用这种方法求解。 例1. 在数列{n a }中,1a =1,11n n a a n --=- (n=2、3、4……) ,求{n a }的通项公式。 解:∵111n a ==时, 213243121 23.......1n n n a a a a a a a a n -≥-=? ? -=? ? -=??? -=-?? 时, 这n-1个等式累加得:112...n a a -=+++(n-1) =(1)2n n - 故21(1)222n n n n n a a --+=+= 且11a =也满足该式 ∴222 n n n a -+= (n N * ∈). 例2.在数列{n a }中,1a =1,12n n n a a +-= (n N * ∈),求n a 。 解:n=1时, 1a =1212323 431 122 22.......2n n n n a a a a a a a a --≥-=? ? -=? ?-=????-=? 时, 以上n-1个等式累加得 21 122 (2) n n a a --=+++=12(12)12 n ---=22n -,故12221n n n a a =-+=- 且11a =也满 足该式 ∴21n n a =- (n N * ∈)。 二、累乘法 形如 1 ()n n a f n a -= (n=2、3、4……),且(1)(2)...(1)f f f n +++-可求,则用累乘法求n a 。有时若不能直接用,可变形成这种形式,然后用这种方法求解。 例3.在数列{n a }中,1a =1,1n n a na +=,求n a 。

数列通项公式的求解方法归纳

数列通项公式的解法 数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。小结:除了熟悉以上常见求法以外,对具体的数列进行适当的变形,一边转化为熟知的数列模型更是突破数列通项的关键。做题时要不断总结经验,多加琢磨。 总结方法比做题更重要!方法产生于具体数学内容的学习过程中. 1.直接法 2.公式法 3.归纳猜想法 4.累加(乘)法 5.取倒(对)数法 6.迭代法 7.待定系数法 8.特征根法 9.不动点法10.换元法11.双数列12.周期型13.分解因式法14.循环法15.开方法 ◆一、直接法 根据数列的特征,使用作差法等直接写出通项公式。 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) ,17 164,1093 ,5 42,211 (3) ,52,21,32, 1 (4) ,5 4 ,43, 32,21-- ◆二、公式法 ①利用等差数列或等比数列的定义求通项 ②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式???≥???????-=????????????????=-2 1 11n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式. ②已知数列{}n a 的前n 项和n S 满足21n S n n =+-,求数列{}n a 的通项公式.

求数列通项公式的11种方法

求数列通项公式的11种方法方法 总述:一.利用递推关系式求数列通项的11种方法: 累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、 换元法(目的是去递推关系式中出现的根号)、 数学归纳法(少用) 不动点法(递推式是一个数列通项的分式表达式)、 特征根法 二.四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。等差数列、 等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。 三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。 四.求数列通项的基本方法是:累加法和累乘法。 五.数列的本质是一个函数,其定义域是自然数集的一个函数。 一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。 2.若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) () n n a a f a a f a a f n +-=-=-=

两边分别相加得 111 ()n n k a a f n +=-= ∑ 例1 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2 n a n =。 例2 已知数列{}n a 满足11231 3n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解法一:由1231n n n a a +=+?+得1231n n n a a +-=?+则 11232211 122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13) 2(1)3 13 331331 n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=?++?+++?++?++=+++++-+-=+-+-=-+-+=+- 所以3 1.n n a n =+- 解法二:13231n n n a a +=+?+两边除以1 3 n +,得 111 21 3333 n n n n n a a +++=++, 则 111 21 3333n n n n n a a +++-=+,故

相关主题
文本预览
相关文档 最新文档