当前位置:文档之家› INV1601Manual-实验23、变时基锤击法简支梁模态测试

INV1601Manual-实验23、变时基锤击法简支梁模态测试

INV1601Manual-实验23、变时基锤击法简支梁模态测试
INV1601Manual-实验23、变时基锤击法简支梁模态测试

模态试验及分析的基本步骤

模态试验及分析的基本步骤 1.动态数据的采集及响应函数分析 首先应选取适当的激励方式。激励方式可以是正弦、随机或瞬态中的任何一种。激励方式不同,相应的模态参数识别方法也不同。目前主要有单输入单输出、单输入多输出和多输入多输出三种方法。然后进行数据采集。对于单输入单输出方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振型数据;单输入多输出及多输入多输出的方法要求大量通道数据的高速采集,因此要求大量的振动测量传感器或激振器,试验成本极高。在采集信号数据以后,还要在时域或频域对信号进行处理,例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。 2.建立结构数学模型 根据己知条件,建立一种描述结构状态及特性的模型,作为计算及参数识别的依据,目前一般假定系统为线性的。由于采用的识别方法不同,数学建模可分为频域建模和时域建模。根据阻尼特性及频率藕合程度又可分为实模态和复模态等。 3.参数识别 按识别域的不同可分为频域法、时域法和混合域法。激励方式不同,相应的识别参数方法也不尽相同。并非越复杂的方法识别的结果越可靠。对于目前能够进行的大多数不是十分复杂的结构,只要取得了可靠的频响数据,用简单的识别方法也可能获得良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量数据不可靠,识别的结果也不会理想。 4.振型动画 参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应各阶模态的振型。但是由于结构复杂,由许多自由度组成的振型的数组难以引起对振动直观的想象,所以必须采用振型动画的办法,将放大的振型叠加到原始的几何形状上。

锤击法

锤击法施工设备 锤击法是利用桩锤的冲击克服土对桩的阻力,使桩沉到预定深度或达到持力层。这是最常用的一种沉桩方法。 打桩设备包括桩锤、桩架和动力装置。 (1)桩锤 桩锤是对桩施加冲击,将桩打入土中的主要机具。桩锤主要有落锤、蒸汽锤、柴油锤和液压锤,目前应用最多的是柴油锤。 ①落锤落锤构造简单,使用方便,能随意调整落锤高度。轻型落锤一般均用卷扬机拉升施打。落锤生产效率低、桩身易损失。落锤重量一般为0.5~1.5t,重型锤可达数吨。 ②柴油锤柴油锤利用燃油爆炸的能量,推动活塞往复运动产生冲击进行锤击打桩。柴油锤结构简单、使用方便,不需从外部供应能源。但在过软的土中由于贯入度过大,燃油不易爆发,往往桩锤反跳不起来,会使工作循环中断。另一个缺点是会造成噪音和空气污染等公害,故在城市中施工受到一定限制。柴油锤冲击部分的重量有2.0t,2.5t,3.5t,4.5t,6.0t,7.2t等数种。每分钟锤击次数约40~80次。可以用于大型混凝土桩和钢管桩等。 ③蒸汽锤蒸汽锤利用蒸汽的动力进行锤击。根据其工作情况又可分为单动式汽锤与双动式汽锤。单动式汽锤的冲击体只在上升时耗用动力,下降靠自重;双动式汽锤的冲击体升降均由蒸汽推动。蒸汽锤需要配备一套锅炉设备。 单动式汽锤的冲击力较大,可以打各种桩,常用锤重为3~10t。每分钟锤击数为25~30次。 双动式汽锤的外壳(即汽缸)是固定在桩头上的,而锤是在外壳内上下运动。因冲击频率高(100~200次/min),所以工作效率高。它适宜打各种桩,也可在水下打桩并用于拔桩。锤重一般为0.6~6t。 ④液压锤液压锤是一种新型打桩设备,它的冲击缸体通过液压油提升与降落。冲击缸体下部充满氮气,当冲击缸下落时,首先是冲击头对桩施加压力,接着是通过可压缩的氮气对桩施加压力,使冲击缸体对桩施加压力的过程延长,因此每一击能获得更大的贯入度。液压锤不排出任何废气,无噪音,冲击频率高,并适合水下打桩,是理想的冲击式打桩设备,但构造复杂,造价高。 用锤击沉桩时,为防止桩受冲击应力过大而损坏,力求采用“重锤轻击”。如采用轻锤重击,锤击功能很大一部分被桩身吸收,桩不易打入,且桩头容易打碎。锤重可根据土质、桩的规格等参考表2-1进行选择,如能进行锤击应力计算则更为科学。 表2-1锤重选择表

试验模态分析的两种方法

试验模态分析的两种方法 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 试验模态分析主要有以下两种方法,OROS模态分析软件MODEL 2 完全具备了这两种常用的模态方 法。 锤击法模态测试 用于满足锤击法结构模态试验,以简明、直观的方法测量和处理输入力和响应数据,并显示结果。提供两种锤击方法:固定敲击点移动响应点和固定响应点移动敲击点。用力锤来激励结构,同时进行加速度和力信号的采集和处理,实时得到结构的传递函数矩阵。能够方便地设置测量参数,如触发量级、测量带宽和加窗类型,同时对最优的设置提供建议指导。 激振器法模态测试 主要是通过分析仪输出信号源来控制激振器,激励被测试件,输出信号有先进扫频正弦,随机噪声,正弦,调频脉冲等信号。支持单点激励(SIMO)与多点同时激励法(MIMO)。 1)几何建模 结构线架模型生成,节点数和部件数没有限制,测量点DOF自动加到通道标示;建立几何模型,以3维方式显示测量和分析结果。结构模型可以作为单个部件的装配,及采用不同的坐标系(直角、圆柱、球体坐标系),要求除点的定义外,还可定义线和面,真实的显示试验结构。结构线架模型生成,节点数和部件数没有限制,测量点自由度自动加到通道标示。

实验十 用锤击法测量简支梁的模态参数

实验十用锤击法测量简支梁的模态参数 一、实验目的 1、了解测力法实验模态分析原理。 2、掌握用锤击法测试结构模态参数的方法。 二、实验系统框图 图1-2-19 测试系统框图 三、实验原理 目前,结构的特性参数测量主要有三种方法:经典模态分析、运行模态分析(OMA)和运行变形振型分析(ODS)。 1、经典模态分析也称实验模态分析,它是通过给结构施加一个激振力,激起结构振动,测量结构响应及激振力之间的频率响应函数,来寻求结构的模态参数。因此,实验模态分析方法也称测力法模态分析。在测量频率响应函数时,可采用力锤和激振器两种激励方式。力锤激励方式简单易行,特适合现场测试,一般支持快速的多参考技术和小的各向同性结构。由于力锤移动方便,在这种激励方式下,一般采用的是多点激励,单点响应方式,即测量的是频率响应函数矩阵中的一行。激振器激励时,由于激振器安装比较困难,多采用单点激励、多点响应的方法,即测量的是频率响应函数矩阵中的一列。这种激励方式可使用多种激励信号,且激振能量较大,适合于大型或复杂结构。 2、运行模态分析与经典模态分析相比,不需要输入力,只通过测量响应来决定结构的模态参数,以此,这种分析方法也称为不测力法模态分析。其优点在于无需激励设备,测试时不干扰结构的正常工作,且测试的响应代表了结构的真实工作环境,测试成本低,方便和快速。测量能够被一次完成(快速,数据一致性好)或多次完成(受限于传感器的数量),若一次测量(一个数据组)时,不需要参考传感器。而多次测量(多个数据组)时,对所有的数据组,需要一个或多个固定的加速度传感器作为参考。 3、运行变形振型分析中,测量并显示结构在稳态、准稳态或瞬态运行状态过程中的振动模式。引起振动的因素包括发动机转速、压力、温度、流动和环境力等。ODS分析包括时域ODS、频谱域ODS(FFT或者Order)、非稳态升/降速ODS。

振动测试技术模态实验报告

研究生课程论文(2016-2017学年第二学期) 振动测试技术 研究生:

模态试验大作业 0 模态试验概述 模态试验(modal test)又称试验模态分析。为确定线性振动系统的模态参数所进行的振动试验。模态参数是在频率域中对振动系统固有特性的一种描述,一般指的是系统的固有频率、阻尼比、振型和模态质量等。 模态试验中通过对给定激励的系统进行测量,得到响应信号,再应用模态参数辨识方法得到系统的模态参数。由于振动在机械中的应用非常普遍。振动信号中包含着机械及结构的内在特性和运行状况的信息。振动的性质体现着机械运行的品质,如车辆、航空航天设备等运载工具的安全性与舒适性;也反映出诸如桥梁、水坝以及其它大型结构的承载情况、寿命等。同时,振动信号的发生和提取也相对容易因此,振动测试与分析已成为最常用、最基本的试验手段之一。 模态分析及参数识别是研究复杂机械和工程结构振动的重要方法,通常需要通过模态实验获得结构的模态参数即固有频率、阻尼比和振型。模态实验的方法可以分为两大类:一类是经典的纯模态实验方法,该方法是通过多个激振器对结构进行激励,当激振频率等于结构的某阶固有频率,激振力抵消机构内部阻尼力时,结构处于共振状态,这是一种物理分离模态的方法。这种技术要求配备复杂昂贵的仪器设备,测试周期也比较长;另一类是数学上分离模态的方法,最常见的方法是对结构施加激励,测量系统频率响应函数矩阵,然后再进行模态参数的识别。 为获得系统动态特性,常需要测量系统频响函数。目前频响函数测试技术可以分为单点激励单点测量( SISO)、单点激励多点测量( SIMO) 、多点激励多点测量( MIMO)等。单点激励一般适用于较小结构的频响函数测量,多点激励适用于大型复杂机构,如机体、船体或大型车辆机构等。按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分。瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分,瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。 振动信号的分析和处理技术一般可分为时域分析、频域分析、时频域分析和时间序列建模分析等。这些分析处理技术从不同的角度对信号进行观察和分析,为提取与设备运行状态有关的特征信息提供了不同的手段。信号的时域分析包括时域统计分析、时域波形分析和时域相关分析。对评价设备运行状态和

悬臂梁地振动模态实验报告材料

实验 等截面悬臂梁模态测试实验 一、 实验目的 1. 熟悉模态分析原理; 2. 掌握悬臂梁的测试过程。 二、 实验原理 1. 模态分析基本原理 理论上,连续弹性体梁有无限多个自由度,因此需要无限多个连续模型才能描述,但是在实际操作中可以将连续弹性体梁分为n 个集中质量来研究。简化之后的模型中有n 个集中质量,一般就有n 个自由度,系统的运动方程是n 个二阶互相耦合(联立)的常微分方程。这就是说梁可以用一种“模态模型”来描述其动态响应。 模态分析的实质,是一种坐标转换。其目的在于把原在物理坐标系统中描述的响应向量,放到所谓“模态坐标系统”中来描述。这一坐标系统的每一个基向量恰是振动系统的一个特征向量。也就是说在这个坐标下,振动方程是一组互无耦合的方程,分别描述振动系统的各阶振动形式,每个坐标均可单独求解,得到系统的某阶结构参数。 多次锤击各点,通过仪器记录传感器与力锤的信号,计算得到第i个激励点与定响应点(例如点2)之间的传递函数 ω ,从而得到频率响应函数矩阵中的一行 频响函数的任一行包含所有模态参数,而该行的r 阶模态的频响函数 的比值,即为r 阶模态的振型。 2. 激励方法 为进行模态分析,首先要测得激振力及相应的响应信号,进行传递函数分析。传递函数分析实质上就是机械导纳,i 和j 两点之间的传递函数表示 [] ∑==N r iN r i r i r H H H 1 21 ... [] Nr r r N r r r r ir k c j m ???ωω? (2112) ∑ =++-=[]{}[] T r ir N r r iN i i Y H H H ??∑==1 21 ...

https://www.doczj.com/doc/472072688.html,b操作指导书-锤击测试Impact-Testing

https://www.doczj.com/doc/472072688.html,b操作指导书-锤击测试Impact-Testing

https://www.doczj.com/doc/472072688.html,b操作指南——锤击测试Impacting Testing

2016年1月

序言 这个部分介绍https://www.doczj.com/doc/472072688.html,b的锤击法测试Impact Testing模块的常用操作,工作界面的详细内容及略掉部分参见《LMS Test Lab帮助中译文_锤击测试Impact Testing》,主要针对目前能够进行且经常进行的实验。因作者水平有限,讹误在所难免。

目录 序言 (1) 目录 (2) 1.锤击测试Impact Testing概述 (1) 1.1 工作界面 (1) 1.2 模块功能 (1) 1.3 锤击测试流程 (2) 1.3.1 测试准备 (2) 1.3.2 软件打开方法 (2) 1.3.2 软件流程 (3) 1.4 常见问题 (4) 1.4.1 电脑与数采的网络连接 (4) 1.4.2 软件无法启动 (4) 2 文档Documentation与数据Navigator (6) 2.1 文档 (6) 2.1.1 工作界面 (6) 2.1.2 常用操作 (7) 2.2 数据 (8) 3.通道设置Channel Setup (9) 3.1 工作界面 (9) 3.2 常用操作 (10)

3.2.1 设置通道属性可见性 (10) 3.2.2 力锤通道设置 (11) 3.2.3 加速度传感器通道设置 (12) 3.2.4 加载与保存通道设置 (14) 3.3 术语简介 (15) 3.3.1 通道类型 (15) 3.3.2 输入通道Input Channels.. 16 4.校准Calibration (19) 4.1 工作界面 (19) 4.2 常用操作 (19) 4.2.1 加速度传感器校准 (19) 4.3 术语简介 (21) 5.锤击示波Impact Scope (22) 5.1 工作界面 (22) 5.2 常用操作 (23) 5.2.1 采样参数 (23) 5.2.2 量程设定 (23) 5.2.3 示波设置与观察 (24) 5.2.4 触发设置 (25) 5.2.5 其它 (25) 5.3 术语简介....... 错误!未定义书签。 6.锤击设置Impact Setup (26)

机床实验模态分析综述

机床的模态分析方法综述 甄真 (北京信息科技大学机电工程学院,北京100192) 摘要:模态分析是研究机械结构动力特性的一种近代方法,是结构动态设计及设备的故障诊断的重要方法。机床在工作时,由于要承受各种变载荷而产生振动,其精度和寿命会受到影响。因此有必要对机床进行模态分析,了解其动态特性,以便进一步分析和改进。本文概述了模态分析的概念、研究意义及发展历史,介绍了机床模态分析的研究现状, 从理论方法与试验方法两方面指出了其关键技术以及研究发展方向。 关键词:模态分析;动态特性;机床;理论方法;实验方法 Summary of the model analysis method of machine tool ZHEN Zhen (Beijing Information Science & Technology University, Mechanical and Electrical Engineering College, Beijing, 100192) Abstract:Modal analysis is a modern method to study the dynamic characteristics of mechanical structure. It’s an important method in structure dynamic design and fault diagnosis of equipment.Its accuracy and lifetime will be affected due to withstand all kinds of variable load and vibration when the machine tool works.So it is necessary to make modal analysis and to understand the dynamic characteristics for machine tool in order to further analyze and improve. This paper summarizes the concept, significance and history of modal analysis and introduces the research status of model analysis of machine tool. It also points out the key technology and research direction in this field from two aspects of theoretical method and experimental method. Key words:model analysis; dynamic characteristics; machine tool; theoretical method; experimental method 0 引言 模态是指机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。模态分析是一种研究机械结构动力的方法,是系统辨别方法在工程振动领域中的应用。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可预言结构在此频段内在外部或内部各种振源作用下实际响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法[1]。 模态分析将构件的复杂振动分解为许多简单而独立的振动,并用一系列模态参数来表征的过程。根据线性叠加原理,一个构件的复杂振动是由无数阶模态叠加的结果。在这些模态中。模态分析最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。模态分析主要分为3类方法:一是,基于计算机仿真的有限元分析法;二是,基于输入(激励)输出(响应)模态试验的试验模态分析法;三是,基于仅有输出(响应)模态试验的运行模态分析法。有限元分析属结构动力学正问题,但受无法准确描述复杂边界条件、结构物理参数和部件连接状态等不确定性因素的限制难以达到很高的精度。第二、三类方法属结构动力学反问题,基于真实结构的模态试验。因而能得到更准确

用锤击法和变时基技术进行黄河铁路桥的模态试验分析

用锤击法和变时基技术进行黄河铁路桥的模态试验分析
沈松
应怀樵
雷速华 赵增欣
东方振动和噪声技术研究所,北京,100085
摘要 (1) 用特殊的弹性聚能力锤进行激励 本文介绍了一次用力锤激励铁路桥进行模态分析的 特别试验。1996 年 7 月 24 日,东方振动和噪声技术研究 所(COINV) 使用弹性聚能力锤作为激励设备, 成功地进行 了三道坎黄河铁路大桥的模态试验。由于弹性聚能力锤 延长了力的激励时间,使激励力的能量聚集在低频处, 从而使锤击法进行大型土木结构的模态试验成为可能。 为提高大型结构的传递函数的分析精度,试验中还使用 了一种新的分析方法—变时基(Varied-Time-Base)传递函 数细化分析方法。试验利用每两次列车经过的间隔时间, 保证了整个铁路的运行不受任何影响。本次试验得到了 包括模态质量、模态刚度等各种参数的前四阶模态。在 中国,这是首次利用锤击激励进行的铁路运行实际桥梁 模态试验,具有重要的科研价值。 2 桥梁结构和测点布置 (2) 在传递函数分析中使用了变时基(VTB)方法 (3) 使用 INV306 智能信号采集分析系统, 利用该系统可以 实现数据采集、信号处理、模态分析等工作的现场实 时分析和一体化处理。
1
引言 图 1: 简化结构图和测点布置 三道坎黄河铁路大桥位于内蒙古乌海市。近年来,
其水平振动越来越剧烈,振幅大大超过国家标准中的限 值。为研究其原因,对该桥需做两方面的测试: (1) 水平方向振动幅值.。 (2) 水平方向的模态测试和分析。 本文主要讨论第二方面的问题。对正在运行中的桥 梁进行模态试验是很困难的。本次试验使用了如下一些 新方法:
该桥共有九跨。试验对象为 7#桥墩和 8#桥墩之间的 一跨,该跨长 28 米。虽然其结构很复杂,但可以简化成 两边简支的钢板梁结构。简化的模态结构如图 1 所示。 模态测试采用单输入多输出的方法。点 ‘x’表示了激励点 的位置,在整个结构上则均匀布置了 36 个输出测点,其 中测点 33,34,35,36 位于桥墩上,测点 17,25,24,32 为桥墩 和钢板梁的铰接点。
1

模态分析实验报告..

模态分析实验报告 姓名: 学号: 任课教师: 实验时间: 指导老师: 实验地点:

实验1 传递函数的测量 一、实验内容 用锤击激振法测量传递函数。 二、实验目的 1)掌握锤击激振法测量传递函数的方法; 2)测量激励力和加速度响应的时间记录曲线、力的自功率谱和传递函数; 3)分析传递函数的各种显示形式(实部、虚部、幅值、对数、相位)及相干函 数; 4)比较原点传递函数和跨点传递函数的特征; 5)考察激励点和响应点互换对传递函数的影响; 6)比较不同材料的力锤锤帽对激励信号的影响; 三、实验仪器和测试系统 1、实验仪器 主要用到的实验仪器有:冲击力锤、加速度传感器,LMS LMS-SCADAS Ⅲ测试系统,具体型号和参数见表1-1。 仪器名称型号序列号灵敏度备注 数据采集和分析系统LMS-SCADAS Ⅲ比利时力锤2302-10 3164 2.25 mV/N 加速度传感器100 mV/g 丹麦B&K 表1-1 实验仪器 2 、测试系统 利用试验测量的激励信号(力锤激励信号)和响应的时间历程信号,运用数字信号处理技术获得频率响应函数(Frequency Response Function, FRF),得到系统的非参数模型。然后利用参数识别方法得到系统的模态参数。测试系统主要完成力锤激励信号及各点响应信号时间历程的同步采集,完成数字信号的处理和参数的识别。 测量分析系统的框图如图1-1所示。测量系统由振动加速度传感器、力锤和比利时LMS公司SCADAS采集前端及Modal Impact测量分析软件组成。力锤及加速度传感器通过信号线与SCADAS采集前端相连,振动传感器及力锤为ICP

模态试验分析方法简介

模态试验分析方法简介 1 试验模态分析的基本步骤 试验模态分析一般分为如下的四个步骤: 第一步:建立测试系统 所谓建立测试系统就是确定实验对象,选择激振方式,选择力传感器和响应传感器,并对整个测试系统进行校准。 第二步:测量被测系统的响应数据 这是试验模态的关键一步,所测量得到的数据的准确性和可靠性直接影响到模态试验的结果。在某一激振力的作用下被测系统一旦被激振起来,就可以通过测试仪器测量得到激振力或响应的时域信号,通过输血手段将其转化为频域信号,就可以得到系统频响函数的平均估计,在某些情况下不要求计算频响函数,只需要时间历程就可以了。 第三步:进行模态参数估计 即利用测量得到的频响函数或时间历程来估计模态参数,包括:固有频率,模态振型,模态阻尼,模态刚度和模态质量等。 第四步:模态模型验证 它是对第三步模态参数估计所得结果的正确性进行检验,它是对模态试验成果评定以及进一步对被测系统进行动力学分析的必要过程。 以上的每个步骤都是试验模态中必不可少的组成部分,其具体的介绍如下: 2、建立测试系统 建立测试系统是模态试验的前期准备过程,它主要包括:被测对象的理论分析和计算,测试方案的确定(包括激振方式的确定,传感器的选择,数据采集分析仪器的选择等),按照方案要求安装和调试,测试系统的校准等工作。 接下来对激振方式,传感器的选择和数据采集仪器的选择的具体介绍如下: 2.1激振方式的确定: 激振方式有很多种,主要分为天然振源激振和人工振源激振。天然振源包括地震,地脉动,风振,海浪等;其中地脉动常被使用于大型结构的激励,其特点是频带很宽,包含了各种频率的成分,但是随机性很大,采样时间要求较长,人工振源包括起振机,激振器,地震模拟台,车辆振动,爆破,张拉释放,机

锤击法模态测试操作简要

锤击法模态测试操作简要 第一部分现场仪器注意事项 (1) 第二部分信号采集参数设置 (1) 第三部分传递函数分析 (2) 第四部分模态分析文件参数设置 (3) 第五部分模态分析结构建模 (4) 第六部分模态分析定阶 (5) 第七部分模态分析拟合过程 (5) 第八部分模态分析校验及动画 (7) 第九部分自动报告及辅助功能 (8) 第一部分现场仪器注意事项 模态测试过程中,通过力锤敲击被测物体,侦查各通道仪器信号连接是否正常。 如异常, 通常处理办法,排除法。 第二部分信号采集参数设置 1、试验名、试验号、存盘路径及测点号设置 测点号命名规则:响应点用数字来命名,激励点用字母加数字来命名,应避免重名。重 名会导致频响函数错误,做频响函数分析时,输入测点和输出测点关系不要搞错。如在多 点 激励一点响应,或一点激励多点响应(只有一个响应传感器时),第一号点激励为“F1”, 响应为“1”;则第n 号测点激励为“Fn”,响应为“n”,频响函数为“n”对“Fn”。对 单 点激励多个响应传感器,如8个,第一次测量激励为“F1”,响应为“1”、“2”、“3”、

“4”、“5”、“6”、“7”、“8”;第二次测量激励为“F2”,响应为“9”、“10”…… “16”。对前8 个频响函数,输入应选“F1”,9 到16 号频响函数,输入应选“F2”。 2、采样频率设置 在满足采样定理基本要求基础上,可以根据经验初步估计采样频率,通过力锤试敲法、 并采集一段数据,分析观察频谱特征,根据信号频谱结构特征进行合理设置采用频率。 3、标定值设置 标定值:在使用DASP测试软件振动测试时,被测物体振动过程中的每个单位工程量值对应采 集仪测得的电压值,即工程测试过程中的单位一。 计算方法:标定值CA=传感器灵敏度A﹡调理器增益K

锤击法模态实验法

锤击法简支梁模态实验 一、实验目的 1、测定直杆模态参数; 2、模态分析原理及测试分析方法。 二、实验仪器安装示意图 三、实验原理 1、模态分析方法 模态分析方法是把复杂的实际结构简化成模态模型,来进行系统的参数识别(系统识 别),从而大大地简化了系统的数学运算。通过实验测得实际响应来寻求相应的模型或调整 预想的模型参数,使其成为实际结构的最佳描述。 可以用于振动测量和结构动力学分析。可测得比较精确的固有频率、模态振型、模态 阻尼、模态质量和模态刚度。可用模态实验结果去指导有限元理论模型的修正,使计算机模型更趋于完善和合理。 2、模态分析基本原理 (略) 3、模态分析方法和测试过程 (1)激励方法 为进行模态分析,首先要测得激振力及相应的响应信号,进行传递函数分析。然后建立结构模型,采用适当的方法进行模态拟合,得到各阶模态参数和相应的模态振型动画,形象地描述出系统的振动型态。 根据模态分析的原理,实际应用时,在结构较为轻小,阻尼不大的情况下,常用锤击法

激振,即单击拾振法。 (2)结构安装方式 在测试中使结构系统处于什么状态,是试验准备工作的一个重要方面。 本实验使试件处于自由状态。即使试验对象在任一坐标上都不与地面相连接,自由地悬浮在空中。如放在很软的泡沫塑料上或用很长的柔索将结构吊起而在水平方向激振,可认为在水平方向处于自由状态。 如果在我们所关心的是实际情况支承条件下的模态,这时,可在实际支承条件下进行 试验,放在很软的泡沫上。 四、实验设备 DH132型压电式加速度传感器 DH5923动态信号测试分析仪 LC13F02型力锤DHDAS控制分析软件 五、实验步骤 横梁如图下图所示,长(x向)500mm,宽(y向)40mm,欲使用多点敲击、单点响应方法 做其z 方向的振动模态,可按以下步骤进行。 梁的结构示意图和测点分布示意图 (1)测点的确定 此梁在y、z方向尺寸和 x方向(尺寸)相差较大,可以简化为杆件,所以只需在x方向顺序布置若干敲击点即可(采用多点敲击、单点响应方法),敲击点的数目视要得到的模 态的阶数而定,敲击点数目要多于所要求的阶数,得出的高阶模态结果才可信。实验中x 方向把梁分成十六等份,即可布十七个测点。选取拾振点时要避免使拾振点在模态振型的节 点上,此处取拾振点在六号点处。 (2)仪器连接 仪器连接下图所示,其中力锤上的力传感器接动态采集分析仪的第一通道(即振动测量通道),压电加速度传感器接第二通道(振动测试通道)。

最新模态试验及分析的基本步骤

模态试验及分析的基本步骤 1 1.动态数据的采集及响应函数分析 2 首先应选取适当的激励方式。激励方式可以是正弦、随机或瞬态中的任何一种。激3 励方式不同,相应的模态参数识别方法也不同。目前主要有单输入单输出、单输入多4 输出和多输入多输出三种方法。然后进行数据采集。对于单输入单输出方法要求同时5 高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得6 振型数据;单输入多输出及多输入多输出的方法要求大量通道数据的高速采集,因此要7 求大量的振动测量传感器或激振器,试验成本极高。在采集信号数据以后,还要在时8 域或频域对信号进行处理,例如谱分析、传递函数估计、脉冲响应测量以及滤波、相9 关分析等。 10 2.建立结构数学模型 11 根据己知条件,建立一种描述结构状态及特性的模型,作为计算及参数识别的依 12 据,目前一般假定系统为线性的。由于采用的识别方法不同,数学建模可分为频域建13 模和时域建模。根据阻尼特性及频率藕合程度又可分为实模态和复模态等。 14 3.参数识别 15 按识别域的不同可分为频域法、时域法和混合域法。激励方式不同,相应的识别参16 数方法也不尽相同。并非越复杂的方法识别的结果越可靠。对于目前能够进行的大多17 数不是十分复杂的结构,只要取得了可靠的频响数据,用简单的识别方法也可能获得18 良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量19 数据不可靠,识别的结果也不会理想。 20 4.振型动画 21 参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应22 各阶模态的振型。但是由于结构复杂,由许多自由度组成的振型的数组难以引起对振23

模态分析软件EDM Modal 的实验模态分析方案

EDM-Modal 模态分析软件一个完整的包括模态测试和模态分析的实验模态分析(Experimental Modal Analysis (EMA))流程,它的结构清晰,界面友好,功能丰富,操作简单方便。基于当代流行的模态分析理论和技术开发,操作流程直观且简单,它是实现模态分析实验得力的工具。支持用户实现数百个测量点和多个激励点的高度复杂的模态分析,无论模态测试是多么复杂,EDM Modal 模态测试系统都提供准确的工具来实现您的目标。 EDM-Modal 完美兼容晶钻所有采集仪器,如Spider-80X 。为操作员做模态实验测试提供必要的引导。操作界面具有直观的逐步过程,引导用户轻松完成设置,然后进行测试,更多时间花在分析上。并提供模态教学数据、模态操作视频等学习资源,让您轻松做实验。 为了成功获得测试数据,实验之前需要在测试模型上规划出所有测点的自由度(DOFs)。几何编辑器提供多种坐标系统,使用组件功能,可以简单地把各个子组件合并对一个几何模型。 在输入通道设置界面,设置所有通道对应的测点和它们的坐标方向。测试开

始后,所有的测试测点都会被测量,并以包含激励和响应自由度的信号名称保存。模态参数识别是模态分析的核心,EDM Modal模态分析为其提供了多种拟合方法。最小二乘复指数法(The Least-Squares Complex Exponential (LSCE))用于获取单参考点频响函数(FRF)的极点(包括频率和阻尼)。而多参考点(多输入/多输出或者MIMO)测试,则使用相应的多参考时域分析法(Poly-Reference Time Domain,PTD)。 动画模块是为了动态展示模态振型的模块,允许用户通过3D动画显示模态振型到几何模型。通过不同颜色标识动画的振动幅度。自由变形(FFT)提供增强模式的动画,比点动画更平滑更逼真。使用同一个几何模型,工作变形分析(ODS)可动画显示所选择的时域和频域响应数据到几何模态。 ★EDM Modal模态支持的功能如下: ①几何模型的创建/编辑/导入/导出/动画。 ②工作变形分析(ODS) ③锤击法模态实验 ④SIMO与MIMO FRF模态测试 ⑤SIMO正弦扫频模态测试 ⑥SIMO与MIMO步进正弦模态测试

https://www.doczj.com/doc/472072688.html,b操作指导书 锤击测试Impact Testing

https://www.doczj.com/doc/472072688.html,b操作指南——锤击测试 Impacting Testing 2016年1月

序言 这个部分介绍https://www.doczj.com/doc/472072688.html,b的锤击法测试Impact Testing模块的常用操作,工作界面的详细内容及略掉部分参见《LMS Test Lab帮助中译文_锤击测试Impact Testing》,主要针对目前能够进行且经常进行的实验。因作者水平有限,讹误在所难免。

目录 序言 (1) 目录 (2) 1.锤击测试Impact Testing概述 (1) 1.1 工作界面 (1) 1.2 模块功能 (1) 1.3 锤击测试流程 (1) 1.3.1 测试准备 (1) 1.3.2 软件打开方法 (2) 1.3.2 软件流程 (2) 1.4 常见问题 (2) 1.4.1 电脑与数采的网络连接 (2) 1.4.2 软件无法启动 (3) 2 文档Documentation与数据Navigator (4) 2.1 文档 (4) 2.1.1 工作界面 (4) 2.1.2 常用操作 (4) 2.2 数据 (5) 3.通道设置Channel Setup (6) 3.1 工作界面 (6) 3.2 常用操作 (6) 3.2.1 设置通道属性可见性 (6) 3.2.2 力锤通道设置 (7) 3.2.3 加速度传感器通道设置 (8) 3.2.4 加载与保存通道设置 (8) 3.3 术语简介 (9) 3.3.1 通道类型 (9) 3.3.2 输入通道Input Channels (9) 4.校准Calibration (11) 4.1 工作界面 (11) 4.2 常用操作 (11) 4.2.1 加速度传感器校准 (11) 4.3 术语简介 (12) 5.锤击示波Impact Scope (13) 5.1 工作界面 (13) 5.2 常用操作 (13) 5.2.1 采样参数 (13) 5.2.2 量程设定 (14) 5.2.3 示波设置与观察 (14) 5.2.4 触发设置 (14) 5.2.5 其它 (14)

模态测试

ModalVIEW 模态测试开始指南 2009.02 Rev Version 1.0

技术支持和服务 上海宏勤信息科技有限公司为您提供如下专业的技术支持与服务: 您可以发送Email到hqsignal@https://www.doczj.com/doc/472072688.html,或者在工作时间拨打电话(021)55666001获得ModalVIEW软件的免费技术支持。 上海宏勤信息科技提供相关收费培训课程,为您提供定制的专业的技术培训,详细情况请咨询上海宏勤科技应用工程师。 上海宏勤信息科技提供基于ModalVIEW软件的上门技术支持服务,为您提供全方位的模态测试服务,详细情况请咨询上海宏勤科技应用工 程师。 中文版手册由上海宏勤信息科技有限公司制作

目录 关于本文档及相关文档 (1) 1ModalVIEW概述 (1) 1.1系统需求 (1) 1.2软件安装与卸载 (1) 1.3软件激活 (2) 2模态测试基本概念 (3) 2.1时域ODS (3) 2.2频域ODS (4) 2.3自然频率,阻尼比与模态振型 (4) 3ModalVIEW软件简介 (5) 3.1操作窗口 (6) 3.2文件类型 (10) 3.3帮助系统 (12) 4ModalVIEW例子演示 (13) 4.1时域ODS演示 (13) 4.2频率域ODS演示 (15) 4.3模态振型演示 (16) 5模态测试基本步骤 (18) 5.1绘制平板的结构模型 (19) 5.2测量结构的频率响应函数 (22) 5.3估计模态参数 (28) 5.4显示模态振型动画 (30)

关于本文档及相关文档 《ModalVIEW模态测试开始指南》适合第一次接触ModalVIEW软件的用户阅读。阅读完本文档,您将基本掌握ModalVIEW软件的使用和模态测试的基本概念和基本试验过程。了解ModalVIEW的更多详细使用信息,请阅读《ModalVIEW模态测试操作手册》。 1ModalVIEW概述 ModalVIEW软件是一个标准化的模态测试软件平台。结合使用美国国家仪器(National Instruments)的动态信号分析(DSA)采集硬件,ModalVIEW软件平台能轻易完成从多通道同步数据采集、信号处理、频率响应函数估计、三维建模、ODS、模态分析、振型相关分析、和报告生成等任务。 ModalVIEW软件使用NI公司图形化编程语言LabVIEW 开发而成,界面友好,简单易用,与NI的DSA采集硬件实现无缝连接,可即时采集信号进行模态分析,无须任何第三方软件。 1.1系统需求 推荐使用Windows XP操作系统运行ModalVIEW 。使用ModalVIEW,您的计算机最低需要以下配置: y奔腾IV或赛扬2 GHz或以上的处理器 y 512MB以上内存,推荐1GB内存 y至少500MB以上的硬盘空间 y 1024x768分辨率或以上的显示器 1.2软件安装与卸载 执行以下步骤安装ModalVIEW软件: 1.以管理员帐户登陆Windows操作系统。

7753 模态测试顾问 力锤法 用户手册

7753型模态测试顾问软件的主要功能是以几何模型方式引导用户进行模态试验并管理测试数据.在试验过程中对连击、过载、激励不充分等错误以语音等方式提示,减少测量中的错误。 本文的目的在于帮助用户快速掌握使用7753软件进行模态测试的过程。测量前建议用户在Windows控制面板中的区域设置中把默认语言改为英语,,并关闭防病毒程序。 模态测试的主要过程包括: 支撑被测物 选择力锤和激励方案 在被测物上布置加速度计(对电荷型加速度计还需要连接电荷放大器) 确定通道的输入量程 对力和响应信号分别加窗(加窗的原因详见参考文献1) 确定分析带宽,平均次数 选择要测量和观察的函数 导出测量数据 最后进行参数拟合 名词解释:固有频率共振频率 FRF 固有频率和共振频率是两个概念。 固有频率是系统自身所具有的。 共振频率指激励频率与固有频率重合并发生共振时的频率为共振频率。 FRF上系统的频率特性,是频域响应与激励的函数 目录 1.选择试验布点和激励、响应方式 (2) 1.1结构如何安装 (2) 1.2 锤击法使用的力锤 (2) 1.3 确定激励方案 (3) 2. 使用 PULSE 7753 模态测试顾问软件测量结构频响 (4) 2.1在Project Info中选择参考信号 (4) 2.2在Hardware Setup中对通道选择正确的传感器 (4) 2.3在Geometry Task中可以进行测量结构的图形创建,并添加测量节点 (4) 2.4在Measurement Point Task中向测量点添加传感器 (5) 2.5在 Analyzer Setup Task设置分析属性 (5) 2.6在 Hammer Setup Task 设置激励信号量程、触发电平、时域窗 (5) 2.7在Response Setup Task设置响应信号量程、时域窗 (6) 2.8 在Measurement Task检查并保存测量结果 (7) 3. 测量结果导出 (8)

锤击法测量梁构建的模态-工程振动matlab仿真分析

实验报告 锤击法测量梁构建的模态 姓名:*** 学号:*** 指导老师:*** 院系:***

目录 1. 实验目的 (1) 2. 实验装置 (1) 2.1 试件及传感器的布置 (1) 2.2 采集系统设置 (2) 3. 实验数据处理 (2) 3.1 1号传感器与力锤的时域分析 (2) 3.2 1号传感器与力锤的频域分析 (3) 4. 1号传感器与力锤的频响函数估计 (5) 4.1 H1估计 (5) 4.2 H2估计 (6) 4.3 H1、H2与频响函数之间的比较 (7) 5. 估算模态参数 (8) 5.1 固有频率、阻尼比的估算 (8) 5.2 ANSYS建模进行模态分析 (8) 5.3 振型图 (10) 5.3.1 一阶振型 (10) 5.3.2 二阶振型 (11) 5.3.3 三阶振型 (11)

1. 实验目的 本实验采用LMS模态测试系统对某结构件固有频率进行测量,将实验数据进行处理。 (1)数据频谱分析,获取锤击信号及响应的幅频特性、相频特性、实频和虚频; (2)采用不同的频响函数估计方法对结构频响曲线进行估计,画出幅频、相频、实频、虚频和奈奎斯特图,并进行比较; (3)采用单自由度方法估计结构的频率、阻尼及振型。 2. 实验装置 2.1 试件及传感器的布置 图2.1.1 试件与传感器的布置图

2.2 采集系统设置 本次实验采用了锤击法,即用力捶敲击梁结构,采集梁结构振动的相关数据。实验使用了5个加速度传感器,设置的采样频率:12800Hz,分别率:2HZ;锤击次数为8次,传感器和锤击点的方向设置为X正方向。 3. 实验数据处理 3.1 1号传感器与力锤的时域分析 图3.1.1 1号传感器与力锤时域图

LMS_Test._lab_锤击法模态分析步骤

LMS https://www.doczj.com/doc/472072688.html,b 锤击法模态测试流程 比利时LMS国际公司北京代表处 技术支持:邓江华

LMS Test. Lab锤击法模态测试及分析的流程在软件窗口底部以工作表形式表示,按照每一个工作表依次进行即可,如下图示。 1Documentation――可以进行备忘录,测试图片等需要记录的文字或图片的输入,作为测试工作的辅助记录,如下图示。 2Geometry――创建几何(参见创建几何步骤说明) 3Channel setup――通道设置,在该选项卡中可进行数采前端对应通道的设置,如定义传感器名称,传感器灵敏度等操作。 4Calibration――对传感器进行标定 5Impact scope――锤击示波,用来确定各通道量程 6Impact setup――锤击设置,设置触发级、带宽、窗以及激励点选择 7Measure――设置完成后进行测试

以下为进行模态测试的流程。 步骤一:通道设置(Channel setup) 假设已创建好了模型,传感器已布置完成,数采前端已连接完成。 通道设置窗口如下图示,在锤击法试验中,首先将力锤输入的通道定义为参考通道,其他为传感器对应的通道 1——选取测试通道 2——定义参考通道,通常为力锤输入的通道 3——依次在ChannelGroupld中定义传感器测量类型(对加速度计和力锤则选vibration),在point中定义测点名称(也可对应为几何模型上的节点名,见后),在Direction中设置测点所测振动的方向,InputMode中设置传感器类型(通常为ICP,若为应变则选Bridge,若为位移则选Vlltage DC),在Measured Quantity中定义测量量(加速度、力、位移等),在Electrical Unit中定义输入量的单位,通常均为mv.另外若已经确定传感器的灵敏度则可在Actual Sensitivity中直接输入灵敏度值,否则可在Calibration工作表中进行标定。 注:通道设置中测点名称使用几何模型名称的方法

相关主题
文本预览
相关文档 最新文档