当前位置:文档之家› MHT 4006.1-1998 航空无线电导航设备第1部分 仪表着陆系统(ILS)技术要求

MHT 4006.1-1998 航空无线电导航设备第1部分 仪表着陆系统(ILS)技术要求

MHT 4006.1-1998 航空无线电导航设备第1部分 仪表着陆系统(ILS)技术要求
MHT 4006.1-1998 航空无线电导航设备第1部分 仪表着陆系统(ILS)技术要求

准标网 https://www.doczj.com/doc/401362908.html, 免费下载

准标网 https://www.doczj.com/doc/401362908.html, 免费下载

准标网 https://www.doczj.com/doc/401362908.html, 免费下载

准标网 https://www.doczj.com/doc/401362908.html, 免费下载

准标网 https://www.doczj.com/doc/401362908.html, 免费下载

准标网 https://www.doczj.com/doc/401362908.html, 免费下载

准标网 https://www.doczj.com/doc/401362908.html, 免费下载

准标网 https://www.doczj.com/doc/401362908.html, 免费下载

准标网 https://www.doczj.com/doc/401362908.html, 免费下载

准标网 https://www.doczj.com/doc/401362908.html, 免费下载

航空无线电导航台站电磁环境要求

航空无线电导航台站电磁环境要求 1 引言 航空无线电导航是以各种地面和机载无线电导航设备,向飞机提供准确、可靠的方位、距离和位置信息。来自非航空导航业务的各类无线电设备,高压输电线,电气化铁路,工业、科学和医疗设备等引起的有源干扰和导航台站周围地形地物的反射或再辐射,可能会对导航信息造成有害影响。为使航空无线电导航台站与周围电磁环境合理兼容,保证飞行安全,特制订本标准。 本标准适用于航空无线电导航台站电磁环境管理和作为非航空导航设施与航空无线电导航台站电磁兼容的准则。 2 中波导航台(NDB) 2.1中波导航台是发射垂直极化波的无方向性发射台。机载无线电罗盘接收中波导航台发射的信号,测定飞机与中波导航台的相对方位角,用以引导飞机沿预定航线飞行、归航和进场着陆。 2.2中波导航台包括机场近距导航台、机场远距导航台和航线导航台。近距导航台和远距导航台通常设置在跑道中心延长线上,距跑道端1000—11000m之间。航线导航台设置在航路或航线转弯点、检查点和空中走廊进出口。 2.3中波导航台工作在150—700kHz范围内国家无线电管理部门划分给无线电导航业务和航空无线电导航业务的频段。 2.4远距导航台和航线导航台覆盖区半径为150km(白天)。近距导航台的覆盖区半径为70km(白天)。2.5中波导航台覆盖区内最低信号场强,在北纬40o以北为70μV/m(37dB),在北纬40o以南为120μV /m(42dB)。 2.6在中波导航台覆盖区内,对工业、科学和医疗设备干扰的防护率*为9 dB, 对其它各种有源干扰的

防护率为15dB。 2.7 以中波导航台天线为中心,半径500 m以内不得有110kV及以上架空高压输电线;半径150m以内不得有铁路、电气化铁路、架空金属线缆、金属堆积物和电力排灌站;半径120m以内不得有高于8m的建筑物;半径50 m以内不得有高于3 m的建筑物(不合机房)、单棵大树和成片树林。 3 超短波定向台(VHF/UHF DF) 3.1 超短波定向台是一种具有自动测向装置的无线电定向设备,通过接收机载电台信号,测定飞机的方位,引导飞机归航,辅助飞机进场着陆,配合机场监视雷达识别单架飞机。 3.2超短波定向台通常设置在跑道中心延长线上,亦可与着陆雷达配置在一起。 3.3超短波定向台工作在118~150MHz和225~400MHz两个频段中,国家无线电管理部门划分给移动业务和航空移动业务的频段。 * 防护率系指保证导航接收设备正常工作的接收点处信号场强与同频道干扰场强的最小比值,以分贝 (dB)表示。 3.4超短波定向台最低定向信号场强为90μV/m(39dB)。 3.5超短波定向台对工业、科学和医疗设备干扰的防护率为14dB,对其它有源干扰的防护率为20dB。3.6 以定向台大线为中心,半径700m以内不得有110kV及以上的高压输电线;500m以内不得有35kV 及以上的高压输电线、电气化铁路和树林;300 m以内不得有架空金属线缆、铁路和公路;70m以内不得有建筑物(机房除外)和树木;70m以外建筑物的高度不应超过以大线处地面为准的2.5o垂直张角。 4 仪表着陆系统(ILS)

基于航空无线电导航系统仿真研究

基于航空无线电导航系统仿真研究-电气论文 基于航空无线电导航系统仿真研究 杜春辉 (吉林省民航机场集团飞行区管理部导航保障室,吉林长春130035)【摘要】无线电的导航系统是航空飞行的重要组成部分,也是飞行检验仿真的基础。主要分析了Simulink与Matlab在建模仿真中的特点和航空无线电导航系统及其仿真的特点,并进一步的研究了Simulink与Matlab与高层结构(HLA)在兼容性方面所表现出来的强大的兼容性以及可重用性的优点,充分的说明了其在通信系统中的作用,并建立了机载接收分系统、空间信号合成、天线分配网络以及地面航向信标的Simulink 仿真模型,进而得出了正确的波形,进而提出了将Simulink模型加入到基于高层结构的通信系统综合仿真系统联邦的解决措施。 关键词无线电导航系统;仿真;Simulink与Matlab;模型 基于航空的无线电导航系统的全数字的仿真是航空飞行检验的基础,同时其也是仿真系统中不可或缺的组成部分,在整个系统中起着非常重要的作用。随着我国经济与科学技术的迅猛发展,我国的无线电导航技术也逐渐的走向成熟,无线电导航系统简单的来说就是利用无线电导航技术引导飞机进入相应的航线,并为飞机进行着陆引导,该系统对飞机的自动驾驶仪以及确定下滑道、航道等提供了精准的数据,有效的的保证了飞机的安全驾驶。但是,导航信息质量的高低以及着陆系统性能的发挥情况还受到一些因素的影响,主要的影响因素有两个方面,一个方面的影响因素是场地环境条件以及配置地点的影响,以及电磁干扰以及电波的传递条件等外界因素。另一方面是受到设备本身性能的限制。

1在无线电导航系统仿真中对Simulink与Matlab的可用性兼容性的研究 根据相关的数据统计表明,很多大学和研究机构将建立较为完善的Simulink 模型应用到HLA仿真中进行研究,都取得了一定的成果。在众多的研究案例中,比较成熟的研究案例有清华大学的Matlab与HLA/RTI的通用适配器,MAK公司的HLA/DIS Toolbox 的研究以及国防科研究的KD-HLA-Simulink工具箱,并将该工具箱完全的集成在Simulink的环境中,同时还为用户提供相应的Simulink的模块,该模块就是所说的HLA模块,该模块的功能是实现与RTI之间的接口。而MAK公司研发的HLA/DIS Toolbox 实际上是在基于HLA/D IS 标准仿真环境与MATLABSimulink之间提供了一个接口,通过这个接口,可以实时的或者是将已经记录的HLA/D IS数据输入到MATLAB中进行数据的分析,或者是将Simunlink或MATLAB的模型整合到HLA/D IS的环境之中,在进行Toolboox的使用时,Simulink与Matlab的应用程序就成为了一个完整的HLA/D IS的联邦成员。总而言之,上述的研究成果都为无线电导航系统的Simulink模型加入到通信系统中的综合仿真系统的建立提供了良好的条件与基础。 2实例 利用Simulink建立了无线电导航系统的米波仪表着陆系统地面分系统以及机载分系统的仿真模型,通过验证和校验。基于HLA的米波仪表着陆系统的仿真的体系架构如图1所示: 机载设备和地面设备是仪表着陆系统的两个重要组成部分,其中地面设备主要

航空无线电导航设备第2部分:甚高频全向信标(VOR)-推荐下载

MH/T4006.2-1998 航空无线电导航设备第2部分;甚高频全向信标(VOR)技术要求 1 范围 本标准规定了民用航空甚高频全向信标设备的通用技术要求,它是民用航空甚高频全向信标制定规划和更新、设计、制造、检验以及运行的依据。 本标准适用于民用航空行业各类甚高频全向信标设备。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的条方应探讨使用下列要求最新的版本的可能性。GB6364-86 航空无线电导航台站电磁环境要求 MH/T4003-1996 航空无线电导航台和空中交通管制雷达站设置场地规范 中国民用航空通信导航设备运行维护规程(1985年10月版) 国际民用航空公约附件十航空电信(第一卷)(第4版1985年4月) 国际民航组织8071文件无线电导航设备测试手册(第3册1972年) 3 定义 本标准采用下列定义。 3.1 甚高全向信标very high frequency omnidirectional range (VOR) 一种工作于甚高频波段,提供装有相应设备的航空器相对于该地面设备磁方位信息的导航设备。 3.2 多普勒甚高频全向信标doppler VOR(DVOR) 利用多普勒原理而产生方位信息的甚高频全向信标。 3.3 基准相位reference phase 甚高频全向信标辐射的两个30Hz调制信号中的一个调制信号的相位与观察点的方位角无关。3.4 可变相位variable phase 甚高频全向信标辐,射的两个30Hz调制信号中的一个调制信号的相位与观察点的方位角有关,在同一时刻的不同方位上,该调制信号的相位不同。 4 一般技术要求 4.1 用途 甚高频全向信标是国际民航组织规定的近程导航设备,它提供航空器相对于地面甚高频全向信标台的磁方位。具体作用如下: a)利用机场范围内的甚高频全向信标,保障飞机的进出港; b)利用两个甚高频全向信标台,可以实现直线位置线定位; c)利用航路上的甚高频全向信标,保证飞机沿航路飞行(甚高频全向信标常和测距仪配合使 用,形成极坐标定位系统,直接为民航飞机定位); d)甚高频全向信标还可以作为仪表着陆系统的辅助设备,保障飞机安全着陆。 4.2 组成 甚高频全向信标设备组成如下: a)发射机系统; b)监视系统; c)控制和交换系统; d)天线系统;

航空无线电导航技术习题

《航空无线电导航技术》习题 1、超短波通信的特点是(C )。 A:不受地形地物的影响B:无衰落现象 C:通信距离限定在视距D:频段范围宽,干扰小2、长波、中波的传播是以(B)传播方式为主。 A:天波B:地波C:直射波D:地面反射波3、短波传播是以(A )传播方式为主。 A:天波B:地波C:直射波D:地面反射波4、超短波传播是以(C )传播方式为主。 A:天波B:地波C:直射波D:地面反射波5、高频通信采用的调制方式是(B)。 A:等幅制B:调幅制C:调频制D:调相制 6、关于短波通信使用频率,下述中正确的是(B )。 A:距离远的比近的高B:白天比晚上的高 C:冬季比夏季的高D:与时间、距离等无关7、天波传输的特点是( A )。 A:传播距离远B:信号传输稳定 C:干扰小D:传播距离为视距 8、地波传输的特点是( A )。 A:信号传输稳定B:传播距离为视距 C:受天气影响大D:传播距离远 9、直射波传播的特点是( C )。

A:传播距离远B:信号传输不稳定 C:传播距离为视距D:干扰大 10、单边带通信的缺点是(D )。 A:频带宽B:功率利用率低C:通信距离近 D:收发信机结构复杂,要求频率稳定度和准确度高 11、飞机与塔台之间的无线电联络使用(B )通信系统。 A:高频B:甚高频C:微波D:卫星12、飞机与区调或站调之间的无线电联络使用(A)通信系统。 A:甚高频B:高频C:微波D:卫星13、目前我国民航常用的空管雷达是(A )。 A:一、二次监视雷达B:脉冲多普勒雷达 C:着陆雷达D:气象雷达 14、相对于单独使用二次雷达,使用一次、二次雷达合装的优点是( C )。 A:发现目标的距离更 B:常规二次雷达条件下提高雷达系统的距离分辨力 C:能够发现无应答机的目标 D:克服顶空盲区的影响 15、二次监视雷达与一次监视雷达相比的主要优点是(A)。 A:能够准确提供飞机的高度信息 B:能够探测气象信息并能够给出气象轮廓 C:能够准确提供飞机的距离信息

飞机场通讯导航设施

飞机场通讯导航设施 航空通讯有陆空通讯和平面通讯。 陆空通讯飞机场部门和飞机之间的无线电通讯。主要方式是用无线电话;远距离则用无线电报。 飞机场无线电通讯设施 20世纪80年代,载波通讯和微波通讯发达的区域,平面通讯一般不再利用短波无线电通讯设备。无线电发讯台主要安装对飞机通讯用的发射设备;也不再单建无线电收讯台,而将无线电收讯台和无线电中心收发室合建在飞机场的航管楼内。 航空导航分航路导航和着陆导航。 航路导航①中长波导航台(NDB)。是设在航路上,用以标出所指定航路的无线电近程导航设备。台址应选在平坦、宽阔和不被水淹的地方,并且要远离二次辐射体和干扰源。一般在航路上每隔200~250公里左右设臵一座;在山区或某些特殊地区,不宜用NDB导航。 ②全向信标/测距仪台(VOR/DME)全向信标和测距仪通常合建在一起。全向信标给飞机提供方位信息;测距仪则给飞机示出飞机距测距仪台的直线距离。它对天线场地的要求比较高。在一般情况下,要求以天线中心为中心,半径 300米范围内,场地地形平坦又不被水淹。该台要求对二次辐射体保持一定的距离。台址比中、长波导航台的要求严。在地形特殊的情况下,可选用多普勒全向信标/测距仪台(DVOR/DME),以提高设备的场地适应性。该台的有效作用距离取决于发射机的发射功率和飞机的飞行高度。在飞行高度5700米以上的高空航路上,两台相隔距离大于200公里。

③塔康(TACAN)和伏尔塔康 (VORTAC)塔康是战术导航设备的缩 写,它将测量方位和距离合成为一套装臵。塔康和全向信标合建,称伏尔塔康。其方位和距离信息,也可供民用飞机的机载全向信标接收机和测距接收设备接收;军用飞机则用塔康接收设备接收。塔康和伏尔塔康台的设臵以及台址的选择,和全向信标/测距仪台的要求相同。 ④罗兰系统(LORAN)远距导航系统。20世纪 80年代航空上使用的主要是“罗兰-C”。“罗兰-C”系统由一个主台和两个至四个副台组成罗兰台链。“罗兰-C”系统的有效作用距离,在陆上为2000公里,在海面上为3600公里。主台和副台间的距离可达到1400公里。按所定管辖地区的要求,设臵主台和副台;并按一般的长波导航台选址要求进行选址。 ⑤奥米加导航系统(OMEGA)。和“罗兰-C”一样,是一种远程双曲线相位差定位系统。由于选用甚低频波段的10~14千赫工作,作用距离可以很远,两台之间的距离可达9000~10800公里。只要有8个发射台,输出功率为10千瓦,即可覆盖全球。罗兰系统和奥米加导航系统不是一个飞机场的导航设施,而是半个地球的甚至是全球性的导航设施。 飞机场终端区导航①归航台着陆引导设施。飞机接收导航台的无线电信号,进入飞机场区,对准跑道中心线进近着陆,这样的导航台称归航台。归航台建在跑道中心线延长线上。距跑道入口的距离为1000米左右的称近距归航台(简称近台);距离为7200米左右的称远距归航台(简称远台)。归航台一般都和指点标台合建。指点标台

MHT 4006.3-1998 航空无线电导航设备 第3部分 测距仪(DME)技术要求

MH/T 4006.3-1998 航空无线电导航设备第3部分:测距仪(DME)技术要求 1 范围 本标准规定了民用航空测距仪设备的通用技术要求,它是民用航空测距仪设备制定规划和更新、设计、制造检验以及运行的依据。 本标准适用于民用航空行业各种地面测距仪(DME)设备。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。GB6364-86 航空无线电导航台站电磁环境要求 MH/T 4003-1996 航空无线电导航台和空中交通管制雷达站设置场地规范 中国民用航空通信导航设备动行维修规程(1985年4月版) 国际民用航空公约附件十航空电信(第一卷)(第4版1985年4月) 国际民用航空级织8071文件无线电导航设备测试手册(第3版 1972年) 3 定义 本标准采用下列定义和符号。 3.1 测距仪 distance measuring equipment (DME) 一种工作于超高频波段,通过接收和发送无线电脉冲对而提供装有相应设备的航空器至该地面设备连续而准确斜距的导航设备。 3.2 寂静时间 dead time 应答器接收机在收到一对正确询问脉冲对并产生译码脉冲后的一段封闭时间,以防上对应答脉冲的再次应答,并可防止多路径效应引起和回波响应。 3.3 发键时间 key down time 正在发射莫尔斯码的点或划的时间 3.4 脉冲幅度 pulse amplitude 脉冲包络的最大电压值。 3.5 脉冲上升时间 pulse rise time 脉冲包络前沿10%振幅点至90%振幅点之间的时间。 3.6 脉冲下降时间 pulse decay time 脉冲包络后沿90%振幅点到10%振幅点之间的时间。 3.7 脉冲宽度 pulse duration 脉冲包络前、后沿上50%振幅点之间的时间间隔。 3.8 X、Y模式 mode X、Y 用脉冲对的时间间隔来进行DME发射编码的一种方法,以便一个频率可以重复使用。 3.9 应答效率 reply efficiency 应答器所发射的应答数与其所收一的有效询问总数的比值,以百分比表示。 3.10 等值各向同性辐射功率 equivalent isotropically radiated power 馈送到天线上的功率与天线在给定方向上的增益(相对于各向同性天线的绝对增益或各向同性增益)的乘积。 3.11 pp/s pulse-pairs per second 脉冲对/秒。

航空无线电导航设备第一部分:仪表着陆系统(ILS)技术要求

航空无线电导航设备 第1部分:仪表着陆系统(ILS)技术要求 MH/T 4006.1-1998 1 范围 本标准规定了民用航空仪表着陆系统设备的通用技术要求,它是民用航空仪表着陆系统设备制定规划和更新、设计、制造、检验以及运行的依据。 本标准适用于民用航空行业各类仪表着陆系统设备。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列要求最新版本的可能性。 GB 6364—86 航空无线电导航台站电磁环境要求 Mt{/T 4003—1996航空无线电导航台和空中交通管制雷达站设置场地规范 中国民用航空通信导航设备运行、维护规程(1985年版) 中国民用航空仪表着陆系统Ⅰ类运行规定(民航总局令第57号) 国际民用航空公约附件十航空电信(第一卷)(第4版1985年4月)国际民航组织8071文件无线电导航设备测试手册(第3册1972年)

3 定义、符号 本标准采用下列定义和符号。 3.1航道线course line 在任何水平面内,最靠近跑道中心线的调制度差(DDM)为。的各点的轨迹。 3.2航道扇区course sector 在包含航道线的水平面内,最靠近航道线的调制度差(DDM)为0.155的各点迹所限定的扇区。 3.3半航道扇区half course sector 在包含航道线的水平面内,最靠近航道线的调制度差(DDM)为0.0775的各点轨迹所限定的扇区。 3.4调制度差difference in depth of modulatlon(DDM) 较大信号的调制度百分比减去较小信号的调制度百分比,再除以100。 3.5位移灵敏度(航向信标)displacement sensitivity(10calizer) 测得的调制度差与偏离适当基准线的相应横向位移的比率。 3.6角位移灵敏度angular displacemeat seusitivity 测得的调制度差与偏离适当基准线的相应角位移的比率。 3.7仪表着陆系统下滑道ILS glide path 在包含跑道中心线的垂直平面内.最靠近水平面的所有调制度差(DDM)

无线电干扰对航空器及地面导航设备的影响及原因分析

无线电干扰对航空器及地面导航设备的影响及原因分析 近年来,我国航空业发展迅猛,新建机场以及新开辟航线也如雨后春笋般不断涌现,使得人们的出行更加便利,很多人的生活方式也随之改变。目前,随着航空业规模的不断扩大,航空器及地面导航设备的数量也在不断增多。然而在实际工作中,航空器及地面导航设备受无线电干扰的情况也在近来频繁出现,严重时,甚至导致通讯及通信系统均无法完全处于安全运行的状态。因此,文章从无线电干扰对航空器及地面导航设备的影响进行分析,找出航空器及地面导航设备受到无线电干扰的原因,并提出几点针对性的解决方案。 标签:无线电干扰;航空器;导航设备;飞行;影响 目前,随着通信领域的飞速发展,各类无线电技术也呈现出日新月异的发展态势。这本是一件科技引领社会进步的好事,但在这样的背景下,许多未经批准的电台投入使用、无线电爱好者私下自行组装设备等状况频频发生,导致无线电干扰日益突出,航空业的安全运行环境面临严重威胁。无线电干扰不仅影响航空器及地面导航设备的正常运行,给航空安全问题造成负面影响,同时也给国民经济带来巨大损失。在航空领域,通信与通讯安全至关重要,这不仅关系到我国社会经济的进步,同时也与社会文明息息相关。在航空器运行过程中,一旦受到无线电干扰,其后果是非常严重的。所以,文章从以下几个方面对航空器及地面导航设备的无线电干扰问题进行探讨。 1 无线电干扰对航空器及地面导航设备的影响 1.1 互调干扰 互调干扰指的是发信机与收信机同时被输进两个或两个以上的频率信号时,电路就会呈现非线性特征。如果此时有另一个信号与当前信号的频率相同,那么也有可能通过发信机以及收信机,从而使有用信号受到干扰。互调干扰不仅能够降低通话质量,更严重者,甚至导致飞行员在飞行过程中无法与地面管制员取得联系,使得飞机安全无法得到全面的保障。不仅如此,互调干扰还可能导致机载电路失灵,从而影响设备正常运行甚至造成发射机的烧毁烧坏,给飞行安全带来严重隐患。 1.2 带外干扰 帶外干扰指的是接收机的杂散响应与发射机的杂散辐射产生的干扰。其中,杂散响应指的是接收机不仅可以收到有用的信号,还可以收到其他同相或同频率的信号。通常,杂散响应与接收机自身振动的频率有极大的关联。而杂散辐射干扰在UHF与VHF低频段出现[1],通常发射机通过晶体振荡器来获得高频率稳定度。要得到发射频率,主振频率要经多次倍频。倍频放大器与倍频器之间的非线性作用产生大量谐波,谐波的频率是主振频率的整数倍。如果倍频异常,谐波就会对接收机造成干扰。当机载或地面导航设备发生故障时,其工作频率会发生

中国民用航空无线电频率划分表

中国民用航空无线电频率划分表中国民用航空无线电频率划分表 频率划分(KHz)无线电频率划分脚注 160-190 固定 航空无线电导航 190-200 航空无线电导航 固定 200-285 航空无线电导航 [航空移动] 285-325 航空无线电导航 水上无线电导航(无线电信标) 325-405 航空无线电导航 [航空移动] 405-415 无线电导航 [航空移动] 415-495 水上移动 航空无线电导航S5.77 在中国,415-495KHz频带以主要使用条件划分给航空无线电导航业务。国家主管部门应采取一切切实可行的措施,保证在435-495KHz频带内的航空无线电导航电台不对接收船舶电台通信的海岸电台产生干扰,这些船舶电台的发信频率是指定给船舶电台用于全球范围通信的频率。 S5.82 在水上移动业务中,从完全执行GMDSS的日期开始,490KHz频率专用于由海岸电台通过窄带直接印字电报向船舶发送导航和气象告警及紧急信息,使用 490KHz频率的条件在S31和S52条中规定。要求各主管部门在航空无线电导航业务使用415-495kHz频带时,保证不对490kHz频率产生有害干扰。 505-526.5 水上移动 航空无线电导航 [航空移动] [陆地移动] 526.5-535 广播 航空无线电导航

[移动] 535-1 606.5 广播 [航空无线电导航] 2 850- 3 025 航空移动(R)S5.111 按照已经生效的地面无线电通信业务的程序,2182kHz、3023kHz、 5680kHz、8364kHz载波频率以及121.5MHz、156.8MHz 和243MHz频率,也可用于有人驾驶空间飞行器的搜索和救援工作。.这些频率的使用条件在第S31条和附录S13中规定。 上述规定同样适用于10003kHz、14993kHz和19993KHz这三个频率,但其发射必须限制在各频率±3KHz频带内。 S5.115 根据第S31条和附录S13,参与经过协调的搜索和救援工作的水上移动业务电台也可使用载波(基准)频率3025kHz和5680kHz 3 025-3 155 航空移动(OR) 3 400-3 500 航空移动 3 900-3 950 航空移动 广播CHN4 2-64.5MHz可有限制地用于无线电定位业务,不得对其它业务产生有害干扰。 4 063-4 438 水上移动 [固定] [陆地移动] [航空移动]S5.128 在中国,位于离海岸至少600公里的功率受到限制的固定业务电台,在对水上移动业务不产生干扰的条件下,可以使用4063-4123KHz、4130-4133KHz和4408-4438KHz频带。 S5.129 在不对水上移动业务产生有害干扰的条件下,仅在其国境内通信的固定业务电台,其平均功率不超过50W者,可例外地使用4063-4123KHz和4130-4438KHz频带中的频率。 CHN5 4292-4305KHz、6443-6457KHz、8803-8813KHz、10555-10655KHz、10740-10760KHz、13155-13165KHz、14815-14825KHz、17155-17165KHz、19750- 19760KHz、22510-22520 KHz、25080-25090 KHz系国内保护频带,用于水上移动业务。20015 KHz为国内保护频点。 4 650-4 700

航空无线电导航系统

第一章绪论 1.1.1导航与导航系统的基本概念 1.导航 导航的基本含义是引导运行体从一地到另一地安全航行的过程。导航强调的是“身在何处,去向哪里”是对继续运动的指示。导航之所以定义为一个过程,是因为它贯穿于运动体行动的始终,遍历各个阶段,直至确保运行达成目的。应当说大部分运行体都是由人来操纵的,而对那些无人驾驶的的运行体来说,控制是由仪器或设备来完成的,这时的导航就成为了制导。近年来人们将定位于导航并列提出。事实上定位提供的位置参量是一个标量,只有将其与方向数据联合起来成为矢量,才能服务于运行体的航行。因此定位与测角、测距一样是导航的技术之一,通过定位可以实现导航。也可以说定位是静态用户要求的;但对动态用户而言要求的是导航。 2.导航系统 导航系统是用于对运行体实施导航的专用设备组合或设备的统称。导航系统是侧重于实现特定导航功能的设备组合体,组合体内的各部分必须按约定的协调方式工作才能实现系统功能,而导航设备一般是指导航系统中某一相对独立部分或产品,或实现某一导航功能的单机。 1.1.3 导航及无线电导航系统的分类 导航是一门基于“声、光、电、磁、力”的综合性的应用科学,实现

导航的技术手段很多,按其工作原理或主要应用技术可分为下述类别: (1)天文导航——利用观测自然天体(空中的星体)相对于运行体所在坐标系中的某些参量实现的导航称为天文导航。 (2)惯性导航——利用牛顿力学中的惯性原理及相应技术实现的导航称为惯性导航。 (3)无线电导航——利用无线电技术实现的导航称为无线电导航。(4)地磁导航——利用地球磁场的特性和磁敏器件实现的导航称为地磁导航。 (5)红外线导航——利用红外线技术实现的导航称为红外线导航。(6)激光导航——利用激光技术实现的导航称为激光导航。 (7)声纳导航——利用声波或超声波在水中的传播特性和水声技术实现的导航(用于对水下运行体的导航)称为声纳导航。(8)地标或灯标导航——利用观测(借助光学仪器或目视)已知位置的地标或灯标实现的导航称为地标或灯标导航。 2.无线电导航系统的分类 无线电导航是导航中的一大分支,是当今应用最广、发展最快、在导航家族中站主导地位的一类导航技术。下面介绍几种常用的无线电导航系统分类: (1)按用户使用时相对依从关系分类 ○1自备式(或自主式)导航系统。这类导航系统仅依靠装在运行体上的导航设备就能独立自主地为该运行体提供导航服务。

航空无线电导航台和空中交通管制雷达站设置场地规范

MH/T4003-1996航空无线电导航台和空中交通管制雷达站设置场地规范 1 范围 本标准规定了航空无线电导航台和空中交通管制(简称空管)雷达站和设置地点,是其所提供的方位、距离、位置等导航、雷达信息的基准点。 本标准适用于通用型导航和雷达设备,也适用于各类民有航空无线电导航台和空管雷达站新建台站的选址和台站建设以及已建台、站的场地管理一环境保护。 2 定义 本标准采用下列定义。 2.1空中定位air fix point 为保证航空器的正常航行而规定的空中位置点。 2.2切线飞行tangent flight 与以雷达天线为中心的圆相切的切线飞行,径向速度为零时,其一次雷达目标显示将会失效。 2.3雷达遮蔽角(包括水平遮蔽角和垂直遮蔽解)screen angle 从雷达天线中心点和该点所在水平面向上算起的雷达电波信号被地形地物遮挡的垂直张角。 2.4对称装定symmetrical installation 精密进近雷达的航向天线相对于跑道平行线做对称扫描(即左右各100)的装定方式。 2.5不对称装定asymmetrical installation 精密进近雷达的航向天线相对于跑道平行线做左右不对称扫描(通常是向跑道方向扫描150,背跑道方向扫描50)的装定方式。 2.6仪表着陆系统instrument landing system (ILS) 它为飞机提供航向道、下滑道和距跑道着陆端的距离信息,用于复杂气象条件下,按仪表指示引导飞机进场着陆。包括甚高频(VHF)航向信标设备、超高频(UHF)下滑信标设备和甚高频(VHF)指点信标以及连带的监视系统、遥控和指示设备。 2.7决断高/高度decision altitude/decision height 按仪表着陆系统进场着陆时,决定复飞或继续进场的最低限定高/高度。 2.8仪表着陆系统的I类运行标准operational standards or ILS CA T I

航空无线电导航台和空中交通管制雷达站设置场地规范

航空无线电导航台和空中交通管制雷达站设置场地规范 1 范围 本标准规定了航空无线电导航台和空中交通管制(简称空管)雷达站和设置地点,是其所提供的方位、距离、位置等导航、雷达信息的基准点。 本标准适用于通用型导航和雷达设备,也适用于各类民有航空无线电导航台和空管雷达站新建台站的选址和台站建设以及已建台、站的场地管理一环境保护。 2 定义 本标准采用下列定义。 2.1空中定位air fix point 为保证航空器的正常航行而规定的空中位置点。 2.2切线飞行tangent flight 与以雷达天线为中心的圆相切的切线飞行,径向速度为零时,其一次雷达目标显示将会失效。 2.3雷达遮蔽角(包括水平遮蔽角和垂直遮蔽解)screen angle 从雷达天线中心点和该点所在水平面向上算起的雷达电波信号被地形地物遮挡的垂直张角。 2.4对称装定symmetrical installation 精密进近雷达的航向天线相对于跑道平行线做对称扫描(即左右各100)的装定方式。 2.5不对称装定asymmetrical installation 精密进近雷达的航向天线相对于跑道平行线做左右不对称扫描(通常是向跑道方向扫描150,背跑道方向扫描50)的装定方式。 2.6仪表着陆系统instrument landing system (ILS) 它为飞机提供航向道、下滑道和距跑道着陆端的距离信息,用于复杂气象条件下,按仪表指示引导飞机进场着陆。包括甚高频(VHF)航向信标设备、超高频(UHF)下滑信标设备和甚高频(VHF)指点信标以及连带的监视系统、遥控和指示设备。 2.7决断高/高度decision altitude/decision height 按仪表着陆系统进场着陆时,决定复飞或继续进场的最低限定高/高度。 2.8仪表着陆系统的I类运行标准operational standards or ILS CA T I 使用仪表着陆设备,在不低于决断高度/高度60m,跑道能见度大于800m的最低气象条件下着陆。

无线电导航系统讲义

航空无线电导航系统 第一章 绪论 1.1.1 导航与导航系统的基本概念 1.导航导航的基本含义是引导运行体从一地到另一地安全航行的过程。导航强调的是“身在何处,去向哪里”是对继续运动的指示。导航之所以定义为一个过程,是因为它贯穿于运动体行动的始终,遍历各个阶段,直至确保运行达成目的。应当说大部分运行体都是由人来操纵的,而对那些无人驾驶的的运行体来说,控制是由仪器或设备来完成的,这时的导航就成为了制导。近年来人们将定位于导航并列提出。事实上定位提供的位置参量是一个标量,只有将其与方向数据联合起来成为矢量,才能服务于运行体的航行。因此定位与测角、测距一样是导航的技术之一,通过定位可以实现导航。也可以说定位是静态用户要求的;但对动态用户而言要求的是导航。 2.导航系统导航系统是用于对运行体实施导航 GAGGAGAGGAFFFFAFAF

的专用设备组合或设备的统称。导航系统是侧重于实现特定导航功能的设备组合体,组合体内的各部分必须按约定的协调方式工作才能实现系统功能,而导航设备一般是指导航系统中某一相对独立部分或产品,或实现某一导航功能的单机。 1.1.3 导航及无线电导航系统的分类导航是一门基于“声、光、电、磁、力”的综合性的应用科学,实现 导航的技术手段很多,按其工作原理或主要应用技术可分为下述类别:(1)天文导航——利用观测自然天体(空中的星体)相对于运行体所在坐标系中的某些参量实现的导航称为天文导航。(2)惯性导航——利用牛顿力学中的惯性原理及相应技术实现的导航称为惯性导航。(3)无线电导航——利用无线电技术实现的导航称为无线电导航。(4)地磁导航——利用地球磁场的特性和磁敏器件实现的导航称为地磁导航。(5)红外线导航——利用红外线技术实现的导航称为红外线导航。(6)激光导航——利用激光技术实现的导航称为激光导航。(7)声纳导航——利用声波或超声波在水中的传播特性和水声技术实现的导 GAGGAGAGGAFFFFAFAF

航空无线电导航台和空中交通管制雷达站设置场地规范

MH/T4003 -1996航空无线电导航台和空中交通管制雷达站设置场地规范 1 范围本标准规定了航空无线电导航台和空中交通管制(简称空管)雷达站和设置地点,是其所提供的方位、距离、位置等导航、雷达信息的基准点。 本标准适用于通用型导航和雷达设备,也适用于各类民有航空无线电导航台和空管雷达站新建台站的选址和台站建设以及已建台、站的场地管理一环境保护。 2 定义本标准采用下列定义。 2.1 空中定位air fix point 为保证航空器的正常航行而规定的空中位置点。 2.2 切线飞行tangent flight 与以雷达天线为中心的圆相切的切线飞行,径向速度为零时,其一次雷达目标显示将会失 效。 2.3 雷达遮蔽角(包括水平遮蔽角和垂直遮蔽解)screen angle 从雷达天线中心点和该点所在水平面向上算起的雷达 电波信号被地形地物遮挡的垂直张角。 2.4 对称装定symmetrical installation 精密进近雷达的航向天线相对于跑道平行线做对称扫描(即左右各100)的装 定方式。 2.5 不对称装定asymmetrical installation 精密进近雷达的航向天线相对于跑道平行线做左右不对称扫描(通常是向跑道方向扫描150,背跑道方向扫描50)的装定方式。 2.6 仪表着陆系统instrument landing system (ILS)它为飞机提供航向道、下滑道和距跑道着陆端的距离信息,用于复杂气象条件下,按仪表指示引导飞机进场着陆。包括甚高频(VHF )航向信标设备、超高频(UHF )下滑信标设备和甚高频(VHF )指点信标以及连带的监视系统、遥控和指示设备。 2.7 决断高/高度decision altitude/decision height 按仪表着陆系统进场着陆时,决定复飞或继续进场的最低限定高 /高度。 2.8 仪表着陆系统的I 类运行标准operational standards or ILS CAT I 使用仪表着陆设备,在不低于决断高度/高度60m,跑道能见度大于800m的最低气象条件下着陆。 2.9 仪表着陆系统的II 类运行标准operational standards or ILS CAT II 使用仪表着陆设备,在决断高/高度30m,跑道通见度大于400m的最低气象条件下着陆。 2.10 仪表着陆系统的III 类运行标准operational standards or ILS CAT III 使用仪表着陆设备,在决断高/高度0,跑道能见度大于0~200m 的气象条件下着陆。

《航空无线电导航技术》习题..

9、直射波传播的特点是( C ) 《航空无线电导航技术》习题 1、超短波通信的特点是(C ) B :无衰落现象 D :频段范围宽,干扰小 B )传播方式为主。 3、短波传播是以(A )传播方式为主 4、 超短波传播是以(C )传播方式为主。 A :天波 B :地波 C :直射波 D :地面反射波 5、 高频通信采用的调制方式是(B )。 A :等幅制 B :调幅制 C :调频制 D :调相制 6、 关于短波通信使用频率,下述中正确的是(B )。 B :白天比晚上的高 D :与时间、距离等无关 A )。 B :信号传输稳定 D :传播距离为视距 A )。 B :传播距离为视距 A :天波 B :地波 C :直射波 D :地面反射波 A :不受地形地物的影响 C :通信距离限定在视距 2、长波、中波的传播是以( A :天波 B :地波 C :直射波 D :地面反射波 A :距离远的比近的高 C :冬季比夏季的高 7、天波传输的特点是( A :传播距离远 C :干扰小 &地波传输的特点是( A :信号传输稳定 C :受天气影响大

D :传播距离远 9、直射波传播的特点是( C )

A :传播距离远 B :信号传输不稳定 C :传播距离为视距D:干扰大 10、单边带通信的缺点是(D )。 A:频带宽B:功率利用率低C:通信距离近 D :收发信机结构复杂,要求频率稳定度和准确度高 11、飞机与塔台之间的无线电联络使用(B )通信系统。 A :高频B:甚高频 C :微波D :卫星 12、飞机与区调或站调之间的无线电联络使用(A)通信系统 A:甚高频B :高频 C :微波D :卫星 13、目前我国民航常用的空管雷达是( A )。 A :一、二次监视雷达 B :脉冲多普勒雷达 C :着陆雷达 D :气象雷达 14、相对于单独使用二次雷达,使用一次、二次雷达合装的优点是(C )o A :发现目标的距离更 B:常规二次雷达条件下提高雷达系统的距离分辨力 C:能够发现无应答机的目标 D:克服顶空盲区的影响 15、二次监视雷达与一次监视雷达相比的主要优点是(A )o A :能够准确提供飞机的高度信息 B :能够探测气象信息并能够给出气象轮廓

航空无线电导航台和空中交通管制雷达站设置场地规范

MH/T4003-1996 航空无线电导航台和空中交通管制雷达站设置场地规范 1 范围 本标准规定了航空无线电导航台和空中交通管制(简称空管)雷达站和设置地点,是其所提供的方位、距离、位置等导航、雷达信息的基准点。 本标准适用于通用型导航和雷达设备,也适用于各类民有航空无线电导航台和空管雷达站新建台站的选址和台站建设以及已建台、站的场地管理一环境保护。 2 定义 本标准采用下列定义。 2.1 空中定位air fix point 为保证航空器的正常航行而规定的空中位置点。 2.2 切线飞行tangent flight 与以雷达天线为中心的圆相切的切线飞行,径向速度为零时,其一次雷达目标显示将会失效。 2.3 雷达遮蔽角(包括水平遮蔽角和垂直遮蔽解)screen angle 从雷达天线中心点和该点所在水平面向上算起的雷达电波信号被地形地物遮挡的垂直张角。

2.4 对称装定 symmetrical installation 精密进近雷达的航向天线相对于跑道平行线做对称扫描(即左右各100)的装定方式。 2.5 不对称装定 asymmetrical installation 精密进近雷达的航向天线相对于跑道平行线做左右不对称扫描(通常是向跑道方向扫描150,背跑道方向扫描50)的装定方式。 2.6 仪表着陆系统 instrument landing system (ILS) 它为飞机提供航向道、下滑道和距跑道着陆端的距离信息,用于复杂气象条件下,按仪表指示引导飞机进场着陆。包括甚高频(VHF)航向信标设备、超高频(UHF)下滑信标设备和甚高频(VHF)指点信标以及连带的监视系统、遥控和指示设备。 2.7 决断高/高度 decision altitude/decision height 按仪表着陆系统进场着陆时,决定复飞或继续进场的最低限定高/高度。 2.8 仪表着陆系统的I类运行标准 operational standards or ILS CAT I 使用仪表着陆设备,在不低于决断高度/高度60m,跑道能见度大于800m的最低气象条件下着陆。 2.9 仪表着陆系统的II类运行标准 operational standards or ILS CAT II 使用仪表着陆设备,在决断高/高度30m,跑道通见度大于400m的最低气象条件下着陆。

航空无线电导航设备测试要求第一部分 仪表着陆系统

咨询通告 中国民用航空局空管行业管理办公室 编号:AC-115-TM-2013-01 下发日期:2013年6月14日航空无线电导航设备测试要求 第一部分:仪表着陆系统

目录 1概述 (1) 1.1目的 (1) 1.2适用范围 (1) 1.3编写依据 (1) 1.4定义和缩略语 (1) 2一般要求 (2) 2.1测试样机 (2) 2.2设备缺陷定义和判定准则 (2) 3测试项目 (4) 3.1系统测试 (4) 3.2环境可靠性测试 (6) 3.3航向信标测试 (7) 3.4下滑信标测试 (14) 3.5遥控和状态显示系统测试 (21) 4测试人员 (22) 5测试时间 (22) 6测试报告 (23) 6.1测试报告的撰写 (23) 6.2测试报告的主要内容 (23) 6.3测试报告的格式 (23) 6.4其它 (24) 7附则 (24)

航空无线电导航设备测试要求 第一部分:仪表着陆系统 1概述 1.1目的 根据《民用航空空中交通通信导航监视设备使用许可管理办法》(CCAR-87)和《民用航空通信导航监视工作规则》(CCAR-115)的有关规定,为强化通信导航监视运行安全水平,提高民用航空空中交通通信导航监视设备使用许可、工厂验收、现场验收工作质量,规范仪表着陆系统测试总体要求,制定本通告。 1.2适用范围 本通告适用于仪表着陆系统使用许可测试,以及设备采购工厂验收测试和对设备性能的现场验收测试。 测试机构在测试过程中可根据设备实际情况和适用性对2-4章的内容进行删减,但删减不应影响设备性能和功能测试的主体。现场不具备测试条件的,应补充第三方测试报告。 工厂验收测试和现场验收测试应由设备运行保障单位(或者项目建设单位)和设备生产厂家参照本要求共同制定测试细则。 1.3编写依据 本通告依据中华人民共和国民用航空行业标准MH/T 4006.1《航空无线电导航设备-第1部分仪表着陆系统(ILS)技术要求》(以下简称《技术要求》)和《国际民用航空公约:附件十:航空电信》(以下简称《附件十》)编写。 1.4定义和缩略语 (1)系统重启时间

航空无线电导航台(站)电磁环境要求(标准状态:现行)

I C S33.100 L06 中华人民共和国国家标准 G B6364 2013 代替G B6364 1986 航空无线电导航台(站)电磁环境要求 E l e c t r o m a g n e t i c e n v i r o n m e n t r e q u i r e m e n t s f o r a e r o n a u t i c a l r a d i on a v i g a t i o n s t a t i o n s 2013-11-12发布2014-07-01实施中华人民共和国国家质量监督检验检疫总局

G B6364 2013 目次 …………………………………………………………………………………………………………前言Ⅰ1范围1………………………………………………………………………………………………………2规范性引用文件1…………………………………………………………………………………………3术语二定义和缩略语1………………………………………………………………………………………4无方向信标台2……………………………………………………………………………………………5超短波定向台2……………………………………………………………………………………………6航向信标台3………………………………………………………………………………………………7下滑信标台4………………………………………………………………………………………………8指点信标台6………………………………………………………………………………………………9方位台7……………………………………………………………………………………………………10仰角台9……………………………………………………………………………………………………11全向信标台11……………………………………………………………………………………………12测距仪台12………………………………………………………………………………………………13塔康导航台12……………………………………………………………………………………………14分米波近程导航台13……………………………………………………………………………………15分米波航向/测距信标台14 ………………………………………………………………………………16分米波下滑信标台15……………………………………………………………………………………17精密进场雷达站17………………………………………………………………………………………18测量仪器和测量方法17 ………………………………………………………………………………… ……附录A(资料性附录)工业二科学和医疗设备干扰允许值及对航空导航业务防护距离的计算18附录B(资料性附录)下滑信标台台址位置计算19 ………………………………………………………附录C(资料性附录)仰角台台址位置计算23 ……………………………………………………………

相关主题
文本预览
相关文档 最新文档