当前位置:文档之家› 杨辉三角教案

杨辉三角教案

杨辉三角教案
杨辉三角教案

《杨辉三角》教案

江西省宜丰中学罗文静

教学目标

1、知识目标:

(1)了解杨辉及杨辉三角;巩固组合数性质。

(2)初步认识杨辉三角中行列数字的特点与规律。

2、能力目标:

(1)培养学生查阅资料,运用图表和数学语言的能力;

(2)培养学生观察能力,提出问题,分析问题的能力,归纳能力与增强创新意识。

3、情感目标:

(1)培养学生善于交流,乐于合作的团队精神;

(2)在研究的过程中,培养学生不怕挫折,永不满足的意志品质,追求新知的科学态度;

(3)通过了解我国古代的数学成就,培养学生的爱国主义精神,激发学生探索、研究数学的热情。

教学重难点:

引导学生从杨辉三角的行列数字中发现规律,得出结论,从而培养学生自主学习的能力。

教学方法:

以学生自己探索研究为主,教师重在点拨指导。

教学手段:

多媒体辅助教学,导学提纲

课堂研究

一、引入

1、(有一位数学家说过:哪里有数,哪里就有美)用下列一些等式的优美规律来激发学生探究杨辉三角的兴趣

112=121 1+2+1=22

1112=12321 1+2+3+2+1=32

11112=1234321 1+2+3+4+3+2+1=42

2、介绍杨辉(激发爱国热情)

二、学生自己观察归纳得出杨辉三角的一些特征

三、用问题引导学生继续探索杨辉三角

探究一观察下列每条斜线上的数字排列,这些数字是否会组成一些有规律的数列?

探究二试求下列每条斜线上的数字之和,看看是否会有什么规律? 探究三写出斜线上各行数字之和,看看会不会有什么规律?

四、小结

五、实际应用

六、课后研究

莱不尼茨三角

杨辉三角的规律以及推导公式

杨辉三角的规律以及定理 李博洋 摘要杨辉三角中的一些规律 关键词杨辉三角幂二项式 引言 杨辉是我国南宋末年的一位杰出的数学家。在他所着的《详解九章算法》一书 中,画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现 在简称为“杨辉三角”,它是世界的一大重要研究成果。我们则来对“杨辉三角”的 规律进行探讨和研究。 内容 1二项式定理与杨辉三角 与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即。 杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。 由上式得出:(a+b)2=a2+2ab+b2此代数式的系数为:121 则(a+b)3的展开式是什么呢?答案为:a3+3a2b+3ab2+b3由此可发现,此代数式的系数 为:1331但似乎没有什么规律,所以让我们再来看看(a+b)4的展开式。 展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为: 14641似乎发现了一些规律,就可以发现以下呈三角形的数列: 1(110) 11(111) 121(112) 1331(113)

14641(114) 15101051(115) 1615201561(116) 因此可得出二项式定理的公式为: (a+b)n=C(n,0)a^n*b^0+C(n,1)a^(n-1)*b^1+...+C(n,r)a^(n-r)*b^r...+C(n,n)a^0*b^n 因此,二项式定理与杨辉三角形是一对天然的数形趣遇,它把带进了。求二项式展开式系数的问题,实际上是一种组合数的计算问题。用系数来计算,称为“式算”;用杨辉三角形来计算,称作“图算”。 2杨辉三角的幂的关系 首先我们把杨辉三角的每一行分别相加,如下: 1(1) 11(1+1=2) 121(1+2+1=4) 1331(1+3+3+1=8) 14641(1+4+6+4+1=16) 15101051(1+5+10+10+5+1=32) 1615201561(1+6+15+20+15+6+1=64) …… 相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5,6,…次幂,即杨辉三角第n行中n个数之和等于2的n-1次幂 3杨辉三角中斜行和水平行之间的关系 (1) 1(2)n=1 11(3)n=2 121(4)n=3 1331(5)n=4

杨辉三角形的生活运用和规律

杨辉三角形规律 每行数字两边对称每行数字左右对称,由1开始逐渐变大,然后变小,回到1。 第n行的数字个数为n个。 第n行数字和为2^(n-1)。(2的(n-1)次方) 每个数字等于上一行的左右两个数字之和。可用此性质写出整个帕斯卡三角形。 将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第2n个斐波那契数。将第2n行第2个数,跟第2n+1行第4个数、第2n+2行第6个数……这些数之和是第2n-1个斐波那契数。 第n行的第1个数为1,第二个数为1×(n-1),第三个数为1×(n-1)×(n-2)/2,第四个数为1×(n-1)×(n-2)/2×(n-3)/3…依此类推。 两个未知数和的n次方运算后的各项系数依次为杨辉三角的第(n+1)行

杨辉三角在弹球游戏中的应用 如图1的弹球游戏,小球向容器内跌落,碰到第一层挡物后向两侧跌落碰到第二层阻挡物,再向两侧跌落第三层阻挡物,如此一直下跌最终小球落入底层。根据具体地区获的相应的奖品(。 图1 我们来分析一下为什么小球落到不同区域奖品会有如此大的差别?A 区的奖品价值高于D 区,说明小球落入A 区的可能性要比落入D 区的可能性小,转化为数学问题就是小球落入A 区和D 区的概率。小球要落入D 区的情况有两种,有概率知识得: D 1 D 2 就是说,小球落入D 区的概率是等于它肩上两区域概率之和的 2 1,据此小球落入各区的概率为可以按以上方法类推,如下: 2121 1 8381 3213232323232 1 64646641564206415646641 A B C D E F G 图2

杨辉三角的规律以及推导公式

精心整理 杨辉三角的规律以及定理 二项式定理与杨辉三角1与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即二项式定理。 2的展开式来探讨。杨辉三角我们首先从一个二次多项式(a+b)222此代数式的系数为:121 由上式得出:(a+b)+2ab+b=由此可发现,此代数式的系+3+b+3ab(a+b 的展开式是什么呢?答案为(a+b的展开式。为133但似乎没有什么规律,所以让我们再来看b2+4a展开式为由此又可发现,代数式的系数为+4+b+6464似乎发现了一些规律,就可以发现以下呈三角形的数列:1 ) 1(1)11(112) 121(113) 1331(114) 14641(115) 15101051(116) 1615201561(11)1,4,6,4,1,(,1,2,1)(1,3,3,1)1,杨辉三角形的系数分别为:(1,1),(:所以(),1,7,21,35,35,21,7,1) (1,5,10,10,5,1),(1,6,15,20,15,6,17642547765233 (a+b)=ab+7ab+21a+bb+35a+7abb+35a。b+21a n的次数依次上b-n,n-n 等于a的次数依次下降、n-1、2...n由上式可以看出,(a+b) (2) 方。系数是杨辉三角里的系数。、、升,01 杨辉三角的幂的关系2 精心整理.

精心整理 首先我们把杨辉三角的每一行分别相加,如下: 1(1) 11(1+1=2) 121(1+2+1=4) 1331(1+3+3+1=8) 14641(1+4+6+4+1=16) 15101051(1+5+10+10+5+1=32) 1615201561(1+6+15+20+15+6+1=64) … 相加得到的数136…刚好,6,…次幂,即杨辉三角行个数之和等n-次 杨辉三角中斜行和水平行之间的关 (1) 1(2)n=1 11(3)n=2 121(4)n=3 1331(5)n=4 14641(6)n=5 15101051n=6 1615201561 把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6

杨辉三角的各种算法实现

/* Name: 杨辉三角算法集锦 Copyright: 始发于goal00001111的专栏;允许自由转载,但必须注明作者和出处Author: goal00001111 Date: 27-11-08 19:04 Description: 分别使用了二维数组,一维数组,队列,二项式公式,组合公式推论和递归方法等9种算法 算法思路详见代码注释——注释很详细,呵呵 */ #include #include using namespace std; const int MAXROW = 40; void PrintBlank(int n); int Com(int n, int m); int Try(int row, int cel); void Fun_1(int row); void Fun_2(int row); void Fun_3(int row); void Fun_4(int row); void Fun_5(int row); void Fun_6(int row); void Fun_7(int row); void Fun_8(int row); void Fun_9(int row); int main() { int row; cin >> row; Fun_1(row); cout << endl; Fun_2(row); cout << endl; Fun_3(row); cout << endl; Fun_4(row); cout << endl; Fun_5(row);

cout << endl; Fun_6(row); cout << endl; Fun_7(row); cout << endl; Fun_8(row); cout << endl; Fun_9(row); system("pause"); return 0; } //输出n个空格 void PrintBlank(int n) { for (int i=0; i

杨辉三角的规律以与推导公式-杨辉三角规律

杨辉三角的规律以及定理 1 二项式定理与杨辉三角 与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即二项式定理。 杨辉三角我们首先从一个二次多项式 (a+b) 2 的展开式来探讨。 由上式得出: (a+b) 2= a 2+2ab+b 2 此代数式的系数为: 1 2 1 则 (a+b) 3 的展开式是什么呢?答案为: a 3+3a 2b+3a b 2+b 3 由此可发现, 此代数式的系数为: 1 3 3 1 但 似乎没有什么规律,所以让我们再来看看 (a+b) 4 的展开式。 展开式为: a 4 +4a 3b+6a 2b2+4ab 3+b 4 由此又可发现,代数式的系数为: 1 4641 似乎发现了一些规律,就可以发现以下呈三角形的数列: 1 (11 ) 1 1 (11 1 ) 1 2 1 (11 2 ) 1 3 3 1 (11 3 ) 1 4 6 4 1 (11 4 ) 1 5 10 10 5 1 (11 5 ) 1 6 15 20 15 6 1 (11 6) 杨辉三角形的系数分别为: 1,(1,1 ),(1,2,1 ),( 1,3,3,1 ),( 1,4,6,4,1 )( 1,5,10,10,5,1 ),( 1,6,15,20,15,6,1 ), ( 1,7,21,35,35,21,7,1)所以: (a+b) 7=a 7+7a 6 b+21a 5b 2+35a 4b 3+35a 3b 4+21a 2b 5+7ab 6+b 7。 由上式可以看出, (a+b) n 等于 a 的次数依次下降 n 、n-1 、n- 2?n -n ,b 的次数依次上升, 0、1、2?n 次方。系数是 杨辉三角里的系数。 2 杨辉三角的幂的关系 首先我们把杨辉三角的每一行分别相加,如下: 1 ( 1 ) 1 1 ( 1+1=2 ) 1 2 1 (1+2+1=4 ) 1 3 3 1 (1+3+3+1=8 ) 1 4 6 4 1 (1+4+6+4+1=16 ) 1 5 10 10 5 1 (1+5+10+10+5+1=3 2 ) 1 6 15 20 15 6 1 (1+6+15+20+15+6+1=64 ) ?? 相加得到的数是 1, 2, 4, 8, 16, 32, 64,?刚好是 2 的 0, 1,2, 3, 4, 5, 6,? n 次幂,即杨辉三角第 n 行中 n 个数之和等于 2 的 n-1 次幂 3 杨辉三角中斜行和水平行之间的关系

杨辉三角的规律以及推导公式

杨辉三角的规律以及定理 1二项式定理与杨辉三角 杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。 由上式得出:(a+b)2=a2+2ab+b2此代数式的系数为: 1 2 1 则(a+b)3的展开式是什么呢?答案为:a3+3a2b+3ab2+b3由此可发现,此代数式的系数为: 1 3 3 1 但似乎没有什么规律,所以让我们再来看看(a+b)4的展开式。 展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为: 1 4 6 4 1 似乎发现了一些规律,就可以发现以下呈三角形的数列: 1 (110) 1 1 (111) 1 2 1 (112) 1 3 3 1 (113) 1 4 6 4 1 (114) 1 5 10 10 5 1 (115) 1 6 15 20 15 6 1 (116) 杨辉三角形的系数分别为:1,(1,1),(1,2,1),(1,3,3,1),(1,4,6,4,1)(1,5,10,10,5,1),(1,6,15,20,15,6,1),(1,7,21,35,35,21,7,1)所以:(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7。 由上式可以看出,(a+b)n等于a的次数依次下降n、n-1、n-2…n-n,b的次数依次上升,0、1、2…n次方。系数是杨辉三角里的系数。 2杨辉三角的幂的关系 首先我们把杨辉三角的每一行分别相加,如下: 1 ( 1 ) 1 1 ( 1+1= 2 ) 1 2 1 (1+2+1=4 ) 1 3 3 1 (1+3+3+1=8 ) 1 4 6 4 1 (1+4+6+4+1=16 ) 1 5 10 10 5 1 (1+5+10+10+5+1=3 2 ) 1 6 15 20 15 6 1 (1+6+15+20+15+6+1=64 ) …… 相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5,6,…n次幂,即杨辉三角第n 行中n个数之和等于2的n-1次幂 3 杨辉三角中斜行和水平行之间的关系

杨辉三角的规律以及推导公式-杨辉三角规律

杨辉三角的规律以及定理 1 二项式定理与杨辉三角 与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即二项式定理。 杨辉三角我们首先从一个二次多项式 (a+b) 2 的展开式来探讨。 由上式得出: (a+b) 2 2+2ab+b 2 =a 此代数式的系数为: 1 2 1 则(a+b) 3 3+3a 2b+3ab 2+b 3 的展开式是什么呢?答案为: a 由此可发现, 此代数式的系数为: 1 3 3 1 但 4 似乎没有什么规律,所以让我们再来看看 (a+b) 的展开式。 展开式为: a 4+4a 3b+6a 2b2+4ab 3+b 4+4a 3b+6a 2b2+4ab 3+b 4 由此又可发现,代数式的系数为: 1 4 6 4 1 似乎发现了一些规律,就可以发现以下呈三角形的数列: 1 (11 0) 1 1 (11 1) 1 2 1 (11 2) 1 3 3 1 (11 3) 1 4 6 4 1 (11 4) 1 5 10 10 5 1 (11 5 ) 1 6 15 20 15 6 1 (11 6) 杨辉三角形的系数分别为: 1,(1,1 ),(1,2,1 ),(1,3,3,1 ),(1,4,6,4,1 )(1,5,10,10,5,1 ),(1,6,15,20,15,6,1 ), (1,7,21,35,35,21,7,1 )所以: (a+b) 7=a 7+7a 6 b+21a 5b 2+35a 4b 3+35a 3b 4+21a 2b 5+7ab 6+b 7。 由上式可以看出, (a+b) n 等于 a 的次数依次下降 n 、n-1 、n- 2? n -n ,b 的次数依次上升, 0、1、2? n 次方。系数是 杨辉三角里的系数。 2 杨辉三角的幂的关系 首先我们把杨辉三角的每一行分别相加,如下: 1 ( 1 ) 1 1 ( 1+1= 2 ) 1 2 1 (1+2+1=4 ) 1 3 3 1 (1+3+3+1=8 ) 1 4 6 4 1 (1+4+6+4+1=16 ) 1 5 10 10 5 1 (1+5+10+10+5+1=3 2 ) 1 6 15 20 15 6 1 (1+6+15+20+15+6+1=64 ) ? ? 相加得到的数是 1,2, 4,8,16,32, 64,? 刚好是 2 的 0,1,2,3,4,5, 6,? n 次幂,即杨辉三角第n 行中 n 个数之和等于 2 的 n-1 次幂 3 杨辉三角中斜行和水平行之间的关系

杨辉三角的规律以及推导公式定稿版

杨辉三角的规律以及推 导公式 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

杨辉三角的规律以及定理 李博洋 摘要杨辉三角中的一些规律 关键词杨辉三角幂二项式 引言 杨辉是我国南宋末年的一位杰出的数学家。在他所着的《详解九章算法》一书中,画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现在简称为“杨辉三角”,它是世界的一大重要研究成果。我们则来对“杨辉三角”的规律进行探讨和研究。 内容 1二项式定理与杨辉三角 杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。 由上式得出: (a+b)2=a2+2ab+b2此代数式的系数为: 1 2 1 则(a+b)3的展开式是什么呢?答案为:a3+3a2b+3ab2+b3由此可发现,此代数式的系数为: 1 3 3 1 但似乎没有什么规律,所以让我们再来看看(a+b)4的展开式。

展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为: 1 4 6 4 1 似乎发现了一些规律,就可以发现以下呈三角形的数列: 1 (110) 1 1 (111) 1 2 1 (112) 1 3 3 1 (113) 1 4 6 4 1 (114) 1 5 10 10 5 1 (115) 1 6 15 20 15 6 1 (116) 因此可得出二项式定理的公式为:(a+b)n=C(n,0)a^n*b^0+C(n,1)a^(n- 1)*b^1+...+C(n,r)a^(n-r)*b^r...+C(n,n)a^0*b^n 因此,二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学。求二项式展开式系数的问题,实际上是一种组合数的计算问题。用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”。 2杨辉三角的幂的关系 首先我们把杨辉三角的每一行分别相加,如下: 1 ( 1 )

杨辉与杨辉三角

数学家杨辉 杨辉,中国南宋末年杰出的数学家和数学教育家。在13世纪中叶活动于苏杭 一带,其著作甚多。 他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。 其中在《详解九章算法》一书中载有二项(a+b)n展开系数的数字三角形,被称为“杨辉三角”,它的发现比国外同类发现至少早3O0年。 杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。 他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。 他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的"习算纲目"是中国数学教育史上的重要文献。 ================================================================= 杨辉介绍 杨辉,字谦光,中国南宋(1127~1279)末年钱塘(今杭州市)人。其生卒年月及生平事迹均无从详考。据有关著述中的字句推测,杨辉大约于13世纪中叶至末叶生活在现今浙江杭州一带,曾当过地方官,到过苏州、台州等地。是当时有名的数学家和数学教育家,他每到一处都会有人慕名前来请教数学问题。 杨辉一生编写的数学书很多,但散佚也很严重。据史料记载,他至少有以下书,曾在国内或国外刊行: 《详解九章算法》12卷(1261)

杨辉三角的规律以及推导公式

精心整理杨辉三角的规律以及定理 1二项式定理与杨辉三角 杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。 222 则 为: 1 1(11 )(1,5,10,10,5,1),(1,6,15,20,15,6,1),(1,7,21,35,35,21,7,1)所以:(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7。 由上式可以看出,(a+b)n等于a的次数依次下降n、n-1、n-2…n-n,b的次数依次上升,0、1、2…n次方。系数是杨辉三角里的系数。 2杨辉三角的幂的关系

首先我们把杨辉三角的每一行分别相加,如下: 1(1) 11(1+1=2) 121(1+2+1=4) 1331(1+3+3+1=8) 6,…n 3 1615201561 把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6 把斜行(2)中第7行之前的数字相加得1+2+3+4+5=15 把斜行(3)中第7行之前的数字相加得1+3+6+10=20

把斜行(4)中第7行之前的数字相加得1+4+10=15 把斜行(5)中第7行之前的数字相加得1+5=6 把斜行(6)中第7行之前的数字相加得1 将上面得到的数字与杨辉三角中的第7行中的数字对比,我们发现它们是完全 相同的。 n (3)中第 2、每行数字左右对称,由1开始逐渐变大。 3、第n行的数字有n+1项。 4、第n行数字和为2(n-1)。(2的(n-1)次方) 5 (a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。 [1]

6、第n行的第m个数和第n-m个数相等,即C(n,m)=C(n,n-m),这是组合数性质

杨辉三角考题阅读

杨辉三角考题赏析 “杨辉三角”是我国古代数学的瑰宝.利用杨辉三角不仅讨论了二项展开式的一些性质,杨辉三角本身还包含着许多有趣的规律和性质.正因为如此,以“杨辉三角”为背景的试题在近年的高考或各地模拟题中频频出现,有力地考查了同学们对数据的整理、分析、概括、处理能力和创新思维能力.现采撷几例,与同学们共赏析. 例1 (2004年上海春季高考卷)如图1,在由二项式系数所构成的杨辉三角中,第_____行中从左到右第14与第15个数的比为2:3. 解析:由图1我们能发现,第1行中的数是0111C C ,;第2行中的数是 012222C C C ,,;第3行中的数是01233333C C C C ,,,; ;则第n 行中的数是 012n n n n n C C C C ,,,,设第n 行中从左到右第14与第15个数的比为2:3,则 13142:3n n C C =·,解得34n =. 点评:本题是关于“杨辉三角”的一道高考题.杨辉三角中蕴含着许多有趣的数量关系,与排列、组合和概率的关系非常密切.因此,理解和掌握杨辉三角的一些性质,对发现某些数学规律是很有帮 助的. 例2 (2006届全国100所名校示范卷)如图2所示,在杨辉三角中,斜线 AB 上方箭头所示的数组成一个锯齿形的数列:1,2,3,3,6,4,10, ,记 这个数列的前n 项的和为()S n ,则(16)S 等于( ). A .144 B .146 C .164 D .461

解析:由图2知,数列中的首项是22C ,第2项是1 2C ,第3项是23C ,第4项 是13C ,,第15项是29C ,第16项是1 9C . 因此得121 21211 1223399239(16)()S C C C C C C C C C =++++++=+++2 22239()C C C ++++ 21 123 2223 33923391010()()1164C C C C C C C C C =+++-++++==+-=.故选C. 点评:本题是杨辉三角与数列结合的一道考题.将数列的各项还原为各二项展开式的二项式系数,并依次应用杨辉三角中数的规律Crn+1=Cr-1n+Crn (即组合数性质2),从而求得数列的和. 例3 (2004年江苏高考模拟卷)观察下列数表,问此表最后一个数是 什么,并说明理由. 解析:因为第一行有100个数,以后每一行都比前一行少一个数,因此共有100行. 通过观察可以得到: 第1行首尾两项之和为101; 第2行首尾两项之和为1012?; 第3行首尾两项之和为21012?, 第4行首尾两项之和为31012?,…… 第99行首尾两项之和为981012?. 因为从第2行开始每一个数字是它肩上两个数字之和,所以最后一个数字即第100行的数字是它肩上第99行首尾两个数字之和即为981012?. 点评:本题是一道以“杨辉三角”为背景的一道考题.通过观察找出每一行数据间的相互联系以及行与行间数据的相互联系.然后对数据间的这种联系用数学式子将它表达出来,使问题得解.

杨辉三角

杨辉三角 杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。 杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。 他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的"习算纲目"是中国数学教育史上的重要文献。 杨辉三角 简单的说一下就是两个未知数和的幂次方运算后的系数问题,比如(x+y)2=x2+2xy+y2,这样系数就是1,2,1这就是杨辉三角的其中一行,立方,四次方,运算的结果看看各项的系数,你就明白其中的道理了 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 这就是杨辉三角,也叫贾宪三角 他于我们现在的学习联系最紧密的是2项式乘方展开式的系数规律。如图,在贾宪三角中,第3行的第三个数恰好对应着两数和的平方公式(在此就不做说明了)依次下去 杨辉三角是一个由数字排列成的三角形数表,一般形式如下:

1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 ...................................................... 杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。 其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。 杨辉在1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为?开方作法本源?图。 而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。 杨辉三角的简史:北宋人贾宪约1050年首先使用?贾宪三角?进行高次开方运算,南宋数学家杨辉在《详解九章算法》(1961年)记载并保存了?贾宪三角?,故称杨辉三角。元朝数学家朱世杰在《四元玉鉴》(1303年)扩充了?贾宪三角?成?古法七乘方图?。 时间上:杨辉(一二六一)朱世杰(一三○三)也明显就可以知道是杨辉发现的 朱世杰只是扩充了其中的内容 同时这也是多项式(a+b)^n 打开括号后的各个项的二次项系数的规律即为 0 (a+b)^0 (0 nCr 0) 1 (a+b)^1 (1 nCr 0) (1 nCr 1) 2 (a+b)^2 (2 nCr 0) (2 nCr 1) (2 nCr 2) 3 (a+b)^3 (3 nCr 0) (3 nCr 1) (3 nCr 2) (3 nCr 3) . ... ... ... ... ... 因此杨辉三角第x层第y项直接就是(y nCr x) 我们也不难得到第x层的所有项的总和为 2^x (即(a+b)^x中a,b都为1的时候) [ 上述y^x 指 y的 x次方;(a nCr b) 指组合数] 其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。 杨辉在1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为?开方作法本源?图。 而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。具体的用法我们会在教学内容中讲授。 在国外,这也叫做"帕斯卡三角形". S1:这些数排列的形状像等腰三角形,两腰上的数都是1 S2:从右往左斜着看,第一列是1,1,1,1,1,1,1;第二列是,1,2,3,4,

对杨辉三角的研究

对杨辉三角的研究 看似数学是无聊的,无非是一列列数字,一个个几何,一道道习题,其实只要善于发现,善于发掘,数学中蕴含了无数优美的规律和神秘的排列,例如“杨辉三角”。 什么是杨辉三角 杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列。 杨辉三角的历史 北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算。 杨辉,字谦光,南宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图,并说明此表引自11世纪前半贾宪的《释锁算术》,并绘画了“古法七乘方图”。故此,杨辉三角又被称为“贾宪三角”。 在欧洲直到1623年以后,法国数学家帕斯卡在13岁时发现了“帕斯卡三角”。===================================================================== 1)初步认识杨辉三角 二项式(a+b)n展开式的二项式系数,当n依次取1,2,3...时,列出的一张表,叫做二项式系数表,因它形如三角形,南宋的杨辉对其有过深入研究,所以我们又称它为杨辉三角. 2)杨辉三角所蕴含的数量关系 (用Excel制作的杨辉三角的另一表现形式)

1)二项式定理与杨辉三角 与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即二项式定理。 杨辉三角我们首先从一个二次多项式(a+b)^2的展开式来探讨。 由上式得出: (a+b)^2=a^2+2ab+b^2 此代数式的系数为: 1 2 1 则(a+b)^3的展开式是什么呢?答案为:a^3+3a^2b+3ab^2+b^3 由此可发现,此代数的系数为: 1 3 3 1 但似乎没有什么规律,所以让我们再来看看(a+b)^4的展开式。 展开式为:a^4+4a^3b+6a^2b^2+4ab^3+b^4 由此又可发现,代数式的系数为: 1 4 6 4 1 似乎发现了一些规律,就可以发现以下呈三角形的数列: 1 (11^0) 1 1 (11^1) 1 2 1 (11^2) 1 3 3 1 (11^3 1 4 6 4 1 (11^4) 1 5 10 10 5 1 (11^5) 1 6 15 20 15 6 1 (11^6) 所以,可得出二项式定理的公式为: (a+b)n=C(n,0)a^n*b^0+C(n,1)a^(n-1)*b^1+...+C(n,r)a^(n-r)*b^r...+C(n,n)a^0*b^n 因此,二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学。求二项式展开式系数的问题,实际上是一种组合数的计算问题。用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”。 2)杨辉三角的幂的关系 首先我们把杨辉三角的每一行分别相加,如下: 1 ( 1 ) 1 1 ( 1+1= 2 ) 1 2 1 (1+2+1=4 ) 1 3 3 1 (1+3+3+1=8 ) 1 4 6 4 1 (1+4+6+4+1=16 ) 1 5 10 10 5 1 (1+5+10+10+5+1=3 2 ) 1 6 15 20 15 6 1 (1+6+15+20+15+6+1=64 ) …… 相加得到的数是1,2,4,8,16,32,64, 刚好是2的0,1,2,3,4,5次幂,即杨辉三角第n行中n个数之和等于2的n-1次幂

相关主题
文本预览
相关文档 最新文档