当前位置:文档之家› 2018届高考数学(理)大一轮复习设计(教师用) 第八章 解析几何 第九节 圆锥曲线的综合问题 含解析

2018届高考数学(理)大一轮复习设计(教师用) 第八章 解析几何 第九节 圆锥曲线的综合问题 含解析

2018届高考数学(理)大一轮复习设计(教师用) 第八章 解析几何 第九节 圆锥曲线的综合问题 含解析
2018届高考数学(理)大一轮复习设计(教师用) 第八章 解析几何 第九节 圆锥曲线的综合问题 含解析

第九节 圆锥曲线的综合问题 ☆☆☆2017考纲考题考情☆☆☆

1.直线与圆锥曲线的位置关系

(1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个相异的公共点。 (2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得方程解的情况来判断。设直线l 的方程为Ax +By +C =0,圆锥曲线方程为f (x ,y )=0。

由?

????

Ax +By +C =0,

f x ,y =0消元。

(如消去y )得ax 2+bx +c =0。

①若a =0,当圆锥曲线是双曲线时,直线l 与双曲线的渐近线平行;当圆锥曲线是抛物线时,直线l 与抛物线的对称轴平行(或重合)。

②若a ≠0,设Δ=b 2-4ac 。

a .当Δ>0时,直线和圆锥曲线相交于不同两点;

b .当Δ=0时,直线和圆锥曲线相切于一点;

c .当Δ<0时,直线和圆锥曲线没有公共点。 2.直线与圆锥曲线相交时的弦长问题

(1)斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),则所得弦长: |P 1P 2|= 1+k 2 [ x 1+x 2 2-4x 1x 2] =1+k 22|x 1-x 2|

= 1+1

k 2 [ y 1+y 2 2

-4y 1y 2]

(2)斜率不存在时,可求出交点坐标,直接运算(利用两点间距离公式)。 3.圆锥曲线的中点弦问题

遇到弦中点问题常用“根与系数的关系”或“点差法”求解。

在椭圆x 2a 2+y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =-b 2x 0a 2y 0;在双曲线x 2a 2-y 2

b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =b 2x 0

a 2y 0;在抛物线y 2=2px (p >0)中,以P (x 0,y 0)为中点的弦所在直线的斜率k =p

y 0。在使用根与系数关系时,要注意使用条件是Δ≥0。

微点提醒

1.弦长公式使用时要注意直线的斜率情况,对于斜率不存在的直线要单独处理,对于抛物线中的过焦点的弦要使用其特定的公式。

2.直线与双曲线或与抛物线的交点问题比直线与椭圆的交点问题更为复杂,除了可以利用方程分析,还可以结合图象分析。

小|题|快|练

一 、走进教材

1.(选修2-1P 71例6改编)过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( )

A .1条

B .2条

C .3条

D .4条

【解析】 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0)。故选C 。

【答案】 C

2.(选修2-1P 69例4改编)直线l 经过抛物线y 2

=4x 的焦点F ,与抛物线相交于A ,B 两点,若|AB |=8,则直线l 的方程为________。

【解析】 当直线l 的斜率不存在时,显然不成立。

设直线l 的斜率为k ,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2), 因为直线l 过焦点F (1,0), 故直线l 的方程为y =k (x -1)。

由?

????

y =k x -1 ,y 2=4x 得k 2(x -1)2

=4x ,

即k 2x 2-(2k 2+4)x +k 2=0,

则?????

Δ= 2k 2+4 2-4k 4>0,

x 1

+x 2

=2k 2

+4k 2

=2+4k 2

,x 1

2x 2

=1,

所以|AB |=1+k 2|x 1-x 2| =1+k 2 x 1+x 2 2-4x 1x 2 =1+k 2

4+16k 4+16k 2-4=4 1+k 2

k 2

=8, 所以k 2=1,故k =±1。

所以直线l 的方程为y =±(x -1), 即x -y -1=0或x +y -1=0。 【答案】 x -y -1=0或x +y -1=0 二、双基查验

1.“直线与双曲线相切”是“直线与双曲线只有一个公共点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件

D .既不充分也不必要条件

【解析】 直线与双曲线相切时,只有一个公共点,但直线与双曲线相交时,也可能有一个公共点,例如:与双曲线的渐近线平行的直线与双曲线只有一个交点。故选A 。

【答案】 A

2.(20162锦州模拟)过抛物线y 2=8x 的焦点F 作倾斜角为135°的直线交抛物线于A ,B 两点,则弦AB 的长为( )

A .4

B .8

C .12

D .16

【解析】 抛物线y 2=8x 的焦点F 的坐标为(2,0),直线AB 的倾斜角为135°,故直线

AB 的方程为y =-x +2,代入抛物线方程y 2=8x ,得x 2-12x +4=0。设A (x 1,y 1),B (x 2,y 2),

则弦AB 的长|AB |=x 1+x 2+4=12+4=16。故选D 。

【答案】 D

3.设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 2

10+y 2=1上的点,则P ,Q 两点间的最大距

离是( )

A .5 2 B.46+ 2 C .7+ 2

D .6 2

【解析】 圆心M (0,6),设椭圆上的点为Q (x ,y ), 则|MQ |=x 2+ y -6 2=10-10y 2+ y -6 2 =-9y 2-12y +46,

当y =-2

3∈[-1,1]时,|MQ |max =52。 所以|PQ |max =52+2=62。故选D 。 【答案】 D

4.已知椭圆C :x 2a 2+y 2b 2

=1(a >b >0)的离心率为22,点(2,2)在C 上。

(1)求C 的方程;

(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M 。证明:直线OM 的斜率与直线l 的斜率的乘积为定值。

【解析】 (1)由题意有a 2-b 2a =22,4a 2+2

b 2=1,

解得a 2=8,b 2=4,所以C 的方程为x 28+y 2

4=1。 (2)证明:设直线l :y =kx +b (k ≠0,b ≠0),

A (x 1,y 1),

B (x 2,y 2),M (x M ,y M )。

将y =kx +b 代入x 28+y 2

4=1得 (2k 2+1)x 2+4kbx +2b 2-8=0。

x M =x 1+x 2

2=-2kb 2k 2+1,y M =kx M +b =b

2k 2+1。

于是直线OM 的斜率k OM =y M x M =-1

2k ,

即k OM 2k =-1

2。

所以直线OM 的斜率与直线l 的斜率的乘积为定值。

【答案】 (1)x 28+y 2

4=1 (2)见解析

第一课时 最值、范围问题

( )

A .1

B .1或3

C .0

D .1或0

(2)过抛物线y 2

=2px (p >0)的焦点F ,斜率为4

3的直线交抛物线于A ,B 两点,若AF →=λFB →

(λ>1),则λ的值为( )

A .5

B .4 C.43

D.5

2

【解析】 (1)由?????

y =kx +2,y 2=8x ,

得k 2x 2+(4k -8)x +4=0,若k =0,则y =2,若k ≠0,

则Δ=0,

即64-64k =0,解得k =1,

所以直线y =kx +2与抛物线y 2=8x 有且只有一个公共点时,k =0或1。故选D 。 (2)根据题意设A (x 1,y 1),B (x 2,y 2),

由AF →=λFB →得? ??

??p

2-x 1,-y 1=λ? ??

??x 2-p 2,y 2, 故-y 1=λy 2,即λ=-y 1

y 2。

设直线AB 的方程为y =43? ????x -p 2,

联立直线与抛物线方程,消元得y 2

-3

2py -p 2=0。

故y 1+y 2=32p ,y 12y 2=-p 2

, y 1+y 2 2

y 12y 2=y 1y 2+y 2y 1+2=-9

4, 即-λ-1λ+2=-9

4。又λ>1,故λ=4。故选B 。 【答案】 (1)D (2)B

反思归纳 直线与圆锥曲线位置关系的判定方法及关注点

1.判定方法:直线与圆锥曲线方程联立,消去x (或y ),判定该方程组解的个数,方程

2021-2022年高考数学大一轮复习 高考大题专项练6 文

2021年高考数学大一轮复习高考大题专项练6 文 1.A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下: (1)试估计40min内不能赶到火车站的概率; (2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率; (3)现甲、乙两人分别有40min和50min时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.

2.(xx天津,文15)某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表: 现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同). (1)用表中字母列举出所有可能的结果; (2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.

3.(xx东北三校二模)某个团购网站为了更好地满足消费者需求,对在其网站发布的团购产品展开了用户调查,每个用户在使用了团购产品后可以对该产品进行打分,最高分是10分.上个月该网站共卖出了100份团购产品,所有用户打分的平均分作为该产品的参考分值,将这些产品按照得分分成以下几组:第一组[0,2),第二组[2,4),第三组[4,6),第四组[6,8),第五组[8,10],得到的频率分布直方图如图所示. (1)分别求第三、四、五组的频率; (2)该网站在得分较高的第三、四、五组中用分层抽样的方法抽取了6个产品作为下个月团购的特惠产品,某人决定在这6个产品中随机抽取2个购买,求他抽到的2个产品均来自第三组的概率.

4.某重要会议在北京召开,为了搞好对外宣传工作,会务组选聘了16名男记者和14名女记者担任对外翻译工作,调查发现,男、女记者中分别有10人和6人会俄语. (1)根据以上数据完成以下2×2列联表,并回答能否在犯错的概率不超过0.10的前提下认为性别与会俄语有关? 参考公式:K2=,其中n=a+b+c+d. 参考数据:

高三数学解析几何训练试题(含答案)

高三数学解析几何训练试题(含答案) 2013届高三数学章末综合测试题(15)平面解析几何(1)一、选 择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知圆x2+y2+Dx+Ey =0的圆心在直线x+y=1上,则D与E的关系是( ) A.D+E=2 B.D+E=1 C.D+E=-1 D.D+E=-2[来X k b 1 . c o m 解析 D 依题意得,圆心-D2,-E2在直线x+y=1上,因此有-D2-E2=1,即D+E=-2. 2.以线段AB:x+y-2=0(0≤x≤2)为直径的圆的方程为( ) A.(x+1)2+(y+1)2=2 B.(x-1)2+(y-1)2=2 C.(x+1)2+(y+1)2=8 D.(x-1)2+(y-1)2=8 解析 B 直径的两端点为(0,2),(2,0),∴圆心为(1,1),半径为2,圆的方程为(x-1)2+(y-1)2=2. 3.已知F1、F2是椭圆x24+y2 =1的两个焦点,P为椭圆上一动点,则使|PF1|?|PF2|取最大值的点P为( ) A.(-2,0) B.(0,1) C.(2,0) D.(0,1)和(0,-1) 解析 D 由椭圆定义,|PF1|+|PF2|=2a=4,∴|PF1|?|PF2|≤|PF1|+|PF2|22=4,当且仅当|PF1|=|PF2|,即P(0,-1)或(0,1)时,取“=”. 4.已知椭圆x216 +y225=1的焦点分别是F1、F2,P 是椭圆上一点,若连接F1、F2、P三点恰好能构成直角三角形,则点P到y轴的距离是( ) A.165 B.3 C.163 D.253 解析 A 椭 圆x216+y225=1的焦点分别为F1(0,-3)、F2(0,3),易得 ∠F1PF2<π2,∴∠PF1F2=π2或∠PF2F1=π2,点P到y轴的距离d= |xp|,又|yp|=3,x2p16+y2p25=1,解得|xP|=165,故选A. 5.若曲线y=x2的一条切线l与直线x+4y-8=0垂直,则l的方程为( ) A.4x+y+4=0 B.x-4y-4=0 C.4x-y-12=0 D.4x -y-4=0 解析 D 设切点为(x0,y0),则y′|x=x0=2x0, ∴2x0=4,即x0=2,∴切点为(2,4),方程为y-4=4(x-2),即4x-y-4=0. 6.“m>n>0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件解析 C 方程可化为x21m+ y21n=1,若焦点在y轴上,则1n>1m>0,即m>n>0. 7.设双曲线x2a2-y2b2=1的一条渐近线与抛物线y=x2+1只有一个公共点,则双

解析几何离心率(教师版)

. . .页脚 解析几何小练习(以离心率为主) 1.若直线1x y a b +=通过点(cos sin )M αα, ,则( ) A .221a b +≤ B .221a b +≥ C .2211 1a b +≤ D . 22 11 1a b +≥ 【答案】D 【解析】方法1:由题意知直线 1x y a b +=与圆221x y +=有交点,则2 22 211 111a b a b ++≤1, ≥. 方法2:设向量11(cos ,sin ),(,)a b ααm =n =,由题意知 cos sin 1a b αα += 由?≤m n m n 可得22cos sin 1 1a b a b αα= ++≤1 2.如图,AB 是平面a 的斜线段...,A 为斜足,若点P 在平面a 运动,使得△ABP 的面积为定值,则动点P 的轨迹是( ) (A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线 【答案】B 【解析】本小题其实就是一个平面斜截一个圆柱表面的问题。考虑到三角形面积为定值,底边一定,从而P 到直线AB 的距离为定值,若忽略平面的限制,则P 轨迹类似为一以AB 为轴心的圆柱面,加上后者平面的交集,轨迹为椭圆! 还可以采取排除法,直线是不可能的,在无穷远处,点到直线的距离为无穷大,故面积也为无穷大,从而排除C 与D ,又题目在斜线段下标注重点符号,从而改成垂直来处理,轨迹则为圆,故剩下椭圆为答案! 3.如图,1F 和2F 分别是双曲线)0,0(122 22 b a b r a x =-的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为 (A )3 (B )5 (C ) 2 5 (D )31+

2020版高考数学(理)大一轮复习:全册精品学案(含答案)

第1讲集合 1.元素与集合 (1)集合元素的性质:、、无序性. (2)集合与元素的关系:①属于,记为;②不属于,记为. (3)集合的表示方法:列举法、和. (4)常见数集及记法 数集 自然 数集正整 数集 整数 集 有理 数集 实数集 符号 2.集合间的基本关系 文字语言符号语言记法 基本关系子集 集合A中的 都是集合B中 的元素 x∈A?x ∈B A?B或 集合A是集合 B的子集,但集 合B中有 一个元素不属 于A A?B,?x0 ∈ B,x0?A A B或 B?A 相等 集合A,B的元 素完全 A?B,B? A 空集 任何元素 的集合,空集 是任何集合的 子集 ?x,x? ?, ??A ? 3.集合的基本运算

表示 运算 文字语言符号语言图形语言记法 交集属于 A 属于B的 元素组成 的集合 {x|x∈A, x∈ B} 并集属于A 属于B的 元素组成 的集合 {x|x∈A, x∈ B} 补集全集U中 属于A的 元素组成 的集合 {x|x∈U, x A} 4.集合的运算性质 (1)并集的性质:A∪?=A;A∪A=A;A∪B= ;A∪B= ?B?A. (2)交集的性质:A∩?=?;A∩A=A;A∩B=B∩A;A∩B=A?A B. (3)补集的性质:A∪(?U A)=U;A∩(?U A)= ; ?U(?U A)= ;?U(A∪B)=(?U A)(?U B);?U(A∩B)= ∪. 常用结论 (1)非常规性表示常用数集:如{x|x=2(n-1),n∈Z}为偶数集,{x|x=4n±1,n∈Z}为奇数集等. (2)①一个集合的真子集必是其子集,一个集合的子集不一定是其真子集; ②任何一个集合是它本身的子集; ③对于集合A,B,C,若A?B,B?C,则A?C(真子集也满足); ④若A?B,则有A=?和A≠?两种可能. (3)集合子集的个数:集合A中有n个元素,则集合A有2n个子集、2n-1个真子集、2n-1个非空子集、2n-2个非空真子集.集合元素个数:card(A∪B)=card(A)+card(B)-card(A∩B)(常用

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

解析几何运算处理技巧教师版

解析几何运算处理技巧 考点一 回归定义,以逸待劳 回归定义的实质是重新审视概念,并用相应的概念解决问题,是一种朴素而又重要的策略和思想方法.圆锥曲线的定义既是有关圆锥曲线问题的出发点,又是新知识、新思维的生长点.对于相关的圆锥曲线中的数学问题,若能根据已知条件,巧妙灵活应用定义,往往能达到化难为易、化繁为简、事半功倍的效果. [典例] 如图,F 1,F 2是椭圆C 1:x 24+y 2 =1与双曲线C 2的 公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( ) A.2 B. 3 C.32 D.62 [解题观摩] 由已知,得F 1(-3,0),F 2(3,0), 设双曲线C 2的实半轴长为a , 由椭圆及双曲线的定义和已知, 可得???? ? |AF 1|+|AF 2|=4,|AF 2|-|AF 1|=2a , |AF 1|2+|AF 2|2=12, 解得a 2=2, 故a = 2.所以双曲线C 2的离心率e =32=62 . [答案] D [关键点拨] 本题巧妙运用椭圆和双曲线的定义建立|AF 1|,|AF 2|的等量关系,从而快速求出双曲线实半轴长a 的值,进而求出双曲线的离心率,大大降低了运算量. [对点训练] 1.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上 有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( ) A.|BF |-1|AF |-1 B.|BF |2-1|AF |2-1 C.|BF |+1|AF |+1 D.|BF |2+1|AF |2+1 解析:选A 由题意可得S △BCF S △ACF =|BC ||AC |=x B x A =|BF |- p 2|AF |- p 2=|BF |-1|AF |-1. 2.抛物线 y 2=4mx (m >0)的焦点为 F ,点P 为该抛物线上的 动点,若点A (-m,0),则|PF | |P A |的最小值 为________. 解析:设点P 的坐标为(x P ,y P ),由抛物线的定义,知|PF |=x P +m ,又 |P A |2=(x P +m )2+y 2P =(x P +m )2+4mx P ,则??? ? |PF ||P A |2 = (x P +m )2 (x P +m )2+4mx P = 11+4mx P (x P +m )2 ≥11+4mx P (2x P ·m )2 =1 2(当且仅当x P =m 时取等号),所以|PF ||P A |≥22,所以|PF ||P A |的最小值为2 2 . 答案: 22 考点二 设而不求,金蝉脱壳 设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不 求. [典例] 已知椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的右焦点为F (3, 0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的标准方程为( ) A.x 245+y 2 36=1 B.x 236+y 2 27=1 C.x 227+y 2 18 =1 D.x 218+y 2 9 =1 [解题观摩] 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2, ??? x 21a 2 +y 21 b 2=1,x 22a 2 +y 22b 2 =1, ①② ①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2) b 2=0, 所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2 a 2. 又k AB =0+13-1=12,所以b 2a 2=1 2. 又9=c 2=a 2-b 2, 解得b 2=9,a 2=18, 所以椭圆E 的方程为x 218+y 2 9=1. [答案] D [关键点拨] (1)本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标, 巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题. (2)在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.

(天津专用)202x版高考数学大一轮复习 8.2 空间点、线、面的位置关系精练

8.2 空间点、线、面的位置关系 挖命题 【考情探究】 考点内容解读 5年考情 预测热度考题示例考向关联考点 空间点、线、面的位置关系1.理解空间直线、平 面位置关系的定义, 并了解四个公理及 推论 2.会用平面的基本性 质证明点共线、线共 点以及点线共面等 问题 3.理解空间两直线的 位置关系及判定,了 解等角定理和推论 2013天津,17 证明异面直 线垂直 求二面角的正 弦值 ★★☆ 2012天津,17 求异面直线 所成角的正 切值 证面面垂直、求 线面角的正弦 值 2008天津,5 直线、平面位 置关系的判 定 充分条件 分析解读 1.会用平面的基本性质证明点共线、线共点、点线共面问题;会用反证法证明异面或共面问题.2.会证明两条直线异面;会应用三线平行公理和等角定理及推论解决有关问题,会求两条异面直线所成的角;了解两条异面直线间的距离.3.高考对本节内容的考查常以棱柱、棱锥为载体,求异面直线所成的角,分值约为5分,属于中档题. 破考点 【考点集训】 考点空间点、线、面的位置关系 1.α是一个平面,m,n是两条直线,A是一个点,若m?α,n?α,且A∈m,A∈α,则m,n的位置关系不可能是( ) A.垂直 B.相交 C.异面 D.平行 答案 D 2.在正方体ABCD-A1B1C1D1中,棱所在直线与直线BA1是异面直线的条数为( ) A.4 B.5 C.6 D.7

答案 C 3.如图,G,N,M,H分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有( ) A.①③ B.②③ C.②④ D.②③④ 答案 C 4.已知四棱锥P-ABCD的侧棱长与底面边长都相等,点E是PB的中点,则异面直线AE与PD 所成角的余弦值为( ) A.1 3B.√2 3 C.√3 3 D.2 3 答案 C 5.在正四棱锥P-ABCD中,PA=2,直线PA与平面ABCD所成角为60°,E为PC的中点,则异面直线PA与BE所成角的大小为. 答案45° 炼技法 【方法集训】 方法1 点、线、面位置关系的判断方法 1.(2014辽宁,4,5分)已知m,n表示两条不同直线,α表示平面.下列说法正确的是( ) A.若m∥α,n∥α,则m∥n B.若m⊥α,n?α,则m⊥n C.若m⊥α,m⊥n,则n∥α D.若m∥α,m⊥n,则n⊥α 答案 B 2.如图所示,空间四边形ABCD中,E,F,G分别在AB、BC、CD上,且满足 AE∶EB=CF∶FB=2∶1,CG∶GD=3∶1,过E、F、G的平面交AD于H,连接EH. (1)求AH∶HD; (2)求证:EH、FG、BD三线共点.

全国高考数学试题汇编——解析几何

7. 2004年全国高考数学试题汇编一一解析几何(一) 1. [2004年全国高考(山东山西河南河北江西安徽) ?理科数学第7题,文科数学第7题] 2 椭圆—? y 2 =1的两个焦点为F i 、F 2,过F i 作垂直于x 轴的直线与椭圆相交,一个交 4 点为P ,则| PF 2 | = ,3 A . 2 2. [2004年全国高考(山东山西河南河北江西安徽) I 的斜率的取值范围是 的轨迹方程为 [2004年全国高考(四川云南吉林黑龙江)? 已知点A (1, 2)、B( 3, 1),则线段AB 的垂直平分线的方程是 A . 4x 2y=5 B . 4x-2y=5 C . x 2y=5 别是O '和A ',则O A "=囂£,其中?= B . .3 ?理科数学第8题,文科数学第8题] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点 Q 的直线I 与抛物线有公共点,则直线 3. 1 1 A . [ — 2, 2] B . [—2, 2] C . [-1, 1] D . [ — 4, 4] [2004年全国高考(山东山西河南河北江西安徽) ?理科数学第14题,文科数学第15题] 由动点P 向圆x 2+y 2=1引两条切线PA 、PB , 切点分别为A 、 B ,Z APB=60 ° , 则动点 4. [2004年全国高考(四川云南吉林黑龙江)? 理科数学第4题, 文科数学第 已知圆C 与圆(x -1)2 y 2 =1关于直线 y = -x 对称,则圆 C 的方程为 A . (x 1)2 y 2 =1 B . x 2 - y 2 =1 2 2 C . x (y 1) =1 2亠/ 八2 D . x (y -1) =1 5. 文科数学第8题] 6. [2004年全国高考(四川云南吉林黑龙江)?理科数学第8题] 在坐标平面内,与点A (1,2)距离为1 ,且与点B (3, 1)距离为2 A . 1条 [2004年全国高考 的直线共有 ( D . 4条 已知平面上直线 B . 2条 C . 3条 (四川云南吉林黑龙江)?理科数学第9题] 4 3 l 的方向向量e =(,—),点0(0, 0)和A (1, — 2)在I 上的射影分 5 5

解析几何难题——教师版-附解答Word版

解析几何 【例01】点的坐标分别是,,直线相交于点M ,且它们的斜率之积为. (1)求点M 轨迹的方程. (2)若过点的直线与(1)中的轨迹交于不同的两点、(在、之间),试求 与面积之比的取值范围(为坐标原点). 解(1)设点的坐标为,∵ ),这就是动点M 的轨迹方程. (2)方法一 由题意知直线的斜率存在,设的方程为() ① 将①代入,得, 由,解得.设,,则 ② 令,则,即,即,且 由②得,即 . 且且. 解得且,且. ∴△OBE 与△OBF 面积之比的取值范围是. 方法二 由题意知直线的斜率存在,设的方程为 ① 将①代入,整理,得, 由,解得. ,A B (0,1)-(0,1),AM BM 12 - C ()2,0 D l C E F E D F ODE ?ODF ?O M (,)x y 12AM BM k k ?=- 0x ≠l l ()2y k x =-1 2 k ≠± 12 22 =+y x 0)28(8)12(2222=-+?-+k x k x k 0?>2102k <<()11,E x y ()22,F x y ??? ????+-=+=+. 1228,1 2822 212221k k x x k k x x OBE OBF S S λ??=||||BE BF λ=BE BF λ=?()1222x x λ-=-0 1.λ<<1221212122 4(2)(2),2122)(2)2()4.21x x k x x x x x x k -?-+- =??+?? -?-=-++=?+?(()()()22222412,2122.21x k x k λλ-? + -=??+??-=?+?22 22 2141,(1)8(1)2 k k λλλλ+∴==-++即2102 k << 2 14k ≠24110(1)22λλ∴<-<+2 411(1)24λλ-≠+33λ-<<+1 3 λ≠ 01λ<<1223<<-∴λ1 3λ≠113,133???? - ? ?? ??? l l 2x sy =+(2)s ≠±12 22 =+y x 22(2)420s y sy +++=0?>22s >

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

高考数学分类汇编 解析几何

2011高考数学分类汇编-解析几何 1、(湖北文)将两个顶点在抛物线()022>=p px y 上,另一个顶点是此抛物线焦点的正三角形的个数记为n ,则( ) A. 0=n B. 1=n C. 2=n D. 3≥n 2、(江西理) 若曲线1C :0222=-+x y x 与曲线2C :0)(=--m mx y y 有4个不同的交点,则实数m 的取值范围是( ) A. )3 3 ,33(- B. )33,0()0,33(Y - C. ]33,33[- D. ),3 3()33,(+∞--∞Y 3、(江西理)若椭圆12222=+b y a x 的焦点在x 轴上,过点)21 ,1(作圆122=+y x 的 切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭 圆方程是 . 4、(湖南文)在直角坐标系xOy 中,曲线1C 的参数方程为 2cos (x y α αα =??? =??为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为 (cos sin )10,ρθθ-+=则1C 与2C 的交点个数为 . 5、(湖南理)在直角坐标系xoy 中,曲线C 1的参数方程为cos ,1sin x y αα=??=+?(α为参 数)在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为()cos sin 10ρθθ-+=,则1C 与2C 的交点个数为 。 6、(湖南文)已知圆22:12,C x y +=直线:4325.l x y += (1)圆C 的圆心到直线l 的距离为 . (2) 圆C 上任意一点A 到直线l 的距离小于2的概率为 . 7、(江苏)设集合},,)2(2 |),{(222R y x m y x m y x A ∈≤+-≤=, },,122|),{(R y x m y x m y x B ∈+≤+≤=, 若,φ≠?B A 则实数m 的取值范围___.

第11讲 解析几何之直线与圆的方程(教师版)

第11讲 解析几何之直线与圆的方程 一.基础知识回顾 (一)直线与直线的方程 1.直线的倾斜角与斜率:(1)直线的倾斜角①定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴________与直线l________方向之间所成的角α叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为________.②倾斜角的范围为__________.(2)直线的斜率①定义:一条直线的倾斜角α的________叫做这条直线的斜率,斜率常用小写字母k 表示,即k =________,倾斜角是90°的直线斜率不存在.②过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2)的直线的斜率公式为k =____________. 2.直线的方向向量:经过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线的一个方向向量为P 1P 2→,其坐标 为________________,当斜率k 存在时,方向向量的坐标可记为(1,k). 3 4.12112212M 的坐标为(x ,y),则????? x = ,y = ,此公式为线段P 1P 2的中点坐标公式. 二.直线与直线的位置关系 1.两直线的位置关系:平面上两条直线的位置关系包括平行、相交、重合三种情况. (1)两直线平行:对于直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,l 1∥l 2?_________________.对于直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 2B 2C 2≠0),l 1∥l 2?________________________. (2)两直线垂直:对于直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,l 1⊥l 2?k 12k 2=____.对于直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,l 1⊥l 2?A 1A 2+B 1B 2=____. 2.两条直线的交点:两条直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,如果两直线相交,则交点的坐标一定是这两个方程组成的方程组的____;反之,如果这个方程组只有一个公共解,那么以这个解为坐标的点必是l 1和l 2的________,因此,l 1、l 2是否有交点,就看l 1、l 2构成的方程组是否有________. 3.常见的直线系方程有:(1)与直线Ax +By +C =0平行的直线系方程是:Ax +By +m =0 (m ∈R 且m ≠C );(2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0 (m ∈R); (3)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0 (λ∈R),但不包括l 4.平面中的相关距离:(1)两点间的距离平面上两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离|P 1P 2|=____________________.(2)点到直线的距离:平面上一点P (x 0,y 0)到一条直线l :Ax +By +C =0的距离d =_______________.(3)两平行线间的距离已知l 1、l 2是平行线,求l 1、l 2间距离的方法:①求一条直线上一点到另一条直线的距离;②设l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0,则l 1与l 2之间的距离d =________________. 三.圆与圆的方程 1.圆的定义:在平面内,到________的距离等于________的点的________叫圆. 2.确定一个圆最基本的要素是________和________. 3.圆的标准方程;(x -a )2+(y -b )2=r 2 (r >0),其中________为圆心,____为半径. 4.圆的一般方程:x 2+y 2+Dx +Ey +F =0表示圆的充要条件是__________________,其中 圆心为___________________,半径r =____________________________. 四.点线圆之间的位置关系 1.点与圆的位置关系:点和圆的位置关系有三种.圆的标准方程(x -a )2+(y -b )2=r 2,点

2020高考数学(理)专项复习《解析几何》含答案解析

解析几何 平面解析几何主要介绍用代数知识研究平面几何的方法.为此,我们要关注:将几何问题代数化,用代数语言描述几何要素及其关系,将几何问题转化为代数问题,处理代数问题,分析代数结果的几何含义,最终解决几何问题. 在此之中,要不断地体会数形结合、函数与方程及分类讨论等数学思想与方法.要善于应用初中平面几何、高中三角函数和平面向量等知识来解决直线、圆和圆锥曲线的综合问题. §8-1 直角坐标系 【知识要点】 1.数轴上的基本公式 设数轴的原点为O ,A ,B 为数轴上任意两点,OB =x 2,OA =x 1,称x 2-x 1叫做向量AB 的坐标或数量,即数量AB =x 2-x 1;数轴上两点A ,B 的距离公式是 d (A ,B )=|AB |=|x 2-x 1|. 2.平面直角坐标系中的基本公式 设A ,B 为直角坐标平面上任意两点,A (x 1,y 1),B (x 2,y 2),则A ,B 两点之间的距离公式是.)()(||),.(212212y y x x AB B A d -+-== A , B 两点的中点M (x ,y )的坐标公式是?+=+=2 ,22121y y y x x x 3.空间直角坐标系 在空间直角坐标系O -xyz 中,若A (x 1,y 1,z 1),B (x 2,y 2,z 2),A ,B 两点之间的距离公式是 .)()()(||),(212212212z z y y x x AB B A d -+-+-== 【复习要求】 1.掌握两点间的距离公式,中点坐标公式;会建立平面直角坐标系,用坐标法(也称为解析法)解决简单的几何问题. 2.了解空间直角坐标系,会用空间直角坐标系刻画点的位置,并掌握两点间的距离公式. 【例题分析】 例1 解下列方程或不等式: (1)|x -3|=1;(2)|x -3|≤4;(3)1<|x -3|≤4. 略解:(1)设直线坐标系上点A ,B 的坐标分别为x ,3, 则|x -3|=1表示点A 到点B 的距离等于1,如图8-1-1所示, 图8-1-1 所以,原方程的解为x =4或x =2. (2)与(1)类似,如图8-1-2,

版高考数学大一轮复习第九章平面解析几何96双曲线教师用书文新人教版

2018版高考数学大一轮复习第九章平面解析几何 9.6 双曲线教师 用书文新人教版 1.双曲线定义 平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0. (1)当2a<|F1F2|时,P点的轨迹是双曲线; (2)当2a=|F1F2|时,P点的轨迹是两条射线; (3)当2a>|F1F2|时,P点不存在. 2.双曲线的标准方程和几何性质 巧设双曲线方程

(1)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2 b 2=t (t ≠0). (2)过已知两个点的双曲线方程可设为x 2m +y 2 n =1(mn <0). 【思考辨析】 判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × ) (2)方程x 2m -y 2 n =1(mn >0)表示焦点在x 轴上的双曲线.( × ) (3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±y n =0.( √ ) (4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ ) (5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1 e 22 = 1(此结论中两条双曲线称为共轭双曲线).( √ ) 1.(教材改编)若双曲线x 2a 2-y 2 b 2=1 (a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双 曲线的离心率为( ) A. 5 B .5 C. 2 D .2 答案 A 解析 由题意得b =2a ,又a 2 +b 2 =c 2 ,∴5a 2 =c 2 . ∴e 2 =c 2 a 2=5,∴e = 5. 2.若方程x 22+m -y 2 m +1=1表示双曲线,则m 的取值范围是( ) A .m >-1 B .m <-2 C .-2-1或m <-2 答案 D 解析 由题意知(2+m )(m +1)>0,解得m >-1或m <-2,故选D. 3.(2015·安徽)下列双曲线中,焦点在y 轴上且渐近线方程为y =±2x 的是( ) A .x 2 -y 2 4 =1 B.x 2 4 -y 2 =1

高三解析几何双曲线教师版

圆锥曲线(2)教师版 双曲线 一、双曲线的定义 ㈠平面内到两个定点的距离差等于定值且该定值小于这两个定点的距离的点的轨迹为双曲线 ㈡符号语言: 已知 F F 2 1 ,为平面上两个定点 若( )F F F F a a P P 2 1 21 202||< <=-则P 点轨迹为以F F 21,为焦点的双曲线 注;单支双曲线的定义 已知 F F 2 1 ,为x 轴上的两个定点且 F F 2 1在左侧 ①若()F F F F a a P P 2 1 21 202<<=-则P 点轨迹为以F F 21,为焦点的双曲线的右支 ②若( )F F F F a a P P 2 1 12 202< <=-则P 点轨迹为以F F 21,为焦点的双曲线的左支

双曲线位置的判定 方程()()( ) N m y m x m m m m * ∈=--+--2 2 2 2 2 935220113 表示双曲线 ⑴求m ⑵求双曲线焦点坐标及渐近线方程 典例 求双曲线标准方程?? ? ??轨迹方程法待定系数法几何法 ㈠几何法:求实半轴a 及虚半轴b 注:双曲线定位条件:双曲线上点的坐标,焦点位置,渐进线方程,若题中无定位条件可以利用换轴法写方程,反之不行 例已知双曲线()0,012 2 2 2>>=-b a b y a x 的一条渐近线为y=kx (k>0)离心率为k e 5=则双曲线标准方程 A 、1422 2 2 =- a y a x B 、1522 2 2 =-a y a x C 、142 2 2 2 =-b y b x D 、152 2 2 2 =-b y b x 答案:C 练习:1、已知圆C : 08462 2 =+--+ y x y x ,以圆C 与坐标轴的交点分别作为双曲线的一个焦点和定点, 则适合该条件的双曲线的标准方程为

(完整)十年真题_解析几何_全国高考理科数学.doc

十年真题 _解析几何 _全国高考理科数学 真题 2008-21 .(12 分) 双曲线的中心为原点 O ,焦点在 x 轴上,两条渐近线分别为 l 1, l 2 ,经过右焦点 F 垂直于 l 1 uuur uuur uuur uuur uuur 的直线分别交 l 1, l 2 于 A , B 两点.已知 OA 、 、 成等差数列,且 BF 与 FA 同向. AB OB (Ⅰ)求双曲线的离心率; (Ⅱ)设 AB 被双曲线所截得的线段的长为 4 ,求双曲线的方程. 2009-21 .(12 分) 如图,已知抛物线 E : y 2 x 与圆 M : ( x 4)2 y 2 r 2 (r > 0)相交于 A 、B 、C 、D 四个 点。 (I )求 r 的取值范围: (II)当四边形 ABCD 的面积最大时,求对角线 A 、 B 、 C 、 D 的交点 p 的坐标。 2010-21 (12 分 ) 已知抛物线 C : y 2 4x 的焦点为 F ,过点 K ( 1,0) 的直线 l 与 C 相交于 A 、 B 两点, 点 A 关于 x 轴的对称点为 D . (Ⅰ)证明:点 F 在直线 BD 上; uuur uuur 8 (Ⅱ)设 FAgFB BDK 的内切圆 M 的方程 . ,求 9 1 / 13

2011-20 (12 分) 在平面直角坐标系 xOy 中,已知点 A(0,-1) , B 点在直线 y = -3 上, M 点满 足 MB//OA , MA?AB = MB?BA , M 点的轨迹为曲线 C 。 (Ⅰ)求 C 的方程; (Ⅱ) P 为 C 上的动点, l 为 C 在 P 点处得切线,求 O 点到 l 距离的最小值。 2012-20 (12 分) 设抛物线 C : x 2 2 py( p 0) 的焦点为 F ,准 线为 l , A C , 已知以 F 为圆心, FA 为半径的圆 F 交 l 于 B, D 两点; (1)若 BFD 90 0 , ABD 的面积为 4 2 ;求 p 的值及圆 F 的方程; (2)若 A, B, F 三点在同一直线 m 上,直线 n 与 m 平行,且 n 与 C 只有一个公共点, 求坐标原点到 m, n 距离的比值。 2013-21 (12 分 ) 2 2 已知双曲线 C : x 2 y 2 =1 (a > 0, b >0)的左、右焦点分别为 F 1, F 2,离心率为 3,直线 y a b =2 与 C 的两个交点间的距离为6 . (1)求 a , b ; (2)设过 F 的直线 l 与 C 的左、右两支分别交于 A , B 两点,且 | AF | =| BF | ,证明: | AF | , 2 1 1 2 | AB| , | BF 2| 成等比数列. 2014-20 已知点 A(0,- 2),椭圆 E : x 2 2 3 , F 是椭圆 E 的右焦点, 2 y 2 =1 (a>b>0) 的离心率为 a b 2 直线 AF 的斜率为 2 3 , O 为坐标原点 . 3 2 / 13

解析几何范围最值问题(教师)

第十一讲 解析几何范围最值问题 解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理. 一、几何法求最值 【例1】 抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上,过点M (0,-2)作直线l 与抛物线相交于A ,B 两点,且满足+=(-4,-12). (1)求直线l 和抛物线的方程; (2)当抛物线上一动点P 从点A 运动到点B 时,求△ABP 面积的最大值. [满分解答] (1)根据题意可设直线l 的方程为y =kx -2,抛物线方程为x 2=-2py (p >0). 由????? y =kx -2,x 2=-2py , 得x 2+2pkx -4p =0 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4. 所以+=(-4,-12),所以??? ? ? -2pk =-4,-2pk 2 -4=-12, 解得? ???? p =1,k =2.故直线l 的方程为y =2x -2,抛物线方程为x 2=-2y . (2)设P (x 0,y 0),依题意,知当抛物线过点P 的切线与l 平行时,△ABP 的面积最大. 对y =-12x 2求导,得y ′=-x ,所以-x 0=2,即x 0=-2,y 0=-12x 20=-2,即P (-2,-2). 此时点P 到直线l 的距离d = |2·(-2)-(-2)-2|22+(-1)2 =45=4 5 5. 由? ???? y =2x -2, x 2=-2y ,得x 2+4x -4=0,则x 1+x 2=-4,x 1x 2=-4, |AB |= 1+k 2· (x 1+x 2)2-4x 1x 2= 1+22·(-4)2-4·(-4)=4 10. 于是,△ABP 面积的最大值为12×4 10×4 55=8 2. 二、函数法求最值 【示例】在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的离心率e = 2 3 ,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程; (2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由. (1)由e =c a = a 2- b 2 a 2= 23,得a =3 b ,椭圆C :x 23b 2+y 2 b 2=1,即x 2+3y 2=3b 2,

相关主题
相关文档 最新文档