当前位置:文档之家› XXX隧道结构全寿命健康监测系统

XXX隧道结构全寿命健康监测系统

XXX隧道结构全寿命健康监测系统
XXX隧道结构全寿命健康监测系统

XXXX

隧道结构全寿命健康监测系统方案

2017年6月8日

目录

1 工程概况 (1)

2监测断面选取 (1)

2.1隧道衬砌结构受力及变形状态监测断面选取 (1)

2.2地震信息监测断面选取 (3)

2.3隧道结构腐蚀监测断面选取 (4)

3监测内容及监测元件选取 (4)

3.1隧道结构受力及变形状态监测内容及监测元件选取 (5)

3.2 地震信息监测元件选取 (8)

3.3隧道结构腐蚀监测元件选取 (9)

4费用预算 (10)

1 工程概况

xxx隧道的建设对xxx市的社会、经济发展具有十分重要的意义,xx隧道建成后,其长期安全的保证至关重要。

2监测断面选取

为保证xx通道隧道结构长期安全,考虑隧道管片衬砌结构所赋存的工程水文地质条件及施工特点,拟针对隧道结构受力及变形状态、地震及钢筋混凝土腐蚀三个方面的信息进行长期监测,分别选取典型监测断面信息如下所示。

2.1隧道衬砌结构受力及变形状态监测断面选取

综合考虑隧道赋存地层的工程水文特性、隧道埋深及结构体系情况,盾构段选取10个测试断面,岸上明挖段选取2个测试断面(见图2),其相应的里程及断面特征如表1所示,各个监测断面的具体地层及水文地质信息如图3所示。

表1 隧道结构受力及变形状态监测断面

1

图2隧道结构受力及变形状态监测断面分布图

(a)断面1 (b)断面2 (c)断面3 (d)断面4 (e)断面5 (f)断面6

(g)断面7 (h)断面8 (i)断面9 (j)断面10 (k)断面11 (l)断面12

图3隧道结构受力及变形状态监测断面地质纵断面图

2.2地震信息监测断面选取

综合考虑隧道赋存地层的工程水文特性及消能节点设置情况,选取如下4个测试断面(见图4)进行地震信息监测,其相应的里程及断面特征如表2所示。

图4 地震信息监测断面分布图

表2 地震信息监测断面

2.3隧道结构腐蚀监测断面选取

考虑隧道结构特性及隧道赋存地层的工程水文特性,选取如下4个测试断面(见图5),其相应的里程及断面特征如表3所示。

表3隧道结构腐蚀监测断面

图5隧道结构腐蚀监测断面分布图

3监测内容及监测元件选取

根据不同类型的监测断面,选取相应的监测元件,主要介绍盾构衬砌管片的元件选取,岸上明挖段参考管片即可。具体如下所示。

3.1隧道结构受力及变形状态监测内容及监测元件选取

对于盾构隧道管片衬砌结构受力及变形状态的监测主要考虑管片衬砌结构所受的土/水压力、管片内力及管片接缝张开量等四项内容,各项监测内容所使用的监测元件及布置方式如下所示,在每块管片上的位置关系如图6所示。

图6 元器件及接线孔平面位置展布图

(1)土压力

土压力采用土压力盒进行测量,针对xx通道管片衬砌结构的分块形式,拟对每个断面布置9个土压力盒,其布置位置及实施方法如下所述,其中土压力盒的布置位置如图7所示。

图7 土压力盒布置图

土压力埋设在管片预制期间实施,根据所选断面位置确定相应的管片。如图

8所示,混凝土内的土压力盒的安装采用绑扎式安装,将感应面与管片迎土面相平,保证感应面暴露并能感受外部压力。安装时,在土压力盒周围缠绕一层大约为1mm厚的弹性保护垫层,以减小管片变形对测试元件的影响,并根据管片外弧面混凝土保护层厚度选择适当直径的钢筋来连接压力盒与受力主筋,通过绑扎方式固定测试元件位置。然后将测试用的信号传输电缆导入专用走线通道。

图8 土压力盒、水压力计安装

(2)水压力

水压力采用水压力计进行测量,针对xx通道管片衬砌结构的分块形式,拟对每个断面布置5个水压力计,其布置位置及实施方法如下所述,其中水压力计的布置位置如图9所示。

图9 水压力计布置图

在埋设前,在孔隙水压力计周围缠绕一层大约1mm厚的弹性保护垫层,以减

小管片变形对测试元件的影响,并用毛巾块封住水压力计渗水石,确保其在浇注混凝土和施工进行壁后注浆时不被水泥砂浆封堵,保证其渗透作用,以感应水压力。在对其进行固定时,将水压力计两端绑扎于预先固定在管片受力筋上的两个Φ10钢筋上,如图8所示。然后将测试用的信号传输电缆导入专用走线通道。

(3)管片内力

管片内力采用混凝土应变计及钢筋应力计进行测量,针对xx通道管片衬砌结构的分块形式,拟对每个断面布置9对混凝土应变计和9个钢筋应力计,其布置位置及实施方法如下所述,其中混凝土应变计和钢筋应力计的布置位置如图10所示。

图10 混凝土应变计和钢筋应力计布置图

由于混凝土应变计测试的是管片环向应变,因此应变计的绑扎方向应与环向受力主筋方向平行,且每个测试点内外侧钢筋上各布置一个应变计,混凝土应变计和环向主筋高度一致并量测内外应变计之间的距离。钢筋应力计的应变感应方向和环向受力主筋方向一致,每个测试断面内外侧各布置一个,将主筋截断相应长度后将钢筋应力传感器和主筋焊接为一体,焊接中要确保钢筋应力传感器不受弯,并严格控制钢筋应力传感器的温度,将测试传输电缆导入专用走线孔,如图11所示。

(a)混凝土应变计(b)钢筋应力计

图11 结构内力测试仪器的安装

(4)管片接缝张开量

管片接缝张开量采用表贴式测缝计进行测量,针对xx通道管片衬砌结构的分块形式,拟对每个断面布置5个接缝张开量测点,分别为拱顶、拱肩、拱腰、拱脚和拱底,每个测点放置环向和纵向两个表贴式测缝计,其布置位置及实施方法如下所述,其中混凝土应变计和钢筋应力计的布置位置如图12所示。

(a)测缝计测点分布图(b)单点测缝计布置图

图12 表贴式测缝计布置图图13 表贴式测缝计安装图表贴式测缝计分别用来测量环向分块间的接缝张开量和环间(纵向)接缝张开量,表贴式测缝计不需预埋,在管片衬砌拼装完成后固定于管片混凝土内表面,安装时,表贴式测缝计要和管片分块接缝保持垂直,如图13所示。

3.2 地震信息监测元件选取

对于地震信息的监测主要考虑监测断面处的加速度及动应变监测,加速度采用埋入式三向加速度传感器进行监测,动应变采用埋入式或表贴式动应变计进行监测。加速度传感器与动应变计的埋设在管片预制期间实施,根据所选断面位置

确定相应的管片,加速度传感器与动应变计的布置位置如图14所示。加速度传感器通过绑扎方式固定在管片钢筋上,动应变计则在测点处管片的内外弧面各布置一个,应注意保证管片混凝土保护层厚度,然后将测试用的信号传输电缆导入专用走线通道。

图14 加速度传感器与动应变计布置图图15 钢筋锈蚀传感器布置图

3.3隧道结构腐蚀监测元件选取

对于盾构隧道管片衬砌结构腐蚀监测主要考虑监测断面处管片内钢筋的锈蚀情况监测,监测元件采用埋入式钢筋锈蚀传感器。钢筋锈蚀传感器的埋设在管片预制期间实施,根据所选断面位置确定相应的管片,考虑到结构受力特征及钢筋锈蚀传感器的工作原理,钢筋锈蚀传感器的布置方式如图15所示。钢筋锈蚀传感器固定在管片主筋上,应注意保证管片混凝土保护层厚度,然后将测试用的信号传输电缆导入专用走线通道。

3.4隧道明挖断面结构监测元件布设

在岸边暗埋区段增加结构受力及变形状态监测断面2个、地震响应监测断面和结构腐蚀监测断面各1个。鉴于结构施工工法的差异,元件布置方案与盾构隧道监测断面不同,其断面元件布置如图16所示,在埋设过程中,结合明挖法衬砌具体施工部序进行预埋。

图16 明挖法断面传感器布置图

4费用预算

隧道结构全寿命健康监测系统经费预算费用合计800万元,主要包括:测试元器件费、测试设备费、数据采集终端研发费、试验材料费、测试化验加工费、差旅费以及软件系统研发费用等。

隧道结构全寿命健康监测系统经费预算费用合计800万元,主要包括:测试元器件费、测试设备费、数据采集终端研发费、试验材料费、测试化验加工费、差旅费以及软件系统研发费用等。

(1)测试元器件费用(168.00万元)

表4 消耗性测试元件数量与费用开销一览表(总计168.00万元)

(2)测试设备费(104.00万元)

表5 测试设备开销一览表(总计104.00万元)

(3)数据采集终端研发费(100.00万元)

表6 数据采集终端开销一览表(总计100.00万元)

(4)试验材料费(39.00万元)

表7 室内模型试验材料费用开销一览表(总计39.00万元)

(5)测试化验加工费(100.00万元)

表8 测试化验加工费预算明细表

(6)差旅费(89.00万元)

差旅费包括现场测试外埠交通及住宿费用、市内交通费用等,总计89.00万元,按照目前平均水平进行预算,差旅费预算明细表如下所示。

表8 差旅费

(7)软件系统研发费用(200.00万元)

主要包括数据采集、传输、处理、评估方法及预警的研发、软件系统的研发等费用,以支持远程长期监测系统的搭建,所涉及的相关调研、开发、测试等费用合计200.00万元,其中调研费25.00万元,评估方法及预警的研发费用60.00万元,软件系统开发费用80.00万元,软件测试费用35.00万元。

12

现代桥梁健康安全监测系统++

目录 一、传统桥梁结构检查与评估概述 (1) 二、现代桥梁健康监测系统概述 (2) 三、健康监测系统研究现状 (3) 四、健康监测系统实施现状 (5) $ 五、健康监测系统应用效果与存在问题 (9) 六、健康监测系统改善建议与发展前景 (10) "

一、传统桥梁结构检查与评估概述 桥梁在建成后,由于受到气候、腐蚀、氧化或老化等因素,以及长期在静载和活载的作用下易于受到损坏,相应地其强度和刚度会随时间的增加而降低。这不仅会影响行车的安全,并会使桥梁的使用寿命缩短。为保证大桥的安全与交通运输畅通,加强对桥梁的维护管理工作极为重要。桥梁管理的目的在于保证结构的可靠性,主要指结构的承载能力、运营状态和耐久性能等,以满足预定的功能要求。桥梁的健康状况主要通过利用收集到的特定信息来加以评估,并作出相应的工程决策,实施保养、维修与加固工作。评估的主要内容包括:承载能力、运营状态、耐久能力以及剩余寿命预测。承载能力评估与结构或构件的极限强度、稳定性能等有关,其评估的目的是要找出结构的实际安全储备,以避免在日常使用中产生灾难性后果。运营状态评估与结构或构件在日常荷载作用下的变形、振动、裂缝等有关。运营状态评估对于大桥工件条件的确认和定期维修养护的实施十分重要。耐久能力评估侧重于大桥的损伤及其成因,以及其对材料物理特性的影响。 传统上,对桥梁结构的评估通过人工目测检查或借助于便携式仪器测量得到的信息进行。人工桥梁检查分为经常检查、定期检查和特殊检查。但是人工桥梁检查方法在实际应用中有很大的局限性。美国联邦公路委员会的最近调查表明,根据目测检查而作出的评估结果平均有56%是不恰当的。传统检测方式的不足之处主要表现在: (i)需要大量人力、物力并有诸多检查盲点。现代大型桥梁结构布置极其复杂,构件多且尺寸大,加之大部分的构件和隐蔽工程部位难于直接接近检查,因此,这对现代大型桥梁尤其突出; (ii)主观性强,难于量化。检查与评估的结果主要取决于检查人员的专业知识水平以及现场检测的经验。经过半个多世纪的发展,虽然桥梁的分析设计与施工技术已日趋完善,但对某些响应现象,尤其是损伤的发展过程,尚处于经验积累中,因此定量化的描述是很重要的; (iii)缺少整体性。人工检查以单一构件为对象,而用于现代机械、光学、超声波和电磁波等技术的检测工具,都只能提供局部的检测和诊断信息,而不能

健康监测系统设计方案

天津市海河大桥结构健康监测系统初步设计方案 天津市市政工程研究院 2009年3月

天津市海河大桥结构健康监测系统初步设计方案 1桥梁健康监测的必要性 由于气候、环境等自然因素的作用和日益增加的交通流量及重车、超重车过桥数量的不断增加,大跨度桥梁结构随着桥龄的不断增长,结构的安全性和使用性能必然发生退化。自1940年美国Tacoma悬索桥发生风毁事故以后,桥梁结构安全监测的重要性就引起人们的注意。但是受科技水平的限制和人们对自然认识的局限性,早期的监测手段比较落后,在工程应用上一直没有得到很好的发展。20世纪80年代以来,在北美、欧洲和亚洲的一些国家和地区,相继发生了桥梁结构的突然性断裂事件,这些灾难性事故不仅引起了公众舆论的严重关注,也造成国家财产的严重损失,威胁到人民生命安全。国外从20世纪80年代中后期开始建立各种规模的桥梁健康监测系统。例如,英国在总长522mM的三跨变高度连续钢箱梁桥Foyle桥上布设传感器,监测大桥运营阶段在车辆与风荷载作用下主梁的振动、挠度和应变等响应,同时监测环境风和结构温度场。国外建立健康监测的典型桥梁还有英国主跨194mM的Flintshire独塔斜拉桥、日本主跨为1991mM 的明石海峡大桥和主跨1100m的南备赞濑户大桥、丹麦主跨1624m的Great Belt East悬索桥、挪威主跨为530m的Skarnsunder斜拉桥、美国主跨为440m的Sunshine Skyway Bridge斜拉桥以及加拿大的Confederatio Bridge桥。中国自20世纪90年代起也在一些大型重要桥梁上建立了不同规模的长期监测系统,如香港的Lantau Fixed Crossing和青马大桥、内地的虎门大桥、徐浦大桥,江阴长江大桥等在施工阶段已安装健康监测用的传感设备,以备运营期间的实时监测。 导致桥梁结构发生破坏和功能退化的原因是多方面的,有些桥梁的破坏是人为因素造成的,但大多数桥梁的破坏和功能退化是自然因素造成的。自然原因中,循环荷载作用下的裂缝失稳扩展是造成许多桥梁结构发生灾难性事故的主要原因。近年来,国内发生的几起大桥坍塌或局部破坏事故在很大程度上是由于构件疲劳和监测养护措施不足,从而严重影响构件的承重能力和结构的使用,进而发生事故。理论研究和经验都表明,成桥后的结构状态识别和桥梁运营过程中的损伤检测,预警及适时维修,有助于从根本上消除隐患及避免灾难性事故的发生。 现代大跨桥梁设计方向是更长、更轻柔化、结构形式和功能日趋复杂化。虽然在设计阶段已经进行了结构性能模拟实验等科研工作,然而由于大型桥梁的力学和结构特点以及所处的特定气候环境,要在设计阶段完全掌握和预测结构在各种复杂环境和运营条件下的结构特性和行为是非常困难 的。为确保桥梁结构的结构安全、实施经济合理的维修计划、实现安全经济的运行及查明不可接受的响应原因,建立大跨桥梁结构健康监测系统是非常必要的。通过健康监测发现桥梁早期的病害,能大大节约桥梁的维修费用,避免出现因频繁大修而关闭交通所引起的重大经济损失。 桥梁健康监测就是通过对桥梁结构进行无损检测,实时监控结构的整体行为,对结构的损伤位置和程度进行诊断,对桥梁的服役情况、可靠性、耐久性和承载能力进行智能评估,为大桥在特殊气候、交通条件下或桥梁运营状况严重异常时触发预警信号,为桥梁的维修、养护与管理决策提供依据和指导。安装结构健康监测系统是提高桥梁的养护管理水平,保证桥梁安全运营的高效技术手段。 特别值得一提的是,桥梁的健康监测和施工监控系统均是通过检测和监测手段,测试桥梁结构的内力、变形、环境和荷载,因此,它们在传感器系统、数据传输系统和数据采集系统都具有很大的共享性和重复性。此外,两个阶段在时间顺序上具有衔接性,施工监控阶段的监测数据是健康监测阶段的基础。为了节约资源、降低工程造价,应充分发挥两个系统的共享性,对上述两个系统进行统筹规划和实施,即采取统一设计、统一施工和统一管理的方式,以实现海河大桥的健康监测和施工监控两位一体的工程实施。 2海河大桥工程简况 集疏港公路二期中段工程起点于津沽一线立交以北,向北过津沽公路、海河大桥南侧收费站,与现状海河大桥相邻向北跨越海河后沿现状临港路、东海路向北分别跨越进港铁路一线,新港二号路,三号路,进港铁路二线,新港四号路,泰达大街,会展中心入口,第五大街,第八大街,第九大街,丰田七号路,与疏港二线立交相接。该段桩号范围K9+342.802~K20+419.245,路线全长11.076公里,除起点引路约500M和海河大桥南侧收费站前后各约300M为道路外,其余将近9.8公里均为高架桥。从南向北依次有津沽公路支线上跨分离式立交一座,海河特大桥一座,临港立交、泰达大街立交、第九大街立交互通式立交三座,其他与现状及规划道路交叉位置为直线上跨。海河特大桥工程为海滨大道工程的一部分,设计速度V=80km/h,双向八车道。

隧道监测解决方案

隧道在线健康监测解决方案 监测背景: 近些年来,高速、高铁等基础设施建设事业的快速发展,我国隧道建设工作进入了迅猛发展时期,随之而来的各种隧道事故也频频发生。隧道穿越的山体工程地质及水文地质等条件复杂多变,既有隧道受修建时期的设计与施工技术条件 的限制,早期修建的隧道经常出现隧道拱顶开裂、边墙开裂、拱顶空洞、衬砌损坏、隧道渗漏水、隧道冻害、围岩大变形等隧道的健康问题变得日益突出,如何对现役营运隧道或新建隧道进行健康诊断和病害与灾害预防和控制就显得极为重要。 系统概述: 飞尚科技作为中国结构安全监测领导者,率先将结构健康监测与物联网结构体系、云计算、局域网/通讯网等多网无缝连接等技术结合,建立一套智能隧道健康监测系统,为隧道日常养护、管理和突发事件应急处置发挥重大作用。基于云计算服务中心的监测系统可容纳上万个隧道、桥梁、边坡等结构物的监测数据,形成区域性结构健康监测平台,实现区域内的所有结构统一监控管理。主要监测内容: (1)围岩及支护状态的观察描述;(2)地表沉降; (3)隧道拱顶沉降; (4)隧道收敛监测; (5)附近的建筑物倾斜监测; (6)孔隙水压力监测; (7)支护土压力监测; (8)土体垂直位移监测; (9)土体水平位移监测。 监测示意图:江西飞尚科技有限公司

监测项目一览表:(施工期监测)江西飞尚科技有限公司

(运营期监测) 实现功能: (1)24小时实时监测:对隧道变形、受力、环境等全自动化在线监测,实时掌握隧道整体施工/运行的安全状态。 (2)多重分级预警:数据异常时,系统会触发相应三级报警机制,第一时间以短信、传真、广播等形式通知用户。 (3)应急预案处理:从专家库直接提取相应处理办法,及时采取人员介入、封锁道路等办法,将安全隐患消除在萌芽状态。 (4)结构损伤机理研究:对结构损伤机理的宏观分析、结构变形及破坏趋势研究、归纳演绎。 (5)提供参考依据:监测数据的存储,为今后同类工程设计、施工提供类比依据。 (6)行业规范标准形成:制定出适合结构健康监测的安全评价标准体系,形成 行业标准规范。江西飞尚科技有限公司

结构健康监测

工程结构健康监测与诊断 姓 名: 查 忍 指 导教 师: 学 号: 专 业: 沈 圣 170527005 建筑与土木工程

琅岐大桥结构健康监测系统初步设计方案 目录 1 桥梁健康监测的必要性 (3) 2琅岐闽江大桥工程概况 (5) 3系统设计原则与功能目标 (9) 3.1 系统设计依据 (9) 3.2 系统设计原则 (10) 3.3 功能目标 (11) 4 健康监测系统方案设计 (11) 4.1 传感器子系统 (11) 4.1.1 环境监测 (12) 4.1.2 视频监测系统 (12) 4.1.3 结构变形监测 (13) 4.1.4 应变(应力)及温度场监测 (14) 4.1.5 斜拉索索力监测 (15) 4.1.6 结构动力性能监测 (15) 4.1.7 监测传感器统计 (16) 4.2 数据采集系统 (17) 4.2.1 数据采集系统设计 (17) 4.2.2 数据采集系统硬件系统 (18)

4.3 数据传输系统 (19) 4.4 监测数据分析与结构安全评定及预警子系统 (19) 4.5 健康监测网络化集成技术和用户界面子系统 (21) 4.6 中心数据库子系统 (21) 4.7 系统后期维护、升级和服务等要求 (21) 4.8 施工注意事项 (22) 4.9 其它 (22) 1桥梁健康监测的必要性 由于气候、环境等自然因素的作用和日益增加的交通流量及重车、超重车过桥数量的不断增加,大跨度桥梁结构随着桥龄的不断增长,结构的安全性和使用性能必然发生退化。自1940年美国Tacoma悬索桥发生风毁事故以后,桥梁结构安全监测的重要性就引起人们的注意。但是受科技水平的限制和人们对自然认识的局限性,早期的监测手段比较落后,在工程应用上一直没有得到很好的发展。20世纪80年代以来,在北美、欧洲和亚洲的一些国家和地区,相继发生了桥梁结构的突然性断裂事件,这些灾难性事故不仅引起了公众舆论的严重关注,也造成国家财产的严重损失,威胁到人民生命安全。国外从20世纪80年代中后期开始建立各种规模的桥梁健康监测系统。例如,英国在总长522m米的三跨变高度连续钢箱梁桥Foyle桥上布设传感器,监测大桥运营阶段在车辆与风荷载作用下主梁的振动、挠度和应变等响应,同时监测环境风和结构温度场。国外建立

隧道支护体结构健康监测系统的构建

隧道支护体结构健康监测系统的构建 结构健康监测是为了实现结构无损伤监测,在这个过程中使用了很多的方法对现场无损传感器采集到的数据进行结构系统特性分析。隧道结构和其他建筑形式存在着很大的不同,因此,在施工中,隧道支护体和围岩之间存在着相互作用的情况,而且情况比较复杂,这样就导致结构健康监测在隧道施工中应用非常缓慢。随着新技术和新理论的出现,隧道结构也发生了很大的改变,对其进行结构健康监测也慢慢成为了隧道安全管理中非常重要的组成部分。 标签:隧道支护结构;健康监测系统;构建 1 引言 近年来,我国的建筑工程行业获得了很大的发展,其在很多建筑结构施工中都应用了先进的施工技术,在施工方法上也进行了改变,因此,对隧道工程施工的结构安全性进行监测成为了检验隧道安全的重要措施。隧道施工取得了很大的进步,同时,在施工健康监测方法也取得了很大的进步,对现有的施工技术情况进行掌握,更加系统和全面的对采集传输进行更好的利用,在进行采集的时候,可以对施工现场的化学成分相关信息进行收集,然后对施工过程中可能存在的风险进行识别,这样也能提高监测的准确性。隧道施工过程中,一定好保证施工的安全性,这样不仅仅能够更好的提高施工企业的信誉,同时,也能促进隧道工程建设获得更好的发展。现在,对隧道施工进行监测是有一些方法的,隧道施工安全监测与其相比存在很大的差别,其在发展过程中实现了更加系统、全面的发展,经济性方面也非常好。 2 隧道施工健康监测系统组成探讨 隧道健康监测系统在利用过程中实现了在施工前、施工中和施工后的健康监测,在施工前,健康监测能够对出现的风险进行识别,同时,也能将出现的风险进行排除;在施工中,健康监测能够对施工中出现的任何情况都进行了解;在施工后,能够保持观测角度对隧道健康监测系统进行分析,对系统的组成情况进行掌握。 隧道是非常特殊的施工工程,在施工过程中面临的问题也非常多,对出现的问题及时发现进行处理,对保证施工的安全性非常有利。在施工前,对开挖的风险进行监测,同时进行提醒,这样能够促使整个施工是在安全控制状态下进行施工,施工前要对施工地点的地质进行分析,在确定没有安全隐患的情况下,制定施工组织计划,避免出现盲目施工的风险。隧道在施工过程中,开挖工程具有的风险非常大,开挖过程中非常容易遇到瓦斯、地下水以及地质构造破碎的情况,为了更好的提高安全性,在施工中可以对先进的技术进行利用,对提高隧道施工工程的监测和应急能力非常有利。 对施工人员和施工设备进行监测,对可能出现的风险可以进行有针对的预

XXX隧道结构全寿命健康监测系统

XXXX 隧道结构全寿命健康监测系统方案 2017年6月8日

目录 1 工程概况 (1) 2监测断面选取 (1) 2.1隧道衬砌结构受力及变形状态监测断面选取 (1) 2.2地震信息监测断面选取 (3) 2.3隧道结构腐蚀监测断面选取 (4) 3监测内容及监测元件选取 (4) 3.1隧道结构受力及变形状态监测内容及监测元件选取 (5) 3.2 地震信息监测元件选取 (8) 3.3隧道结构腐蚀监测元件选取 (9) 4费用预算 (10)

1 工程概况 xxx隧道的建设对xxx市的社会、经济发展具有十分重要的意义,xx隧道建成后,其长期安全的保证至关重要。 2监测断面选取 为保证xx通道隧道结构长期安全,考虑隧道管片衬砌结构所赋存的工程水文地质条件及施工特点,拟针对隧道结构受力及变形状态、地震及钢筋混凝土腐蚀三个方面的信息进行长期监测,分别选取典型监测断面信息如下所示。 2.1隧道衬砌结构受力及变形状态监测断面选取 综合考虑隧道赋存地层的工程水文特性、隧道埋深及结构体系情况,盾构段选取10个测试断面,岸上明挖段选取2个测试断面(见图2),其相应的里程及断面特征如表1所示,各个监测断面的具体地层及水文地质信息如图3所示。 表1 隧道结构受力及变形状态监测断面 1

图2隧道结构受力及变形状态监测断面分布图 (a)断面1 (b)断面2 (c)断面3 (d)断面4 (e)断面5 (f)断面6

(g)断面7 (h)断面8 (i)断面9 (j)断面10 (k)断面11 (l)断面12 图3隧道结构受力及变形状态监测断面地质纵断面图 2.2地震信息监测断面选取 综合考虑隧道赋存地层的工程水文特性及消能节点设置情况,选取如下4个测试断面(见图4)进行地震信息监测,其相应的里程及断面特征如表2所示。 图4 地震信息监测断面分布图

隧道结构健康监测的发展趋势

隧道结构健康监测的发展趋势 [摘要]:随着我国经济建设和城市的快速发展,城市人口增长对城市交通的压力急剧增大,世界各国都在通过修建各种城市地下隧道来缓解这一矛盾,各类城市隧道工程在规模和数量上都得到了迅猛发展。隧道结构的安全性变得日益突出,而隧道工程的理论分析同实际情况存在作较大的差异,使得隧道结构的健康监测变得日益突出。 1. 健康监测的目的意义和必要性 隧道安全关系着人类生命安全和社会经济活动,由于隧道地质条件恶化、火灾、结构损伤、退化和失稳等造成的事故,严重威胁着隧道的正常运营。隧道施工的安全问题引起了人们的密切关注,主要表现在以下方面: 1)隧洞开挖的进口段:由于隧洞都是浅埋隧洞,且都存在边坡,导致该段围岩两面临空,加上爆破的影响导致围岩的自稳能力下降,支护结构受力存在一定的不确定性。 2)构造带:由于围岩受构造影响,节理裂隙发育,无规律性,围岩的自稳性能极差,围岩多呈松散结构,断层带的影响宽度不确定,加之水的影响,使得该段产生冒顶及垮塌的可能性加大。 3)浅埋段:潜埋段隧道围岩,在碳酸岩地层受水体溶蚀的影响较大,加之围岩顶板较薄,出现冒顶的现象可能性加大,加大了开挖及支护过程中的难度。 4)岩溶发育段:由于岩溶发育地段很难查清岩溶的发育规模及范围,在开挖及支护过程中增加了不确定因素。 5)地层走向不利地段:由于岩层的走向及倾角对围岩的自稳性能影响较大(如水平岩层)。 6)含软弱夹层围岩:由于夹软弱夹层的围岩,多会出现冒顶及垮塌现象。 7)水影响段:由于水体的存在,多会对层间结构面的力学指标有较大的不利影响,加之施工过程中对水体通道的改变产生的淘蚀作用,使得围岩的自稳性能恶化。 8)软岩段(围岩级别):岩体自稳能力差,围岩开挖暴露后崩解,遇水容软化。 9)含水层与相对隔水层交界处,而产生突涌泥现象。 由于有以上不良地质情况的存在增加了隧洞在施工期间及运营期间安全隐患。 为了确保隧道工程安全、及时预报险情,除了对隧道进行加固、维护之外,对隧道工程的安全和稳定状态的监测和评估也十分重要。建立监测系统对隧道工程进行监测、评估和预测以趋利避害,已经成为现代隧道工程发展的迫切要求。此外,随着人们对工程施工过程和现役工程长期监测的重要性认识的不断深入,

结构健康监测

结构健康监测 目 录 ?1概念 ?2过程 ?3理想的结构健康监测方法 ?4工作流程图 ?5研究内容 概念 ????? 结构健康监测(Structural Health Monitoring,简称SHM)是一种技术,是智能材料结构在实际工程中的一种很重要的应用。结构健康监测系统是一种仿生智能系统,可以在线监测结构的“健康”状态。它采用埋入或表面粘贴的传感器作为神经系统,能感知和预报结构内部缺陷和损伤。结构整体与局部的变形、腐蚀、支撑失效等一系列的非健康因素,是一种对材料或结构进行无损评估的方法。当遇到突发事故或危险环境,系统可通过调节与控制使整个结构系统恢复到最佳工作状态。系统还可通过自动改变和调节结构的形状、位置、强度、刚度、阻尼或振动频率使结构在危险时能自我保护,并继续生存下去。过程 结构健康监测的过程包括:通过一系列传感器得到系统定时取样的动力响应测量值,从这些测量值中抽取对损伤敏感的特征因子,并对这些特征因子进行统计分析,从而获得结构当前的健康状况。 理想的结构健康监测方法 理想的结构健康监测方法应该能准确的在损伤发生的初期,发现损伤并能够定位及确定损伤的程度,进而提供结构的安全性评估,并能预测损伤结构的剩余寿命。 工作流程图 研究内容

结构健康监测系统在国民生产中的应用非常广泛,特别是在工程中,有很多材料结构需要及时的维护及监测,用传统的监测方法耗时、费力,并且费用昂贵,而运用结构健康监测的技术就可以使这些缺点得到改进。结构健康监测的技术有如下优点:(1)实时在线地监测及安全性评估,节省维护费用。 (2)依靠先进的测试系统,可减少劳动力和降低人工误判。 (3)可以及时的和最新技术相结合。 (4)大多数具有自修复功能。 (5)自动化程度高,可以大大提高安全性和可靠性。 近年来,随着材料和结构损伤特征信号处理技术研究的进展,传感/驱动技术研究的深入,监测系统越来越多地应用于实际的工程实践中,比如先进战斗机和超期服役飞机的健康监控、航天器及空间站的健康监测和民用结构的在线监测。 结构健康监测的主要研究内容包括传感技术、信号处理技术和集成技术。 1)传感技术 在结构健康监测系统中,需要监测的对象主要有应力、应变、声发射、位移、压力、温度、结构损伤等多种参数,而最常用的传感器有:光纤传感器、压电元件和应变元件。光纤传感器有电绝缘、耐腐蚀、能在强电磁干扰等条件下工作等优点,但成本较高,设备也比较复杂,应用范围可以从民用结构到航空航天结构。压电元件既可以作为传感器也可以用作驱动器,灵敏度高,动态性能好,应用也比较广泛,但它有脆性大、不易埋入结构中,低频特性等缺点。应变元件具有灵敏度较高、静态性能好和性能稳定等特点。上述传感器不仅应该满足相应测量点的要求,而且应该能够组成一种经济可靠的分布式传感网络,从而实现大范围连续的健康监测。 2)信号的采集与处理 信号的采集与处理系统可以说是结构健康监测的一个重要部分,目前国内外都在大力开发相应的软件。从传感器采集的信号包含很多信息,通常情况下,由于外界环境噪声的影响及复合材料的复杂特性等原因,使得损伤特征信号的分析和提取异常困难,因此选择合适的信号处理方法就显得尤为重要。

结构健康监测

结构健康监测 【结构健康监测】是指对工程结构实施损伤检测和识别。我们这里所说的损伤包括材料特性改变或结构体系的几何特性发生改变,以及边界条件和体系的连续性,体系的整体连续性对结构的服役能力有至关重要的作用。结构健康监测涉及到通过分析定期采集的结构布置的传感器阵列的动力响应数据来观察体系随时间推移产生的变化,损伤敏感特征值的提取并通过数据分析来确定结构的健康状态。对于长期结构健康监测,通过数据定期更新来估计结构老化和恶劣服役环境对工程结构是否有能力继续实现设计功能。 监测简介 监测起源 长期以来,我们一直使用针对质量的不连续的方法来评估结构是否有能力继续服役以实现设计目的。从19世纪初开始,列车员借助小锤通过听锤击铁轨的声音来确定是否存在损伤。在旋转机械行业,几十年来振动监测一直作为检测手段。在过去的十到十五年里,结构健康监测技术开始兴起并产生一个联合不同工程学科分支的新的领域,而且专注于这个领域的学术会议和科学期刊开始产生。因此这些技术变得更为常见。 识别算法 结构健康监测的问题可归入数据模式识别算法的范畴[3-4] 。这个算法可分解为四部分:(1)实用性评估,(2)数据采集和提纯,(3)特征提取和数据压缩,(4)统计模型的发展。当你试图将此算法应用于实际工程结构上获取的数据时,很明显的是,第2-4部分,即数据提纯、压缩、正规化和数据融合来贴近工程实际服役环境是非常关键的环节,我们可通过硬件、软件以及二者的有机结合来实现。 实用性评估 对于健康监测对结构的损伤识别能力,实用性评估涉及到四个方面: (1)结构健康监测的应用对于生命安全和经济效益有什么好处? (2)怎样对结构进行损伤定义,多重损伤同时存在的可能性,哪种类型最值得关注? (3)什么条件下(不同用途、不同环境)的体系需要监测 (4)使用过程中采集数据的局限性 使用环境对监测的体系和监测过程的完成形成限制条件。这种评估开始将损伤识别的过程和损伤的外部特征联系起来,当然也用到独特的损伤特征来完成检测。 数据采集和提纯 结构健康监测的数据采集部分涉及到选择激励方法、传感器类型、数量和布置,以及数据采集、存储、传输设备。经济效益是选择方案一个重要的参考因素,采样周期是另一个不可忽视的因素。因为数据可在变化的环境中获取,将这些数据正规化的能力在损伤识别过程中变得非常重要。当应用于结构健康监测时,数据正规化是一个分离出由于环境或操作而导致的传感器测得的不准确的数值。最常见的方法是通过测量输入参数来正规化测得的响应。当环境或操作影响比较显著时,我们需要来对比相似时间段的数据或对应的操作周期。数据的不

健康监测技术

健康监测技术 姓名:林煜峰 学号:10231150 班级:土木1006 指导教师:卢文良 单位:北京交通大学土建学院

目录 第一部分前言 (3) 第二部分专论 (4) 第三部分结构监测领域技术国内外发展情况 (6) 第四部分工程实例 (9)

重大土木工程结构,如水坝、桥梁、电厂、军事设施、高层建筑等,在遭受地震、洪水、飓风、爆炸等自然或人为灾害时的安全问题,与人民的生命财产息息相关,已经引起人们的广泛关注。上述重要结构在经历了极端灾害性事件后,立即对他们的健康状况做出评估是非常必要的,实时地监测和预报结构的性能,及时发现和估计结构内部损伤的位置和程度,预测结构的性能变化和剩余寿命并做出维护决定,合理疏散居民,对提高工程结构的运营效率,保障人民生命财产安全具有极其重大的意义。因此,结构的健康监测技术成为当前国内外研究的热点问题。

一.开展结构健康监测工作的意义 1.1结构健康监测的定义和内涵 结构健康监测( Structural Health Monitoring,SHM)定义为:一种从营运状态的结构中获取并处理数据,评估结构的主要性能指标(如可靠性、耐久性等)的有效方法。它结合了无损检测(NDT)和结构特性分析(包括结构响应),目的是为了诊断结构中是否有损伤发生,判断损伤的位置,评估损伤的程度以及损伤对结构将要造成的后果。总的来说,结构健康监测的基本内涵即是通过对结构结构状态的监控与评估,当出现严重异常状态时触发预警信号,为结构维护、维修与管理决策提供依据和指导。百度百科:结构健康监测是指对工程结构实施损伤检测和识别。我们这里所说的损伤包括材料特性改变或结构体系的几何特性发生改变,以及边界条件和体系的连续性,体系的整体连续性对结构的服役能力有至关重要的作用。结构健康监测涉及到通过分析定期采集的结构布置的传感器阵列的动力响应数据来观察体系随时间推移产生的变化,损伤敏感特征值的提取并通过数据分析来确定结构目前的健康状态。对于长期结构健康监测,通过数据定期更新来估计结构老化和恶劣服役环境对工程结构是否有能力继续实现设计功能 1.2起源 长期以来,我们一直使用针对质量的不连续的方法来评估结构是否有能力继续服役以实现设计目的。从19世纪初开始,列车员借助小锤通过听锤击铁轨的声音来确定是否存在损伤[2]。在旋转机械行业,几十年来振动监测一直作为检测手段[1]。在过去的十到十五年里,结构健康监测技术开始兴起并产生一个联合不同工程学科分支的新的领域,而且专注于这个领域的学术会议和科学期刊开始产生[2]。因此这些技术变得更为常见。 1.3结构健康监测的理论基础 经过20年的发展,可以说本领域已经成熟到一个阶段,很多基本的理论和原理已经成型[5]。这些原理如下: 公理1:所有的材料都有内在损伤; 公理2:损伤的评估需要体系两种状态的对比; 公理3:可通过无参照研究来判定损伤是否存在和定位损伤,但是判定损伤类型和损伤程度需要有参照研究模式; 公理4a:单靠传感器不能测定损伤,数据处理的特征提取和统计分类才能将传感器获取数据转换为损伤信息; 公理4b:在缺乏智能特征提取手段时,测试方法对损伤越敏感,则操作和环境因素对测试结果影响越大; 公理5:损伤的开始和发展的长度和时间尺度提供结构健康监测传感系统需要的特征; 公理6:在算法对损伤的敏感度和抗噪声干扰的能力有一个平衡点;

桥梁结构健康监测系统的意义

桥梁结构健康监测系统的意义 桥梁结构健康监测系统的主要作用包括: 1) 设计验证,确保 桥梁安全;2) 及时发现桥梁损伤;3) 为桥梁维护管理提供技术依 据;4) 辅助桥梁日常交通管理 尽管( 截止到2006年) 我们国家现有桥梁已经达到了50万 余座,但是有些地方的桥梁管理者对现有桥梁的管理仍然是被 动式的,也就是当桥梁发生安全事故的时候才对桥梁进行维护 ( 检测和加固) 这种被动式的管理不可避免的会带来桥梁安全 事故的频繁发生 结构检测与健康监测概况工程结构一般会受到两种损伤一突发性损伤和累积性损伤。突发性损伤由突发事件引起,使损伤在短期内达到或超过一定限值;累积损伤则有缓慢积累的性质,达一定程度会引起破坏影响安全和使用。健康检测能够在突发性损伤发生时及时做出判断和警报,以便采取处理措施,防止发生进一步的破坏和引发其它事故。对于累积损伤,能够定期对损伤的状态做出描述,以便根据情况采取相应措施。二、桥梁健康监测意义(一)监控与评估。桥梁健康检测的基本内涵是通过对桥梁结构状态的监控与评估,为工程在特殊气候、交通条件下或运营状况严重异常时发出预警信号,为桥梁维护、维修与管理决策提供依据和指导。为此,监测系统通常对以下几个方面进行监控:①桥梁结构在正常环境与交通条件下运营的物理与力学状态;②桥梁重要非结构构件和附属设施的工作状态;③结构构件耐久性;④工程所处环境条件等等。(二)设计验证。由于大型桥梁的力学和结构特点以及所处的特定环境,在大桥设计阶段安全掌握和预测其力学特性和行为特性是非常困难的。因此,通过桥梁健康检测所获得的实际结构的动静力行为来检验大桥的理论模型和计算假定具有重要意义。不仅对设计理论和设计模型有验证作用,而且有益于新的设计理论的形成。(三)研究与发展。桥梁健康监测带来的将不仅是监测系统和某种特定桥梁设计的反思,它还可能并成为桥梁研究的现场实验室。由于运营中的桥梁结构及其环境所获得信息不仅是理论研究和实验室调查的补充,而且可以提供有关结构行为与环境规律的最真实的信息。三、健康监测系统(一)大型桥梁健康监测系统。大型桥梁健康监测系统一般应包括以下几部分内容: 1、传感系统。由传感器、二次仪表及高可靠性的工控机等部分组成。 2、信号采集与处理系统。实现多种信息源、不同物理信号的采集与预处理,并根据系统功能要求对数据进行分解、变换以获取所需要的参数,以一定的形式存储起来。 3、通信系统。将处理过的数据传输到监控中心。 4、监控中心。利用可实现诊断功能的各种软硬件对接收到的数据进行诊断,包括结构是否受到损伤以及损伤位置、损伤程度等。传感器监测到的实时信号,经过采集与处理曲通信系统传送到监控中心进行分析和判断,从而对结构的健康状况作出评估。若结构出现异常行为,则由监控中心发出预警信号,并对检测出来的损伤进行定性、定位和定量分析同时提供维修建议。(二)信号的分析与处理。桥梁结构的健康状况是由测试的信号来

隧道在线健康监测解决方案

隧道在线健康监测解决方案 一、监测背景 近些年来,高速、高铁等基础设施建设事业的快速发展,我国隧道建设工作进入迅猛发展时期,随之而来的各种隧道事故也频频发生。隧道穿越山体工程地质及水文地质等条件复杂多变,既有隧道受修建时期的设计与施工技术条件的限制,早期修建的隧道经常出现隧道拱顶开裂、边墙开裂、拱顶空洞、衬砌损坏、隧道渗漏水、隧道冻害、围岩大变形等隧道的健康问题变得日益突出,如何对现役营运隧道或新建隧道进行健康诊断和病害与灾害的预防和控制就显得极为重要。 二、系统概述 飞尚科技作为中国结构安全监测的领导者,率先将结构健康监测与物联结构体系、云计算、局域网/通讯网等多网无缝连接技术结合,建立了一套智能隧道健康监测系统,为隧道日常养护、管理和突发事件应急处置发挥重大作用。基于云计算服务中心的监测系统可容纳上万个隧道、桥梁、边坡等结构物的监测数据,形成区域性结构健康监测平台,实现区域内的所有结构统一管理。 三、主要监测内容 ①、围岩和支护状态的观察描述; ②、地表沉降; ③、隧道拱顶沉降; ④、隧道收敛监测; ⑤、附近的建筑物倾斜监测; ⑥、孔隙水压力监测; ⑦、支护土压力监测; ⑧、土体垂直位移监测; ⑨、土体水平位移监测。 四、监测示意图

五、监测项目一览表 (施工期监测) 监测内容监测参数监测方式 变形监测 净空收敛收敛计 拱顶形变 压差试变形测量传感器、经纬仪、全站仪 等 地表沉降水准仪、经纬仪、全站仪 围岩内位移多点位移计 土体平移(水平/垂直)多点位移计 应力/应变和受力监测 混凝土应变内埋式应变力 钢筋应力钢筋计空隙水压力监测空隙水压计支护土压力土压力盒 锚杆抗拔力/锚杆轴力锚杆应力计、锚索计钢支撑受力轴力计/反力计 其他 材料参数弹性模量等附近结构物的倾斜盒试固定测斜仪

健康监测系统设计方案

天津市海河大桥结构健康监测系统 初步设计方案 天津市市政工程研究院 2009年3月

天津市海河大桥结构健康监测系统初步设计方案 1桥梁健康监测的必要性 由于气候、环境等自然因素的作用和日益增加的交通流量及重车、超重车过桥数量的不断增加,大跨度桥梁结构随着桥龄的不断增长,结构的安全性和使用性能必然发生退化。自1940年美国Tacoma悬索桥发生风毁事故以后,桥梁结构安全监测的重要性就引起人们的注意。但是受科技水平的限制和人们对自然认识的局限性,早期的监测手段比较落后,在工程应用上一直没有得到很好的发展。20世纪80年代以来,在北美、欧洲和亚洲的一些国家和地区,相继发生了桥梁结构的突然性断裂事件,这些灾难性事故不仅引起了公众舆论的严重关注,也造成国家财产的严重损失,威胁到人民生命安全。国外从20世纪80年代中后期开始建立各种规模的桥梁健康监测系统。例如,英国在总长522mM的三跨变高度连续钢箱梁桥Foyle桥上布设传感器,监测大桥运营阶段在车辆与风荷载作用下主梁的振动、挠度和应变等响应,同时监测环境风和结构温度场。国外建立健康监测的典型桥梁还有英国主跨194mM的Flintshire独塔斜拉桥、日本主跨为1991mM的明石海峡大桥和主跨1100m的南备赞濑户大桥、丹麦主跨1624m的Great Belt East悬索桥、挪威主跨为530m的Skarnsunder斜拉桥、美国主跨为440m的Sunshine Skyway Bridge斜拉桥以及加拿大的Confederatio Bridge桥。中国自20世纪90年代起也在一些大型重要桥梁上建立了不同规模的长期监测系统,如香港的Lantau Fixed Crossing和青马大桥、内地的虎门大桥、徐浦大桥,江阴长江大桥等在施工阶段已安装健康监测用的传感设备,以备运营期间的实时监测。 导致桥梁结构发生破坏和功能退化的原因是多方面的,有些桥梁的破坏是人为因素造成的,但大多数桥梁的破坏和功能退化是自然因素造成的。自然原因中,循环荷载作用下的裂缝失稳扩展是造成许多桥梁结构发生灾难性事故的主要原因。近年来,国内发生的几起大桥坍塌或局部破坏事故在很大程度上是由于构件疲劳和监测养护措施不足,从而严重影响构件的承重能力和结构的使用,进而发生事故。理论研究和经验都表明,成桥后的结构状态识别和桥梁运营过程中的损伤检测,预警及适时维修,有助于从根本上消除隐患及避免灾难性事故的发生。 现代大跨桥梁设计方向是更长、更轻柔化、结构形式和功能日趋复杂化。虽然在设计阶段已经进行了结构性能模拟实验等科研工作,然而由于大型桥梁的力学和结构特点以及所处的特定气候环境,要在设计阶段完全掌握和预测结构在各种复杂环境和运营条件下的结构特性和行为是非常困难 的。为确保桥梁结构的结构安全、实施经济合理的维修计划、实现安全经济的运行及查明不可接受的响应原因,建立大跨桥梁结构健康监测系统是非常必要的。通过健康监测发现桥梁早期的病害,能大大节约桥梁的维修费用,避免出现因频繁大修而关闭交通所引起的重大经济损失。 桥梁健康监测就是通过对桥梁结构进行无损检测,实时监控结构的整体行为,对结构的损伤位置和程度进行诊断,对桥梁的服役情况、可靠性、耐久性和承载能力进行智能评估,为大桥在特殊气候、交通条件下或桥梁运营状况严重异常时触发

压电-光纤综合结构健康监测系统的研究及验证

第30卷 第2期航 空 学 报 Vol 130No 12 2009年 2月ACTA A ERONAU TICA ET ASTRONAU TICA SIN ICA Feb. 2009 收稿日期:2007211211;修订日期:2008205219基金项目:国家“863”计划(2007AA03Z117);国家自然科学基金 50830201); 通讯作者:袁慎芳E 2mail :ysf @https://www.doczj.com/doc/42558744.html, 文章编号:100026893(2008)022******* 压电2光纤综合结构健康监测系统的研究及验证 袁慎芳,邱雷,王强,苗苗,余振华 (南京航空航天大学智能材料与结构航空科技重点实验室,江苏南京 210016) Application R esearch of a H ybrid Piezoelectric 2optic Fiber Integrated Structural H ealth Monitoring System Yuan Shenfang ,Qiu Lei ,Wang Qiang ,Miao Miao ,Yu Zhenhua (The Aeronautical Key Laboratory for Smart Materials and Structures ,Nanjing University of Aeronautics and Astronautics ,Nanjing 210016,China ) 摘 要:以某型无人机机翼盒段试验件为对象,进行了压电2光纤综合结构健康监测系统的研究。自主研发了国内首台集成压电多通道扫查系统,可实现多达552个激励2传感通道的损伤自动扫查,并同光纤光栅解调系统组合,自行开发了集成健康监测系统软件,构成了压电2光纤综合结构健康监测系统。基于该系统进行了大型碳纤维复合材料盒段试验件弯扭强度实验过程中的结构健康监测功能验证研究,监测结构尺寸达41000m ×11200m ×01265m ,监测对象包括结构的应变场分布及抽钉失效。系统监测了全盒段上下壁板共34点的应变场分布情况,应变场监测准确;监测系统不仅对结构抽钉的缺失实现了准确监测,而且可以分辨所实验结构的4种抽钉缺失程度。 关键词:结构健康监测;PZT ;Bragg 光纤光栅;传感阵列;应变;监测;连接失效中图分类号:TP30211 文献标识码:A Abstract :This article presents the research on the development of a hybrid piezoelectric 2optic fiber sensor ar 2ray 2based integrated structural health monitoring (SHM )system and its function evaluation on a composite un 2manned aerial vehicle (UAV )wing box specimen.First ,a multi 2channel SHM scanning system for piezoelec 2tronic transducer (PZT )sensor arrays is developed.This system can automatically scan up to 552PZT actua 2tor 2sensor channels.With this PZT sensor scanning system and the fiber Bragg grating (FB G )interrogation system as hardware ,an integrated system software is designed to control the damage monitoring and estima 2tion process.These three parts form a hybrid piezoelectric 2optic fiber sensor array 2based integrated SHM sys 2tem.Based on this system ,a SHM evaluation research is performed on a composite UAV wing box specimen with the dimension of 41000m ×11200m ×01265m.The SHM monitored objects are the strain distribution on the wing box skins and the joint failure which occurs during its strength experiments.Totally 34strain points are monitored.The test proves that the system can monitor the occurrence of joint failure successf ully.In addition ,it can distinguish 4kinds of joint failure grades. K ey w ords :structural health monitoring ;PZT ;fiber Bragg grating ;sensor array ;strain ;monitoring ;joint failure 结构健康监测(St ruct ural Healt h Monito 2 ring ,SHM )的基本思想是采用智能材料结构的新概念,利用集成在结构中的先进传感/驱动元件网络,在线实时地获取与结构健康状况相关的信息(如应力、应变、温度等),结合先进的信息处理方法和结构力学建模方法,提取结构特征参数,识别结构的状态和故障情况,从而实现结构状态评估。飞行器结构健康监测技术的发展和应用可以有效提高飞行器结构检查与维护的有效性、保障 结构的安全性、降低结构的维护费用、延长结构的使用寿命,可以为提高适航性能与飞行器可靠性带来革命性技术突破[122]。结构健康监测技术在实际飞行器工程结构中的功能验证是该技术走向实用所必不可少的环节。近几年来,国外对结构健康监测系统的功能验证研究已逐步开展。在军用航空领域,美国波音公司在地面实验中,利用压电传感器监测了F 216尾部隔框的裂纹[3];洛克希德2马丁公司将Bragg 光栅光纤(Fiber Bragg Grating ,FB G )传感网络用于X 233箱体结构件的应力和温度的准分布监测[4];欧洲针对联合研制的Euro fight 2000新型战机进行了基于16点应变片网络的飞行载荷监测系统的飞行功能验

隧道结构健康监测的发展趋势

隧道结构健康监测的发 展趋势 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

隧道结构健康监测的发展趋势[摘要]:随着我国经济建设和城市的快速发展,城市人口增长对城市交通的压力急剧增大,世界各国都在通过修建各种城市地下隧道来缓解这一矛盾,各类城市隧道工程在规模和数量上都得到了迅猛发展。隧道结构的安全性变得日益突出,而隧道工程的理论分析同实际情况存在作较大的差异,使得隧道结构的健康监测变得日益突出。 1. 健康监测的目的意义和必要性 隧道安全关系着人类生命安全和社会经济活动,由于隧道地质条件恶化、火灾、结构损伤、退化和失稳等造成的事故,严重威胁着隧道的正常运营。隧道施工的安全问题引起了人们的密切关注,主要表现在以下方面: 1)隧洞开挖的进口段:由于隧洞都是浅埋隧洞,且都存在边坡,导致该段围岩两面临空,加上爆破的影响导致围岩的自稳能力下降,支护结构受力存在一定的不确定性。 2)构造带:由于围岩受构造影响,节理裂隙发育,无规律性,围岩的自稳性能极差,围岩多呈松散结构,断层带的影响宽度不确定,加之水的影响,使得该段产生冒顶及垮塌的可能性加大。 3)浅埋段:潜埋段隧道围岩,在碳酸岩地层受水体溶蚀的影响较大,加之围岩顶板较薄,出现冒顶的现象可能性加大,加大了开挖及支护过程中的难度。

4)岩溶发育段:由于岩溶发育地段很难查清岩溶的发育规模及范围,在开挖及支护过程中增加了不确定因素。 5)地层走向不利地段:由于岩层的走向及倾角对围岩的自稳性能影响较大(如水平岩层)。 6)含软弱夹层围岩:由于夹软弱夹层的围岩,多会出现冒顶及垮塌现象。 7)水影响段:由于水体的存在,多会对层间结构面的力学指标有较大的不利影响,加之施工过程中对水体通道的改变产生的淘蚀作用,使得围岩的自稳性能恶化。 8)软岩段(围岩级别):岩体自稳能力差,围岩开挖暴露后崩解,遇水容软化。 9)含水层与相对隔水层交界处,而产生突涌泥现象。 由于有以上不良地质情况的存在增加了隧洞在施工期间及运营期间安全隐患。 为了确保隧道工程安全、及时预报险情,除了对隧道进行加固、维护之外,对隧道工程的安全和稳定状态的监测和评估也十分重要。建立监测系统对隧道工程进行监测、评估和预测以趋利避害,已经成为现代隧道工程发展的迫切要求。此外,随着人们对工程施工过程和现役工程长期监测的重要性认识的不断深入,以及国家相关工程安全法规的实施,隧道工程监测得到了迅速发展,成为隧道工程的一个重要研究课题。

相关主题
文本预览
相关文档 最新文档