当前位置:文档之家› verilog语法教程

verilog语法教程

华为verilog培训教程

共41页 资源类别: HDL 语言 内部公开 1.0 密级 版本文档编号 文档中心 Verilog HDL 入门教程 (仅供内部使用) yyyy/mm/dd 日期: 批准: 日期:中研基础 批准:2004.8.3 日期:中研基础拟制:版权所有 不得复制

修订记录 初稿完成 1.00 2004.8.3作者 描述 修订版本 日期 绝密请输入文档编号 Verilog HDL 入门教程 2004-08-16第2页,共41页 版权所有,侵权必究

目 录 28 5 结构建模..............................................................274.8 case 语句..........................................................254.7 条件语句..........................................................254.6.6 连接运算符....................................................254.6.5 条件运算符....................................................244.6.4 按位逻辑运算符................................................234.6.3 逻辑运算符....................................................224.6.2 关系运算符....................................................214.6.1 算术运算符. (21) 4.6 运算符和表达式.....................................................204.5.2 寄存器类型 ...................................................204.5.1 线网类型 (20) 4.5 数据类型..........................................................184.4.2 常量.........................................................184.4.1 值集合. (18) 4.4 数字值集合........................................................184.3 格式.............................................................174.2 注释.............................................................174.1.3 书写规范建议..................................................174.1.2 关键词.......................................................174.1.1 定义 (17) 4.1 标识符 (17) 4 Verilog HDL 基本语法 (16) 3.3.4 混合设计描述..................................................153.3.3 行为描述方式..................................................143.3.2 数据流描述方式................................................123.3.1 结构化描述方式 (12) 3.3 三种建模方式......................................................113.2 时延.............................................................113.1.3 模块语法......................................................103.1.2 模块的结构....................................................93.1.1 简单事例. (9) 3.1 模块 (9) 3 Verilog HDL 建模概述 (7) 2.4.2 能力..........................................................72.4.1 历史. (7) 2.4 Verilog HDL 简介.....................................................62.3 设计方法学.........................................................62.2 硬件描述语言.......................................................52.1 数字电路设计方法. (5) 2 HDL 设计方法学简介......................................................51 前言...................................................................绝密 请输入文档编号 Verilog HDL 入门教程 2004-08-16 第3页,共41页 版权所有,侵权必究

verilog基本语法

Verilog基本语法 【逻辑值】 逻辑0 表示低电平,GND 逻辑1 表示高电平,VCC 逻辑X 表示未知电平,可能是高电平,也可能是低电平 逻辑Z 表示高阻态,外部没有激励信号,是一个悬空状态 注:高阻态的实质:电路分析时高阻态可做开路理解。 可以把它看作输出(输入)电阻非常大,对下级电路无任何影响。 若为0、x、z则按照假处理;若为1,按真处理。 【进制】 二进制4'b0101 —4位二进制数0101 十进制数4’d2 —4位十进制数2 十六进制数4’ha —4位十六进制数a Verilog中若不指定位宽,默认32位;若不指定位宽不指定进制,默认32位宽的十进制数。 【标识符】 标识符可以是字母、数字、$和_(下划线)的组合,且开头必须是字母或下划线,区分大小写。不建议大小写混合使用。 【数据类型】 寄存器关键字reg,默认初始值位不定值X; reg[31:0] delay_cnt; //[31:0],指定寄存器位宽32位, reg key_reg; // 默认位宽为1. reg类型数据只能在always和initial语句中被赋值。 线网表示结构实体的物理连线,包括wire和tri类型 参数常量,用parameter定义。 parameter H_SYNC = 11'd41; 【运算符】 [条件操作符] ?: 例,a?b:c //如果a为真就选b,否则选择c。 result=(a>=b)?a:b; [逻辑运算符] !&& || [位运算符] ~ & | ^(按位异或) a&b; //自动将位宽小的数高位补零至较大数的位宽,然后按位与操作。[移位运算符] << >> 用0填补移出的空位。左移时位宽增加,右移位宽不变。 [位拼接运算符] {} 例,{a,b} //将a和b拼接起来,作为一个新信号,a为高位。 c={a,b[3:0]}; //a、b位宽均为8位,c为8+4=12位。

《verilog_数字系统设计课程》(第二版)思考题答案

绪论 1.什么是信号处理电路?它通常由哪两大部分组成? 信号处理电路是进行一些复杂的数字运算和数据处理,并且又有实时响应要求的电路。它通常有高速数据通道接口和高速算法电路两大部分组成。 2.为什么要设计专用的信号处理电路? 因为有的数字信号处理对时间的要求非常苛刻,以至于用高速的通用处理器也无法在规定的时间内完成必要的运算。通用微处理器芯片是为一般目的而设计的,运算的步骤必须通过程序编译后生成的机器码指令加载到存储器中,然后在微处理器芯片控制下,按时钟的节拍,逐条取出指令分析指令和执行指令,直到程序的结束。微处理器芯片中的内部总线和运算部件也是为通用目的而设计,即使是专为信号处理而设计的通用微处理器,因为它的通用性也不可能为某一特殊的算法来设计一系列的专用的运算电路而且其内部总线的宽度也不能随便的改变,只有通过改变程序,才能实现这个特殊的算法,因而其算法速度也受到限制所以要设计专用的信号处理电路。 3.什么是实时处理系统? 实时处理系统是具有实时响应的处理系统。 4.为什么要用硬件描述语言来设计复杂的算法逻辑电路? 因为现代复杂数字逻辑系统的设计都是借助于EDA工具完成的,无论电路系统的仿真和综合都需要掌握硬件描述语言。 5.能不能完全用C语言来代替硬件描述语言进行算法逻辑电路的设计? 不能,因为基础算法的描述和验证通常用C语言来做。如果要设计一个专用的电路来进行这种对速度有要求的实时数据处理,除了以上C语言外,还须编写硬件描述语言程序进行仿真以便从电路结构上保证算法能在规定的时间内完成,并能通过与前端和后端的设备接口正确无误地交换数据。 6.为什么在算法逻辑电路的设计中需要用C语言和硬件描述语言配合使用来提高设计效率? 首先C语言很灵活,查错功能强,还可以通过PLI编写自己的系统任务,并直接与硬件仿真器结合使用。C语言是目前世界上应用最为广泛的一种编程语言,因而C程序的设计环境比Verilog HDL更完整,此外,C语言有可靠地编译环境,语法完备,缺陷缺少,应用于许多的领域。比较起来,Verilog语言只是针对硬件描述的,在别处使用并不方便。而用Verilog的仿真,综合,查错等大部分软件都是商业软件,与C语言相比缺乏长期大量的使用,可靠性较差,亦有很多缺陷。所以只有在C语言的配合使用下,Verilog才能更好地发挥作用。C 语言与Verilog HDL语言相辅相成,互相配合使用。这就是即利用C语言的完整性又要结合Verilog对硬件描述的精确性,来更快更好地设计出符合性能要求的

Verilog语言基础知识

Verilog HDL语言基础知识 先来看两个Verilog HDL程序。 例一个8位全加器的Verilog HDL源代码 module adder8(cout,sum,ina,inb,cin); output[7:0] sum; output cout; input[7:0] ina,inb; input cin; @ assign {cout,sum}=ina+inb+cin; 模块的端口声明了模块的输人和输出口。其格式如下: module 模块名(口1,口2,口3,口4,……); 2.模块内容 模块内容包括I/O说明,信号类型声明和功能定义。 (1) I/O说明的格式如下: ; 输人口: input端口名1,端口名2,……端口名N; 输出口: output端口名l,端口名2,……端口名N; I/O说明也可以写在端口声明语句里。其格式如下: module module_name(input portl,input port2,…output portl,output port2,…); (2)信号类型声明: 它是说明逻辑描述中所用信号的数据类型及函数声明。如 ( reg[7:0] out; 数字 (1)整数

在Verilog HDL中,整数型常量(即整常数)有以下4种进制表示形式: ◇二进制整数(b或B); ◇十进制整数(d或D); ◇十六进制整数(h或H); ◇八进制整数(o或O)。 ) 完整的数字表达式为: <位宽>'<进制> <数字>, 位宽为对应二迸制数的宽度,如: 8'b nets型变量wire nets型变量指输出始终根据输入的变化而更新其值的变量,它一般指的是硬件电路中的各种物理连接。Verilog HDL中提供了多种nets型变量,具体见表。 这里着重介绍wire型变量。wire是一种常用的nets型变量,wire型数据常用来表示assign语句赋值的组合逻辑信号。Verilog HDL模块中的输入/输出信号类型缺省时自动定义为wire型。Wire型信号可以用作任何方程式的输入,也可以用作assign语句和实例元件的输出,其取值为0,1,x,z。 wire型变量格式如下: & ⑴.定义宽度为1位的变量: wire 数据名1,数据名2,……数据名n; 例如:wire a,b; register型变量reg register型变量对应的是具有状态保持作用的电路元件,如触发器、寄存器等。register

Verilog语言基础教程

Verilog HDL Verilog HDL是一种硬件描述语言,用于从算法级、门级到开关级的多种抽象 设计层次的数字系统建模。被建模的数字系统对象的复杂性可以介于简单的门和完整的电子数字系统之间。数字系统能够按层次描述,并可在相同描述中显式地进行时序建模。 Verilog HDL 语言具有下述描述能力:设计的行为特性、设计的数据流特性、设计的结构组成以及包含响应监控和设计验证方面的时延和波形产生机制。所有这些都使用同一种建模语言。此外,Verilog HDL语言提供了编程语言接口,通过该接口可以在模拟、验证期间从设计外部访问设计,包括模拟的具体控制和运行。 Verilog HDL语言不仅定义了语法,而且对每个语法结构都定义了清晰的模拟、仿真语义。因此,用这种语言编写的模型能够使用Verilog仿真器进行验证。语言从C编程语言中继承了多种操作符和结构。Verilog HDL提供了扩展的建模能力,其中许多扩展最初很难理解。但是,Verilog HDL语言的核心子集非常易于学习和使用,这对大多数建模应用来说已经足够。当然,完整的硬件描述语言足以对从最复杂的芯片到完整的电子系统进行描述。 =============================== 中文版Verilog HDL简明教程:第1章简介 Verilog HDL是一种硬件描述语言,用于从算法级、门级到开关级的多种抽象设计层次的数字系统建模。被建模的数字系统对象的复杂性可以介于简单的门和完整的电子数字系统之间。数字系统能够按层次描述,并可在相同描述中显式地进行时序建模。 Verilog HDL 语言具有下述描述能力:设计的行为特性、设计的数据流特性、设计的结构组成以及包含响应监控和设计验证方面的时延和波形产生机制。所有这些都使用同一种建模语言。此外,Verilog HDL语言提供了编程语言接口,通过该接口可以在模拟、验证期间从设计外部访问设计,包括模拟的具体控制和运行。 Verilog HDL语言不仅定义了语法,而且对每个语法结构都定义了清晰的模拟、仿真语义。因此,用这种语言编写的模型能够使用Verilog仿真器进行验证。语言从C编程语言中继承了多种操作符和结构。Verilog HDL提供了扩展的建模能力,其中许多扩展最初很难理解。但是,Verilog HDL语言的核心子集非常易于学习和使用,这对大多数建模应用来说已经足够。当然,完整的硬件描述语言足以对从最复杂的芯片到完整的电子系统进行描述。 历史 Verilog HDL语言最初是于1983年由Gateway Design Automation公司为其模

(完整word版)Verilog-A30分钟快速入门教程

?Verilog-A 30分钟快速入门教程 进入正题,学了几天的Verilog-A,平台是Agilent ADS,主要参考“Verilog-AMS Language Reference Manual”和ADS的帮助文档。 现在的状态算是入门了,写了个简单的PLL。总结这几天的学习,觉得效率太低,我以前有一定Verilog基础,研一时学过一点VHDL-AMS,学到现在这个状态应该半天就够了;入门的话,30分钟足矣;跟着这个教程走,你会很快了解和熟悉Verilog-A。(前提是有一定的Verilog基础和电路基础) 1、基尔霍夫定律撑起了整个电路学的大厦(当然也可以认为基尔霍夫定律只是麦克斯韦方程的简化版),作为模拟电路描述语言Verilog-A,同样将基尔霍夫定律作为其基本,最重要的两个概念便是流量(Flow)和位(Potential),在电学里是电流和电压,在力学里可以是力和距离,在热学里可以是功率和温差,等等。 在Verilog-A中,你可以将电阻电容电感等器件用一个方程式来表述,比如I(out) <+ V(out)/R,这样就产生了一个电阻,最后Verilog-A仿真器会用某种算法(迭代是最常见的)将I(out)和V(out)求解出来,然后根据这个解去算下一个时刻的I、V等,当然这仅仅是指时域仿真。 2、下面讲Verilog-A的语法: begin end //相当于C语言的一对大括号,与Verilog同 if ( expression ) true_statement ; [ else false_statement ; ] //与Verilog同 case ( expression ) case_item { case_item } endcase for ( procedural_assignment ; expression; procedural_assignment ) statement //case与for语句都跟Verilog、C语言类似 cross( expr [, dir [, time_tol [, expr_tol ]]] ); //cross用来产生一个event,如: @(cross(V(sample) -2.0, +1.0)) //指sample的电压超过2.0时触发该事件,将会执行后面的语句,+1.0表示正向越过,-1.0则相反 ddt( expr ) //求导,如: I(n1,n2) <+ C * ddt(V(n1, n2)); //表示了一个电容 idt( expr ,[ ic [, assert [, abstol ]]] ) //积分,如: V(out) <+ gain * idt(V(in) ,0) + gain * V(in); //比例积分,式中的0表示积分的初值 transition( expr [, time_delay [, rise_time [, fall_time [, time_tol ]]]] ) //将expr的值delay一下并指定上升下降沿时间,相当于一个传输门

Verilog-A 30分钟快速入门教程

?进入正题,学了几天的Verilog-A,平台是Agilent ADS,主要参考“Verilog-AMS L anguage Reference Manual”和ADS的帮助文档。 现在的状态算是入门了,写了个简单的PLL。总结这几天的学习,觉得效率太低,我以前有一定Verilog基础,研一时学过一点VHDL-AMS,学到现在这个状态应该半天就够了;入门的话,30分钟足矣;跟着这个教程走,你会很快了解和熟悉Verilog-A。(前提是有一定的Verilog 基础和电路基础) 1、基尔霍夫定律撑起了整个电路学的大厦(当然也可以认为基尔霍夫定律只是麦克斯韦方程的 简化版),作为模拟电路描述语言Verilog-A,同样将基尔霍夫定律作为其基本,最重要的两个概念便是流量(Flow)和位(Potential),在电学里是电流和电压,在力学里可以是力和距离,在热学里可以是功率和温差,等等。 在Verilog-A中,你可以将电阻电容电感等器件用一个方程式来表述,比如I(out) <+ V(o ut)/R,这样就产生了一个电阻,最后Verilog-A仿真器会用某种算法(迭代是最常见的)将I(o ut)和V(out)求解出来,然后根据这个解去算下一个时刻的I、V等,当然这仅仅是指时域仿真。 2、下面讲Verilog-A的语法: begin end //相当于C语言的一对大括号,与Verilog同 if ( expression ) true_statement ; [ else false_statement ; ] //与Verilog同 case ( expression ) case_item { case_item } endcase for ( procedural_assignment ; expression; procedural_assignment ) statement //case与for语句都跟Verilog、C语言类似 cross( expr [, dir [, time_tol [, expr_tol ]]] ); //cross用来产生一个event,如:

system_verilog教程

基于断言的验证技术 SystemVerilog Tutorials 下面的手册会帮助你了解一些SystemVerilog中最重要的新特点。手册还提供了一些代码样本和例子使你可以对语言有更好"感觉"。这些辅导假设你们已经了解了一些Verilog语言。如果没有,你可以先去看看Verilog设计者指南(V erilog Designer’s Guide)。 * Data types * RTL design * Interfaces * Clocking * Assertion-based verification * Classes * Testbench automation and constraints * The Direct Programming Interface (DPI) SystemVerilog 的数据类型 这个手册将描述Systemverilog新引进的数据类型。他们大多数都是可以综合的,并且可以使RTL级描述更易于理解和书写。 整型和实型 SystemVerilog引进了几种新的数据类型。C语言程序员会熟悉其中的大多数。引进新的数据类型构思是这样的,如果C语言和SystemVerilog有相同的数据类型可以使C语言算法模型更容易的转化为SystemVerilog模型。 Verilog的变量类型有四态:既是0,1,X,Z。SystemVerilog引进了新的两态数据类型,每一位只可以是0或是1。当你不需要使用的X和Z值时,譬如在写Testbench和做为for语句的循环变量。使用两态变量的RTL级模型,可以使模拟器更有效率。并且使用得当的话将不会对综合结果产生影响。 二态整型 类型描述例子 Bit user-defined size bit [3:0] a_nibble;

3.2.1 Verilog HDL程序入门[共2页]

║68 第3章 硬件描述语言Verilog HDL基础 3.2 Verilog HDL程序基本结构 Verilog HDL是一种用于数字逻辑电路设计的语言。用Verilog HDL描述的电路设计就是该电路的Verilog HDL模型。Verilog HDL既是一种行为描述的语言,也是一种结构描述的语言。也就是说,既可以用电路的功能描述,也可以用元器件和它们之间的连接来建立所设计电路的Verilog HDL模型。Verilog模型可以是实际电路的不同级别的抽象。这些抽象的级别和它们对应的模型类型共有以下5种。 ?系统级(system):用高级语言结构实现设计模块的外部性能的模型。 ?算法级(algorithm):用高级语言结构实现设计算法的模型。 ?RTL级(Register Transfer Level):描述数据在寄存器之间流动和如何处理这些数据的模型。 ?门级(gate-level):描述逻辑门以及逻辑门之间的连接的模型。 ?开关级(switch-level):描述器件中三极管和储存节点以及它们之间连接的模型。 一个复杂电路系统的完整Verilog HDL模型是由若干个Verilog HDL模块构成的,每一个模块又可以由若干个子模块构成。其中有些模块需要综合成具体电路,而有些模块只是与用户所设计的模块交互的现存电路或激励信号源。利用Verilog HDL语言结构所提供的这种功能就可以构造一个模块间的清晰层次结构来描述极其复杂的大型设计,并对所作设计的逻辑电路进行严格的验证。 Verilog HDL行为描述语言作为一种结构化和过程性的语言,其语法结构非常适合于算法级和RTL级的模型设计。这种行为描述语言具有以下功能。 ?可描述顺序执行或并行执行的程序结构。 ?用延迟表达式或事件表达式来明确地控制过程的启动时间。 ?通过命名的事件来触发其他过程里的激活行为或停止行为。 ?提供了条件、if-else、case、循环程序结构。 ?提供了可带参数且非零延续时间的任务(task)程序结构。 ?提供了可定义新的操作符的函数结构(function)。 ?提供了用于建立表达式的算术运算符、逻辑运算符、位运算符。 ? Verilog HDL语言作为一种结构化的语言也非常适合于门级和开关级的模型设计。因其结构化的特点又使它具有以下功能。 —提供了完整的一套组合型原语(primitive); —提供了双向通路和电阻器件的原语; —可建立MOS器件的电荷分享和电荷衰减动态模型。 Verilog HDL的构造性语句可以精确地建立信号的模型。这是因为在Verilog HDL中,提供了延迟和输出强度的原语来建立精确程度很高的信号模型。信号值可以有不同的强度,可以通过设定宽范围的模糊值来降低不确定条件的影响。 Verilog HDL作为一种高级的硬件描述编程语言,有着类似C语言的风格。其中if语句、case语句等和C语言中的对应语句十分相似。如果读者已经掌握C语言编程的基础,那么学习Verilog HDL并不困难,只要对Verilog HDL某些语句的特殊方面着重理解,并加强上机练习就能很好地掌握它,利用它的强大功能来设计复杂的数字逻辑电路。下面将介绍Verilog

Verilog语法入门,初学者必看

Verilog的词法约定 1Verilog是大小写相关的,其中的关键字全部为小写。 2空白符由空格、制表符、和换行符组成。 3单行注释以“//”开始,verilog将忽略此处到行尾的内容。多行注释以“/*” 开始,以“*/”结束。多行注释不允许嵌套 4操作符有三种:单目操作符、双目操作符和三目操作符。 5数字声明 Verilog中有两种数字生命:指明位数的数字和不指明位数的数字 指明位数的数字表示形式: Size用来指明数字位宽度,只能用十进制整数表示 Base format包括十进制(’d或’D),二进制(’b或’B),八进制(‘o或’O),十六进制(‘h或’H) 例如 4’b1111 //4位2进制数 12’h3ac //12位16进制数 不指明位数的数字:如果数字说明中没有指定基数,那么默认表示为十进制数。如果没有指定位宽,则默认的位宽度与仿真器和使用的计算机有关(最小为32位)。 ‘o21 //32位八进制数 X值和Z值:不确定值用X表示,高阻用Z值表示。在八进制数中代表3位,十六进制中代表4位。 12’h12X //这是一个12位16进制数,其中低四位不确定 负数:在表示位宽的数字前面增加一个减号来表示它是一个负数。 -6’d3 //一个6位的用二进制补码形式存储的十进制数3,表示负数 -6’sd3 //一个6位的带符号算数运算的负数 下划线符号和问号: 除了第一个字符,下划线“_”可以出现在数字中的任何位置,它的作用只是提高可读性,在编译阶段会被忽略掉 问号“?”是z的另一种表示,使用问号的目的在于增强casex和casez语句的可读性。在这两条语句中,“?”表示不必关心的情况。 12’B1111_0011_1110 // 增强可读性 4’b10?? //相当于4’b10zz 6字符串是双引号括起来的一个字符队列。对于字符串的限制是,它必须在一行中书写完,不可书写在多行中,也不能包含回车符。Verilog将字符串当作一个单字节的ASCII字符队列。 “Hello Verilog world” //是一个字符串 7标识符和关键字 关键字是语言中预留的用于定义语言结构的特殊标识符。Verilog中关键字全部小写。 标识符是程序代码中对象的名字,程序员使用标识符来访问对象。Verilog中标识符由字母数字字符、下划线和美元符号组成,区分大小写。其第一个字符必须是数字字符或下划线。 reg value; //reg是关键字;value是标识符

VerilogHDL语法基础

Verilog HDL语法基础(1) Verilog的词法约定 1Verilog是大小写相关的,其中的关键字全部为小写。 2空白符由空格、制表符、和换行符组成。 3单行注释以“//”开始,verilog将忽略此处到行尾的内容。多行注释以“/ *”开始,以“*/”结束。多行注释不允许嵌套 4操作符有三种:单目操作符、双目操作符和三目操作符。 5数字声明 Verilog中有两种数字生命:指明位数的数字和不指明位数的数字 指明位数的数字表示形式: Size用来指明数字位宽度,只能用十进制整数表示 Base format包括十进制(’d或’D),二进制(’b或’B),八进制(‘o或’O),十六进制(‘h或’H) 例如 4’b1111 //4位2进制数 12’h3ac //12位16进制数 不指明位数的数字:如果数字说明中没有指定基数,那么默认表示为十进制数。如果没有指定位宽,则默认的位宽度与仿真器和使用的计算机有关(最小为32位)。 ‘o21//32位八进制数 X值和Z值:不确定值用X表示,高阻用Z值表示。在八进制数中代表3位,十六进制中代表4位。 12’h12X //这是一个12位16进制数,其中低四位不确定 负数:在表示位宽的数字前面增加一个减号来表示它是一个负数。 -6’d3//一个6位的用二进制补码形式存储的十进制数3,表示负数 -6’sd3//一个6位的带符号算数运算的负数 下划线符号和问号: 除了第一个字符,下划线“_”可以出现在数字中的任何位置,它的作用只是提高可读性,在编译阶段会被忽略掉 问号“?”是z的另一种表示,使用问号的目的在于增强casex和casez语句的可读性。在这两条语句中,“?”表示不必关心的情况。 12’B1111_0011_1110// 增强可读性 4’b10??//相当于4’b10zz 6字符串是双引号括起来的一个字符队列。对于字符串的限制是,它必须在一行中书写完,不可书写在多行中,也不能包含回车符。Verilog将字符串当作一个单字节的ASCII字符队列。 “Hello Verilog world”//是一个字符串 7标识符和关键字 关键字是语言中预留的用于定义语言结构的特殊标识符。Verilog中关键字全部小写。 标识符是程序代码中对象的名字,程序员使用标识符来访问对象。Verilog中标识符由字母数字字符、下划线和美元符号组成,区分大小写。其第一个字符必须是数字字符或下划线。

Verilog-A 30分钟快速入门教程

Verilog-A 30分钟快速入门教程 进入正题,学了几天的Verilog-A,平台是Agilent ADS,主要参考“Verilog-AMS Language Reference Manual”和ADS的帮助文档。 现在的状态算是入门了,写了个简单的PLL。总结这几天的学习,觉得效率太低,我以前有一定Verilog基础,研一时学过一点VHDL-AMS,学到现在这个状态应该半天就够了;入门的话,30分钟足矣;跟着这个教程走,你会很快了解和熟悉Verilog-A。(前提是有一定的Verilog基础和电路基础) 1、基尔霍夫定律撑起了整个电路学的大厦(当然也可以认为基尔霍夫定律只是麦克斯韦方程的简化版),作为模拟电路描述语言Verilog-A,同样将基尔霍夫定律作为其基本,最重要的两个概念便是流量(Flow)和位(Potential),在电学里是电流和电压,在力学里可以是力和距离,在热学里可以是功率和温差,等等。 在Verilog-A中,你可以将电阻电容电感等器件用一个方程式来表述,比如I(out) <+ V(out)/R,这样就产生了一个电阻,最后Verilog-A仿真器会用某种算法(迭代是最常见的)将I(out)和V(out)求解出来,然后根据这个解去算下一个时刻的I、V等,当然这仅仅是指时域仿真。 2、下面讲Verilog-A的语法: begin end //相当于C语言的一对大括号,与Verilog同 if ( expression ) true_statement ; [ else false_statement ; ] //与Verilog同 case ( expression ) case_item { case_item } endcase for ( procedural_assignment ; expression; procedural_assignment ) statement //case与for语句都跟Verilog、C语言类似 cross( expr [, dir [, time_tol [, expr_tol ]]] ); //cross用来产生一个event,如: @(cross(V(sample) -2.0, +1.0)) //指sample的电压超过2.0时触发该事件,将会执行后面的语句,+1.0表示正向越过,-1.0则相反 ddt( expr ) //求导,如: I(n1,n2) <+ C * ddt(V(n1, n2)); //表示了一个电容 idt( expr ,[ ic [, assert [, abstol ]]] ) //积分,如: V(out) <+ gain * idt(V(in) ,0) + gain * V(in); //比例积分,式中的0表示积分的初值 transition( expr [, time_delay [, rise_time [, fall_time [, time_tol ]]]] ) //将expr的值delay一下并指定上升下降沿时间,相当于一个传输门

systemverilog教程

SystemVerilog Tutorials 下面的手册会帮助你了解一些SystemVerilog中最重要的新特点。手册还提供了一些代码样本和例子使你可以对语言有更好"感觉"。这些辅导假设你们已经了解了一些Verilog语言。如果没有,你可以先去看看Verilog设计者指南(Verilog Designer’s Guide)。 * Data types * RTL design * Interfaces * Clocking * Assertion-based verification * Classes * Testbench automation and constraints * The Direct Programming Interface (DPI) SystemVerilog 的数据类型 这个手册将描述Systemverilog新引进的数据类型。他们大多数都是可以综合的,并且可以使RTL级描述更易于理解和书写。 整型和实型 SystemVerilog引进了几种新的数据类型。C语言程序员会熟悉其中的大多数。引进新的数据类型构思是这样的,如果C语言和SystemVerilog有相同的数据类型可以使C语言算法模型更容易的转化为SystemVerilog模型。 Verilog的变量类型有四态:既是0,1,X,Z。SystemVerilog引进了新的两态数据类型,每一位只可以是0或是1。当你不需要使用的X和Z值时,譬如在写Testbench和做为for语句的循环变量。使用两态变量的RTL级模型,可以使模拟器更有效率。并且使用得当的话将不会对综合结果产生影响。 二态整型 类型描述例子 Bit user-defined size bit [3:0] a_nibble; Byte 8 bits, unsigned byte a, b; Shortint 16 bits, signed shortint c, d; Int 32 bits, signed int i,j; Longint 64 bits, signed longint lword; 注意到和C语言不一样,SystemVerilog指定了一些固定宽度的类型。 四态整型 类型描述例子 Reg user-defined size reg [7:0] a_byte; Logic identical to reg in every way logic [7:0] a_byte; Integer 32 bits, signed integer i, j, k; logic是一种比reg型更好的类型,他更加的完善。我们将会看到你可以在过去verilog hdl中用reg型或是wire型的地方用logic型来代替。 非整数类型 类型描述例子 Time 64-bit unsigned time now;

verilog数字系统设计教程习题答案

verilog数字系统设计教程习题答案 第二章 HDL 既是一种行为描述语言,也是一种结构描述语言。如果按照一定的规则和风格编写代码,就可以将功能行为模块通过工具自动转化为门级互联的结构模块。这意味着利用Verilog语言所提供的功能,就可以构造一个模块间的清晰结构来描述复杂的大型设计,并对所需的逻辑电路进行严格的设计。 2.模块的基本结构由关键词module和endmodule构成。 3.一个复杂电路系统的完整Verilog HDL模型是由若干个Verilog HDL模块构成的,每一个模块又可以由若干个子模块构成。其中有些模块需要综合成具体电路,而有些模块只是与用户所设计的模块交互的现存电路或激励信号源。利用Verilog HDL语言结构所提供的这种功能就可以构造一个模块间的清晰层次结构来描述极其复杂的大型 设计,并对所作设计的逻辑电路进行严格的验证。 HDL和VHDL作为描述硬件电路设计的语言,其共同的特点在于:能形式化地抽象表示电路的结构和行为、支持逻辑设计中层次与领域的描述、可借用高级语言的精巧结构来简化电路的描述、具有电路仿真与验证机制以保证设计的正确性、支持电路描述由高层到低层的综合转换、硬件描述与实现工艺无关(有关工艺参数可通过语言提供的属性包括进去)、便于文档管理、易于理解和设计重用。

5.不是 6.将用行为和功能层次表达的电子系统转换为低层次的便于具体实 现的模块组合装配的过程。 7.综合工具可以把HDL变成门级网表。这方面Synopsys工具占有较大的优势,它的Design Compile是作为一个综合的工业标准,它还有另外一个产品叫Behavior Compiler,可以提供更高级的综合。 另外最近美国又出了一个软件叫Ambit,据说比Synopsys的软件更有效,可以综合50万门的电路,速度更快。今年初Ambit被Cadence 公司收购,为此Cadence放弃了它原来的综合软件Synergy。随着FPGA 设计的规模越来越大,各EDA公司又开发了用于FPGA设计的综合软件,比较有名的有:Synopsys的FPGA Express, Cadence的Synplity,Mentor的Leonardo,这三家的FPGA综合软件占了市场的绝大部分。 8.整个综合过程就是将设计者在EDA平台上编辑输入的HDL文本、原理图或状态图形描述,依据给定的硬件结构组件和约束控制条件 进行编译、优化、转换和综合,最终获得门级电路甚至更底层的电路描述网表文件。用于适配,适配将由综合器产生的网表文件配置于指定的目标器件中,使之产生最终的下载文件,如JEDEC、Jam格式的文件。

verilog_经验(适合初学者)

先记下来,後面會有進一步的解說: 1、不使用初始化语句; 2、不使用延时语句; 3、不使用循环次数不确定的语句,如:forever,while等; 4、尽量采用同步方式设计电路; 5、尽量采用行为语句完成设计; 6、always过程块描述组合逻辑,应在敏感信号表中列出所有的输入信号; 7、所有的内部寄存器都应该可以被复位; 8、用户自定义原件(UDP元件)是不能被综合的。 一:基本 Verilog中的变量有线网类型和寄存器类型。线网型变量综合成wire,而寄存器可能综合成WIRE,锁存器和触发器,还有可能被优化掉。 二:verilog语句结构到门级的映射 1、连续性赋值:assign 连续性赋值语句逻辑结构上就是将等式右边的驱动左边的结点。因此连续性赋值的目标结点总是综合成由组合逻辑驱动的结点。Assign语句中的延时综合时都将忽视。 2、过程性赋值: 过程性赋值只出现在always语句中。 阻塞赋值和非阻塞赋值就该赋值本身是没有区别的,只是对后面的语句有不同的影响。 建议设计组合逻辑电路时用阻塞赋值,设计时序电路时用非阻塞赋值。 过程性赋值的赋值对象有可能综合成wire, latch,和flip-flop,取决于具体状况。如,时钟控制下的非阻塞赋值综合成flip-flop。 过程性赋值语句中的任何延时在综合时都将忽略。 建议同一个变量单一地使用阻塞或者非阻塞赋值。 3、逻辑操作符: 逻辑操作符对应于硬件中已有的逻辑门,一些操作符不能被综合:===、!==。 4、算术操作符: Verilog中将reg视为无符号数,而integer视为有符号数。因此,进行有符号操作时使用integer,使用无符号操作时使用reg。 5、进位: 通常会将进行运算操作的结果比原操作数扩展一位,用来存放进位或者借位。如: Wire [3:0] A,B; Wire [4:0] C; Assign C=A+B; C的最高位用来存放进位。 6、关系运算符: 关系运算符:<,>,<=,>= 和算术操作符一样,可以进行有符号和无符号运算,取决于数据类型是reg,net还是integer。 7、相等运算符:==,!= 注意:===和!==是不可综合的。 可以进行有符号或无符号操作,取决于数据类型 8、移位运算符: 左移,右移,右边操作数可以是常数或者是变量,二者综合出来的结果不同。 9、部分选择: 部分选择索引必须是常量。 10、BIT选择: BIT选择中的索引可以用变量,这样将综合成多路(复用)器。 11、敏感表:Always过程中,所有被读取的数据,即等号右边的变量都要应放在敏感表中,不然,综合时不能正确

Verilog HDL 入门教程(华为)

文档中心 文档编号 资源类别: HDL语言版本 1.0 密级 内部公开 共41页 Verilog HDL入门教程(仅供内部使用) 拟制: 批准: 批准: 中研基础 中研基础 日期:

日期: 日期: 2004.8.3 yyyy/mm/dd 版权所有不得复制 Verilog HDL 入门教程绝密请输入文档编号日期 2004.8.3 修订版本 1.00 描述 初稿完成 修订记录 作者

2004-08-16 第2页,共41页版权所有,侵权必究 Verilog HDL 入门教程 绝密请输入文档编号 目录 1 前 言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 HDL设计方法学简 介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 数字电路设计方 法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 硬件描述语 言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

相关主题
文本预览
相关文档 最新文档