当前位置:文档之家› NMR常见溶剂峰和水峰

NMR常见溶剂峰和水峰

NMR常见溶剂峰和水峰
NMR常见溶剂峰和水峰

注:JHD为溶剂本身的其他1H对与之相对应的1H之间的耦合常数,JCD为溶剂本身1H对13C的耦合常数,H2O和交换了D的HOD上的1H产生的即水峰的化学位移

氯仿:小、中小、中等极性

DMSO:芳香系统(日光下自然显色、紫外荧光)。对于酚羟基能够出峰。芳香化合物还是芳香甙,都为首选。

吡啶:极性大的,特别是皂甙

对低、中极性的样品,最常采用氘代氯仿作溶剂,因其价格远低于其它氘代试剂。极性大的化合物可采用氘代丙酮、重水等。

针对一些特殊的样品,可采用相应的氘代试剂:如氘代苯(用于芳香化合物、芳香高聚物)、氘代二甲基亚砜(用于某些在一般溶剂中难溶的物质)、氘代吡啶(用于难溶的酸性或芳香化合物)等。丙酮:中等极性

甲醇:极性大

氯仿—甲醇:

石:乙 5;1小极性

石:丙 2:1——1:1中等极性

氯仿:甲醇6:1极性以上含有一个糖

2:1 含有两个糖

含有糖的三萜皂甙:一般用吡啶

常见溶剂的化学位移

常见溶剂的1H在不同氘代溶剂中的化学位移值

常见溶剂的化学位移

常见溶剂的13C在不同氘代溶剂中的化学位移值

核磁知识(NMR)

一:样品量的选择

氢谱,氟谱,碳谱至少需要5mg. 1H-1H COSY, 1H-1H NOESY, 1H-13C HMBC, 1H-13C HSQC需要10-15mg. 碳谱需要30mg.

二:如何选择氘代溶剂

常用氘代溶剂: CDCl3, DMSO, D2O, CD3OD.特殊氘代溶剂: CD3COCD3, C6D6, CD3CN。

极性较大的化合物可以选择用D2O或CD3OD,如果想要观察活泼氢切记不能选择D2O和CD3OD。CDCl3为人民币2-3元,D2O为人民币6元,DMSO为人民币10元,CD3OD为人民币30元。Solvent 化学位移(ppm) 水峰位移(ppm)

CDCl3 7.26 1.56

DMSO 2.50 3.33

CD3OD 3.31 4.87

D2O 4.79

CD3COCD3 2.05 2.84

【精品】常用试剂的溶解性

常用试剂的溶解性 1 . 二甲胺:有机物和无机物的优良溶剂,溶于水、低级醇、醚、低极性溶剂, 强烈刺激性。 2 . 石油醚:不溶于水,与丙酮、乙醚、乙酸乙酯、苯、氯仿及甲醇以上高级醇 混溶,与低级烷相似。 3 . 乙醚:微溶于水,易溶与盐酸,与醇、醚、石油醚、苯、氯仿等多数有机溶 剂混溶。麻醉性 4 . 戊烷:与乙醇、乙醚等多数有机溶剂混溶,低毒性。 5 .二氯甲烷:与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶。低毒性,麻醉 性强 7 . 二硫化碳:微溶与水,与多种有机溶剂混溶。麻醉性,强刺激性 8 .丙酮:与水、醇、醚、烃混溶。低毒,类乙醇,但较大 9 . 1,1-二氯乙烷:与醇、醚等大多数有机溶剂混溶。低毒、局部刺激性 10 . 氯仿:与乙醇、乙醚、石油醚、卤代烃、四氯化碳、二硫化碳等混溶。中 等毒性,强麻醉性 11 . 甲醇:与水、乙醚、醇、酯、卤代烃、苯、酮混溶。中等毒性,麻醉性 12 . 四氢呋喃:优良溶剂,与水混溶,很好的溶解乙醇、乙醚、脂肪烃、芳香烃、氯化烃。吸入微毒,经口低毒。 13 . 己烷:与甲醇部分溶解,与比乙醇高的醇、醚、丙酮、氯仿混溶。低毒, 麻醉性,刺激性 14 . 三氟代乙酸:与水、乙醇、乙醚、丙酮、苯、四氯化碳、己烷混溶,溶解 多种脂肪族、芳香族化合物。 15 . 1,1,1-三氯乙烷:与丙酮、、甲醇、乙醚、苯、四氯化碳等有机溶剂混溶。低毒类溶剂 16 . 四氯化碳:与醇、醚、石油醚、冰醋酸、二硫化碳、氯代烃混溶。氯代甲 烷中毒性最强。 17 . 乙酸乙酯:与醇、醚、氯仿、丙酮、苯等大多数有机溶剂互溶,能溶解某

些金属盐。低毒,麻醉性 18 . 乙醇:与水、乙醚、氯仿、酯、烃类衍生物等有机溶剂混溶。微毒类,麻 醉性 19 . 丁酮:与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶。低毒,毒性强 于丙酮 20 . 苯:难溶于水,与甘油、乙二醇、乙醇、氯仿、乙醚、四氯化碳、二硫化碳、丙酮、甲苯、二甲苯、冰醋酸、脂肪烃等大多有机物混溶。强烈毒性 21 . 乙睛:与水、甲醇、乙酸甲酯、乙酸乙酯、丙酮、醚、氯仿、四氯化碳、 氯乙烯及各种不饱和烃混溶,但是不与饱和烃混溶。中等毒性,大量吸入蒸气, 引起急性中毒 22 . 异丙醇:与乙醇、乙醚、氯仿、水混溶。微毒,类似乙醇 23 . 甲苯:不溶于水,与甲醇、乙醇、氯仿、丙酮、乙醚、冰醋酸、苯等有机 溶剂混溶。低毒类,麻醉作用。 24 .乙二胺:溶于水、乙醇、苯和乙醚,微溶于庚烷。刺激皮肤、眼睛 25 . 丁醇:与醇、醚、苯混溶。低毒,大于乙醇3倍。 26 . 乙酸:与水、乙醇、乙醚、四氯化碳混溶,不溶于二硫化碳及C12以上高级脂肪烃。低毒,浓溶液毒性强 27 .吡啶:与水、醇、醚、石油醚、苯、油类混溶。能溶多种有机物和无机物。 低毒,皮肤黏膜刺激性 28 . 乙酸丁酯:优良有机溶剂,广泛应用于医药行业,还可以用做萃取剂。一 般条件毒性不大 29 . N,N-二甲基甲酰胺:与水、醇、醚、酮、不饱和烃、芳香烃烃等混溶, 溶解能力强。低毒。 30 . N,N-二甲基乙酰胺:溶解不饱和脂肪烃,与水、醚、酯、酮、芳香族化 合物混溶。微毒类 31 . 二甲亚砜:与水、甲醇、乙醇、乙二醇、甘油、乙醛、丙酮乙酸乙酯吡啶、 芳烃混溶。微毒,对眼有刺激性 32 . 甲酰胺:与水、醇、乙二醇、丙酮、乙酸、二氧六环、甘油、苯酚混溶, 几乎不溶于脂肪烃、芳香烃、醚、卤代烃、氯苯、硝基苯等。皮肤、黏膜刺激性、

nmr常见溶剂峰和水峰()

注:JHD为溶剂本身的其他1H对与之相对应的1H之间的耦合常数,JCD为溶剂本身1H对13C的耦合常数,H2O和交换了D的HOD上的1H产生的即水峰的化学位移 氯仿:小、中小、中等极性 DMSO:芳香系统(日光下自然显色、紫外荧光)。对于酚羟基能够出峰。芳香化合物还是芳香甙,都为首选。 吡啶:极性大的,特别是皂甙 对低、中极性的样品,最常采用氘代氯仿作溶剂,因其价格远低于其它氘代试剂。极性大的化合物可采用氘代丙酮、重水等。 ??? 针对一些特殊的样品,可采用相应的氘代试剂:如氘代苯(用于芳香化合物、芳香高聚物)、氘代二甲基亚砜(用于某些在一般溶剂中难溶的物质)、氘代吡啶(用于难溶的酸性或芳香化合物)等。 丙酮:中等极性 甲醇:极性大 氯仿—甲醇: 石:乙 5;1小极性 石:丙 2:1——1:1中等极性 氯仿:甲醇6:1极性以上含有一个糖 2:1 含有两个糖 含有糖的三萜皂甙:一般用吡啶

常见溶剂的化学位移 常见溶剂的1H在不同氘代溶剂中的化学位移值 常见溶剂的化学位移 常见溶剂的13C在不同氘代溶剂中的化学位移值

核磁知识(NMR) 一:样品量的选择 氢谱,氟谱,碳谱至少需要5mg. 1H-1H COSY, 1H-1H NOESY, 1H-13C HMBC, 1H-13C HSQC需要10-15mg. 碳谱需要30mg. 二:如何选择氘代溶剂 常用氘代溶剂: CDCl3, DMSO, D2O, CD3OD.特殊氘代溶剂: CD3COCD3, C6D6, CD3CN。 极性较大的化合物可以选择用D2O或CD3OD,如果想要观察活泼氢切记不能选择D2O和CD3OD。CDCl3为人民币2-3元,D2O为人民币6元,DMSO为人民币10元,CD3OD为人民币30元。Solvent 化学位移(ppm) 水峰位移(ppm) CDCl3 7.26 1.56 DMSO 2.50 3.33 CD3OD 3.31 4.87 D2O 4.79 CD3COCD3 2.05 2.84

常用试剂的溶解性精修订

常用试剂的溶解性标准化管理部编码-[99968T-6889628-J68568-1689N]

常用试剂的溶解性 1 . 二甲胺:有机物和无机物的优良溶剂,溶于水、低级醇、醚、低极性溶 剂,强烈刺激性。 2 . 石油醚:不溶于水,与丙酮、乙醚、乙酸乙酯、苯、氯仿及甲醇以上高级醇混溶,与低级烷相似。 3 . 乙醚:微溶于水,易溶与盐酸,与醇、醚、石油醚、苯、氯仿等多数有机溶剂混溶。麻醉性 4 . 戊烷:与乙醇、乙醚等多数有机溶剂混溶,低毒性。 5 .二氯甲烷:与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶。低毒性,麻 醉性强 7 . 二硫化碳:微溶与水,与多种有机溶剂混溶。麻醉性,强刺激性 8 .丙酮:与水、醇、醚、烃混溶。低毒,类乙醇,但较大 9 . 1,1-二氯乙烷:与醇、醚等大多数有机溶剂混溶。低毒、局部刺激性 10 . 氯仿:与乙醇、乙醚、石油醚、卤代烃、四氯化碳、二硫化碳等混溶。中等毒性,强麻醉性 11 . 甲醇:与水、乙醚、醇、酯、卤代烃、苯、酮混溶。中等毒性,麻醉性 12 . 四氢呋喃:优良溶剂,与水混溶,很好的溶解乙醇、乙醚、脂肪烃、芳香烃、氯化烃。吸入微毒,经口低毒。 13 . 己烷:与甲醇部分溶解,与比乙醇高的醇、醚、丙酮、氯仿混溶。低毒,麻醉性,刺激性 14 . 三氟代乙酸:与水、乙醇、乙醚、丙酮、苯、四氯化碳、己烷混溶,溶解多种脂肪族、芳香族化合物。 15 . 1,1,1-三氯乙烷:与丙酮、、甲醇、乙醚、苯、四氯化碳等有机溶剂混溶。低毒类溶剂

16 . 四氯化碳:与醇、醚、石油醚、冰醋酸、二硫化碳、氯代烃混溶。氯代 甲烷中毒性最强。 17 . 乙酸乙酯:与醇、醚、氯仿、丙酮、苯等大多数有机溶剂互溶,能溶解某些金属盐。低毒,麻醉性 18 . 乙醇:与水、乙醚、氯仿、酯、烃类衍生物等有机溶剂混溶。微毒类,麻醉性 19 . 丁酮:与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶。低毒,毒性强于丙酮 20 . 苯:难溶于水,与甘油、乙二醇、乙醇、氯仿、乙醚、四氯化碳、二硫化碳、丙酮、甲苯、二甲苯、冰醋酸、脂肪烃等大多有机物混溶。强烈毒性21 . 乙睛:与水、甲醇、乙酸甲酯、乙酸乙酯、丙酮、醚、氯仿、四氯化 碳、氯乙烯及各种不饱和烃混溶,但是不与饱和烃混溶。中等毒性,大量吸入蒸气,引起急性中毒 22 . 异丙醇:与乙醇、乙醚、氯仿、水混溶。微毒,类似乙醇 23 . 甲苯:不溶于水,与甲醇、乙醇、氯仿、丙酮、乙醚、冰醋酸、苯等有机溶剂混溶。低毒类,麻醉作用。 24 .乙二胺:溶于水、乙醇、苯和乙醚,微溶于庚烷。刺激皮肤、眼睛 25 . 丁醇:与醇、醚、苯混溶。低毒,大于乙醇3倍。 26 . 乙酸:与水、乙醇、乙醚、四氯化碳混溶,不溶于二硫化碳及C12以上高级脂肪烃。低毒,浓溶液毒性强 27 .吡啶:与水、醇、醚、石油醚、苯、油类混溶。能溶多种有机物和无机物。低毒,皮肤黏膜刺激性 28 . 乙酸丁酯:优良有机溶剂,广泛应用于医药行业,还可以用做萃取剂。一般条件毒性不大 29 . N,N-二甲基甲酰胺:与水、醇、醚、酮、不饱和烃、芳香烃烃等混溶,溶解能力强。低毒。 30 . N,N-二甲基乙酰胺:溶解不饱和脂肪烃,与水、醚、酯、酮、芳香族化合物混溶。微毒类

实验室常用试剂物性及防护措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 实验室常用试剂物性及防护措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2104-86 实验室常用试剂物性及防护措施(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常 工作或活动达到预期的水平。下载后就可自由编辑。 丙酮无色透明易流动液体,有刺激性芳香气味,极易挥发,易燃。能与水、乙醇、N,N-二甲基甲酰胺、氯仿、乙醚及大多数油类混溶。相对密度 (d25)0.7845、熔点-94.7℃、沸点56.05℃。吸入少量刺激鼻、候、眼,大量致头晕、醉感、倦睡、恶心和呕吐,高浓度导致失去知觉、昏迷和死亡。液体丙酮对皮肤有刺激性作用,导致干燥、红肿和皲裂,高浓度蒸气会影响肾和肝的功能。应佩带合适的呼吸器,丁基橡胶手套及防护眼镜。 甲醇一种略有酒精气味的无色、透明、高度挥发、易燃液体。对分子量 32.04,相对密度 0.792(20/4℃),熔点 -97.8℃,沸点 64.5℃,蒸汽与空气混合物爆炸下限6%-36.5%。能与水、乙醇、乙醚、苯、酮、卤代

常用溶剂极性表

常用溶剂极性表

二:常用溶剂的沸点、溶解性和毒性 溶剂名称沸点℃(101.3kPa) 溶解性毒性 液氨-33.35 特殊溶解性:能溶解碱金属和碱土金属剧毒性、腐蚀性 液态二氧化硫-10.08 溶解胺、醚、醇苯酚、有机酸、芳香烃、溴、二硫化碳,多数饱和烃不溶剧毒 甲胺-6.3 是多数有机物和无机物的优良溶剂,液态甲胺与水、醚、苯、丙酮、低级醇混溶,其盐酸盐易溶于水,不溶于醇、醚、酮、氯仿、乙酸乙酯中等毒性,易燃 二甲胺7.4 是有机物和无机物的优良溶剂,溶于水、低级醇、醚、低极性溶剂强烈刺激性 石油醚不溶于水,与丙酮、乙醚、乙酸乙酯、苯、氯仿及甲醇以上高级醇混溶与低级烷相似 乙醚34.6 微溶于水,易溶与盐酸.与醇、醚、石油醚、苯、氯仿等多数有机溶剂混溶麻醉性 戊烷36.1 与乙醇、乙醚等多数有机溶剂混溶低毒性 二氯甲烷39.75 与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶低毒,

麻醉性强 二硫化碳46.23 微溶与水,与多种有机溶剂混溶麻醉,强刺激性 丙酮56.12 与水、醇、醚、烃混溶低毒,类乙醇,但较大 1,1-二氯乙烷57.28 与醇、醚等大多数有机溶剂混溶低毒、局部刺激性氯仿61.15 与乙醇、乙醚、石油醚、卤代烃、四氯化碳、二硫化碳等混溶中等毒性,强麻醉性 甲醇64.5 与水、乙醚、醇、酯、卤代烃、苯、酮混溶中等毒性,麻醉性四氢呋喃66 优良溶剂,与水混溶,很好的溶解乙醇、乙醚、脂肪烃、芳香烃、氯化烃吸入微毒,经口低毒 己烷68.7 甲醇部分溶解,比乙醇高的醇、醚丙酮、氯仿混溶低毒,麻醉性,刺激性 三氟代乙酸71.78 与水,乙醇,乙醚,丙酮,苯,四氯化碳,己烷混溶,溶解多种脂肪族,芳香族化合物 1,1,1-三氯乙烷74.0 与丙酮、甲醇、乙醚、苯、四氯化碳等有机溶剂混溶低毒 四氯化碳76.75 与醇、醚、石油醚、石油脑、冰醋酸、二硫化碳、氯代烃混溶氯代甲烷中,毒性最强 乙酸乙酯77.112 与醇、醚、氯仿、丙酮、苯等大多数有机溶剂溶解,能溶解某些金属盐低毒,麻醉性 乙醇78.3 与水、乙醚、氯仿、酯、烃类衍生物等有机溶剂混溶微毒类,麻醉性 丁酮79.64 与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶低毒,毒性强于丙酮 苯80.10 难溶于水,与甘油、乙二醇、乙醇、氯仿、乙醚、、四氯化碳、二硫化碳、丙酮、甲苯、二甲苯、冰醋酸、脂肪烃等大多有机物混溶强烈毒性 环己烷80.72 与乙醇、高级醇、醚、丙酮、烃、氯代烃、高级脂肪酸、胺类混溶低毒,中枢抑制作用 乙睛81.60 与水、甲醇、乙酸甲酯、乙酸乙酯、丙酮、醚、氯仿、四氯化碳、氯乙烯及各种不饱和烃混溶,但是不与饱和烃混溶中等毒性,大量吸入蒸气,引起急性中毒 异丙醇82.40 与乙醇、乙醚、氯仿、水混溶微毒,类似乙醇 1,2-二氯乙烷83.48 与乙醇、乙醚、氯仿、四氯化碳等多种有机溶剂混溶高毒性、致癌 乙二醇二甲醚85.2 溶于水,与醇、醚、酮、酯、烃、氯代烃等多种有机溶剂混溶, 能溶解各种树脂,还是二氧化硫、氯代甲烷、乙烯等气体的优良溶剂吸入和经口低毒 三氯乙烯87.19 不溶于水,与乙醇、乙醚、丙酮、苯、乙酸乙酯、脂肪族氯代烃、汽油混溶有机有毒品 三乙胺89.6 水:18.7以下混溶,以上微溶, 易溶于氯仿、丙酮,溶于乙醇、乙醚易爆,皮肤黏膜刺激性强 丙睛97.35 溶解醇、醚、DMF、乙二胺等有机物,与多种金属盐形成加成有机物高毒性,与氢氰酸相似 庚烷98.4 与己烷类似低毒,刺激性、麻醉性 水100 略略

核磁谱图NMR常见溶剂峰杂质峰分析_(中文版)

测试核磁的样品一般要求比较纯,并且能够溶解在氘代试剂中,这样才能测得高分辨率的图谱。 为不干扰谱图,所用溶剂分子中的氢都应被氘取代,但难免有氢的残余(1%左右),这样就会产生溶剂峰;除了残存的质子峰外,溶剂中有时会有微量的H2O而产生水峰,而且这个H2O峰的位置也会因溶剂的不同而不同;另外,在样品(或制备过程)中,也难免会残留一些杂质,在图谱上就会有杂质峰,应注意识别。 常用氘代溶剂和杂质峰在1H谱中的化学位移单位:ppm 溶剂—CDCl3 (CD3)2CO (CD3)2SO C6D6 CD3CN CD3OH D2O 溶剂峰—7.26 2.05 2.49 7.16 1.94 3.31 4.80 水峰— 1.56 2.84 3.33 0.40 2.13 4.87 — 乙酸— 2.10 1.96 1.91 1.55 1.96 1.99 2.08 丙酮— 2.17 2.09 2.09 1.55 2.08 2.15 2.22 乙腈— 2.10 2.05 2.07 1.55 1.96 2.03 2.06 苯—7.36 7.36 7.37 7.15 7.37 7.33 — 叔丁醇CH3 1.28 1.18 1.11 1.05 1.16 1.40 1.24 OH —— 4.19 1.55 2.18 —— 叔丁基甲醚 CCH3 1.19 1.13 1.11 1.07 1.14 1.15 1.21 OCH3 3.22 3.13 3.08 3.04 3.13 3.20 3.22 氯仿—7.26 8.02 8.32 6.15 7.58 7.90 — 环己烷— 1.43 1.43 1.40 1.40 1.44 1.45 — 1,2-二氯甲烷 3.73 3.87 3.90 2.90 3.81 3.78 — 二氯甲烷— 5.30 5.63 5.76 4.27 5.44 5.49 — 乙醚 CH3(t) 1.21 1.11 1.09 1.11 1.12 1.18 1.17 CH2(q) 3.48 3.41 3.38 3.26 3.42 3.49 3.56 二甲基甲酰胺 CH 8.02 7.96 7.95 7.63 7.92 7.79 7.92 CH3 2.96 2.94 2.89 2.36 2.89 2.99 3.01 CH3 2.88 2.78 2.73 1.86 2.77 2.86 2.85 二甲基亚砜— 2.62 2.52 2.54 1.68 2.50 2.65 2.71 二氧杂环— 3.71 3.59 3.57 3.35 3.60 3.66 3.75

NMR常见溶剂峰和水峰

常数,H2O和交换了D的HOD上的1H产生的即水峰的化学位移 氯仿:小、中小、中等极性 DMSO:芳香系统(日光下自然显色、紫外荧光)。对于酚羟基能够出峰。芳香化合物还是芳香甙,都为首选。 吡啶:极性大的,特别是皂甙 对低、中极性的样品,最常采用氘代氯仿作溶剂,因其价格远低于其它氘代试剂。极性大的化合物可采用氘代丙酮、重水等。 针对一些特殊的样品,可采用相应的氘代试剂:如氘代苯(用于芳香化合物、芳香高聚物)、氘代二甲基亚砜(用于某些在一般溶剂中难溶的物质)、氘代吡啶(用于难溶的酸性或芳香化合物)等。丙酮:中等极性 甲醇:极性大 氯仿—甲醇: 石:乙 5;1小极性 石:丙 2:1——1:1中等极性 氯仿:甲醇6:1极性以上含有一个糖 2:1 含有两个糖 含有糖的三萜皂甙:一般用吡啶

常见溶剂的化学位移 常见溶剂的1H在不同氘代溶剂中的化学位移值 常见溶剂的化学位移 常见溶剂的13C在不同氘代溶剂中的化学位移值

核磁知识(NMR) 一:样品量的选择 氢谱,氟谱,碳谱至少需要5mg. 1H-1H COSY, 1H-1H NOESY, 1H-13C HMBC, 1H-13C HSQC需要10-15mg. 碳谱需要30mg. 二:如何选择氘代溶剂 常用氘代溶剂: CDCl3, DMSO, D2O, CD3OD.特殊氘代溶剂: CD3COCD3, C6D6, CD3CN。 极性较大的化合物可以选择用D2O或CD3OD,如果想要观察活泼氢切记不能选择D2O和CD3OD。CDCl3为人民币2-3元,D2O为人民币6元,DMSO为人民币10元,CD3OD为人民币30元。Solvent 化学位移(ppm) 水峰位移(ppm) CDCl3 ? ? ? ? DMSO? ? ? ? ? ? ? ? CD3OD? ? ? ? ? ? ? ? D2O? ? ? ? ? ? ? ? CD3COCD3? ? ? ? ? ? ? ?

核磁常见溶剂峰

NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities Hugo E.Gottlieb,*Vadim Kotlyar,and Abraham Nudelman* Department of Chemistry,Bar-Ilan University, Ramat-Gan52900,Israel Received June27,1997 In the course of the routine use of NMR as an aid for organic chemistry,a day-to-day problem is the identifica-tion of signals deriving from common contaminants (water,solvents,stabilizers,oils)in less-than-analyti-cally-pure samples.This data may be available in the literature,but the time involved in searching for it may be considerable.Another issue is the concentration dependence of chemical shifts(especially1H);results obtained two or three decades ago usually refer to much more concentrated samples,and run at lower magnetic fields,than today’s practice. We therefore decided to collect1H and13C chemical shifts of what are,in our experience,the most popular “extra peaks”in a variety of commonly used NMR solvents,in the hope that this will be of assistance to the practicing chemist. Experimental Section NMR spectra were taken in a Bruker DPX-300instrument (300.1and75.5MHz for1H and13C,respectively).Unless otherwise indicated,all were run at room temperature(24(1°C).For the experiments in the last section of this paper,probe temperatures were measured with a calibrated Eurotherm840/T digital thermometer,connected to a thermocouple which was introduced into an NMR tube filled with mineral oil to ap-proximately the same level as a typical sample.At each temperature,the D2O samples were left to equilibrate for at least 10min before the data were collected. In order to avoid having to obtain hundreds of spectra,we prepared seven stock solutions containing approximately equal amounts of several of our entries,chosen in such a way as to prevent intermolecular interactions and possible ambiguities in assignment.Solution1:acetone,tert-butyl methyl ether,di-methylformamide,ethanol,toluene.Solution2:benzene,di-methyl sulfoxide,ethyl acetate,methanol.Solution3:acetic acid,chloroform,diethyl ether,2-propanol,tetrahydrofuran. Solution4:acetonitrile,dichloromethane,dioxane,n-hexane, HMPA.Solution5:1,2-dichloroethane,ethyl methyl ketone, n-pentane,pyridine.Solution6:tert-butyl alcohol,BHT,cyclo-hexane,1,2-dimethoxyethane,nitromethane,silicone grease, triethylamine.Solution7:diglyme,dimethylacetamide,ethyl-ene glycol,“grease”(engine oil).For D2O.Solution1:acetone, tert-butyl methyl ether,dimethylformamide,ethanol,2-propanol. Solution2:dimethyl sulfoxide,ethyl acetate,ethylene glycol, methanol.Solution3:acetonitrile,diglyme,dioxane,HMPA, pyridine.Solution4:1,2-dimethoxyethane,dimethylacetamide, ethyl methyl ketone,triethylamine.Solution5:acetic acid,tert-butyl alcohol,diethyl ether,tetrahydrofuran.In D2O and CD3OD nitromethane was run separately,as the protons exchanged with deuterium in presence of triethylamine. Results Proton Spectra(Table1).A sample of0.6mL of the solvent,containing1μL of TMS,1was first run on its own.From this spectrum we determined the chemical shifts of the solvent residual peak2and the water peak. It should be noted that the latter is quite temperature-dependent(vide infra).Also,any potential hydrogen-bond acceptor will tend to shift the water signal down-field;this is particularly true for nonpolar solvents.In contrast,in e.g.DMSO the water is already strongly hydrogen-bonded to the solvent,and solutes have only a negligible effect on its chemical shift.This is also true for D2O;the chemical shift of the residual HDO is very temperature-dependent(vide infra)but,maybe counter-intuitively,remarkably solute(and pH)independent. We then added3μL of one of our stock solutions to the NMR tube.The chemical shifts were read and are presented in Table 1.Except where indicated,the coupling constants,and therefore the peak shapes,are essentially solvent-independent and are presented only once. For D2O as a solvent,the accepted reference peak(δ)0)is the methyl signal of the sodium salt of3-(trimeth-ylsilyl)propanesulfonic acid;one crystal of this was added to each NMR tube.This material has several disadvan-tages,however:it is not volatile,so it cannot be readily eliminated if the sample has to be recovered.In addition, unless one purchases it in the relatively expensive deuterated form,it adds three more signals to the spectrum(methylenes1,2,and3appear at2.91,1.76, and0.63ppm,respectively).We suggest that the re-sidual HDO peak be used as a secondary reference;we find that if the effects of temperature are taken into account(vide infra),this is very reproducible.For D2O, we used a different set of stock solutions,since many of the less polar substrates are not significantly water-soluble(see Table1).We also ran sodium acetate and sodium formate(chemical shifts: 1.90and8.44ppm, respectively). Carbon Spectra(Table2).To each tube,50μL of the stock solution and3μL of TMS1were added.The solvent chemical shifts3were obtained from the spectra containing the solutes,and the ranges of chemical shifts (1)For recommendations on the publication of NMR data,see: IUPAC Commission on Molecular Structure and Spectroscopy.Pure Appl.Chem.1972,29,627;1976,45,217. (2)I.e.,the signal of the proton for the isotopomer with one less deuterium than the perdeuterated material,e.g.,C H Cl3in CDCl3or C6D5H in C6D6.Except for CHCl3,the splitting due to J HD is typically observed(to a good approximation,it is1/6.5of the value of the corresponding J HH).For CHD2groups(deuterated acetone,DMSO, acetonitrile),this signal is a1:2:3:2:1quintet with a splitting of ca.2 Hz. (3)In contrast to what was said in note2,in the13C spectra the solvent signal is due to the perdeuterated isotopomer,and the one-bond couplings to deuterium are always observable(ca.20-30Hz). Figure1.Chemical shift of H DO as a function of tempera-ture. https://www.doczj.com/doc/3218562623.html,.Chem.1997,62,7512-7515 S0022-3263(97)01176-6CCC:$14.00?1997American Chemical Society

实验室常用溶液及溶剂的配制

实验室常用溶液及试剂配制表一普通酸碱溶液的配制 表二常用酸碱指示剂

表三混合酸碱指示剂 表四容量分析基准物质的干燥

表五缓冲溶液的配制

实验室常用试验方法2 九、柠檬酸(C6H8O7·H2O) 称取试样1.5g(精确到0.0002g)于三角瓶内,加入水50ml溶解,加酚酞指示剂3滴,用1mol/L氢氧化钠标准溶液滴定至粉红色为终点,同时做空白试验。 计算:X%(一水)= (V1-V0)×C×0.06404x m×(1-0.08566)×100 X%(无水)= (V1-V0)×C×0.06404x m×100 V1-----消耗氢氧化钠标准溶液的体积,ml; V0-----空白所消耗氢氧化钠标准溶液的体积,ml; C------氢氧化钠标准溶液浓度,mol/L; m---样品质量。 十、钙含量测定(磷酸氢钙CaHPO4、磷酸二氢钙Ca(H2PO4)2·H2O、钙粉等) 称取2g(精确到0.0002g)样品,用10ml盐酸(1+1)溶解,转移至100ml容量瓶中定溶,用移液管吸取10ml于250ml锥形瓶中,加50ml水,5ml蔗糖溶液(25g/L),2ml三乙酸胺(1+1),1ml乙二胺(1+1),1滴孔雀绿指示液(1g/L),滴加氢氧化钾溶液(200g/L)至无色,再过量10ml,加0.1g盐酸羟胺(每加一种试剂都要摇匀),加钙黄绿素少许,在黑色背景下用0.05mol/L的EDTA标准溶液滴定至绿色荧光消失呈现紫红色为滴定终点。 Ca%= C×V×0.4008x m ×100 C------EDTA标准溶液的浓度,mol/L; V-----消耗EDTA标准溶液的体积,ml; m----样品质量。 (二)氟(Fˉ)含量的测定: 1、标准曲线的绘制; 2、试样含量的测定: 称取0.5g(精确到0.0002g)置于50ml纳氏比色管中,加1mol/L盐酸10ml,密闭提取1h (不时摇动),避免粘于管壁,提取后加总离子强度缓冲液25ml,加水至刻度,以滤纸过滤。以氟电极测平衡电位值。 结果计算:X= C×50×1000 x m×1000 = 50C x m X-----试样中氟含量, m---试样质量,g; C-----据电位值查得的浓度, 总离子强度缓冲液:现配现用,3mol/L乙酸钠;0.75mol/L柠檬酸钠,配成(1+1)。 测定时,用蒸馏水洗电极装置至值为-370以后。 (三)磷(P)的测定 磷标准曲线的绘制:准确移取磷标准溶液(分析纯的磷酸二氢钾,在105℃干燥1h,冷却后称取0.2195g,溶于1L的容量瓶中,加硝酸3ml,用水稀释至刻度,得到50ug/ml溶液),分别吸取0.0、1.0、2.0、4.0、6.0、8.0、10.0、12.0、15.0ml于50ml容量瓶中,各加入磷显色液(钒-钼酸铵显色液:偏钒酸铵1.25g,加250ml硝酸于1000ml容量瓶中;钼酸铵25g 于烧杯中,加400ml水溶解,冷却下,将此液倒入容量瓶中,定容)10ml,用蒸馏水定容,

常用有机溶剂分类

有机溶剂分类 一、烃类溶剂 1.烃 只含有碳氢两种元素的有机化合物叫烃。根据结构将烃类分为脂肪烃和芳香烃。脂肪烃包括脂肪链烃和脂环烃。开链结构的脂肪烃根据结构的饱和程度分为饱和链烃(烷烃)和不饱和链烃(烯烃和炔烃)。芳香烃是含有苯环特殊结构的烃类。根据具体结构分为单环芳烃、多环芳烃和稠环芳烃。 烃类溶剂根据来源分为两类:由石油分馏得到的烃类混合物溶剂叫石油溶剂油,简称溶剂油;由化工原料合成或精制得到的成分单一烃类溶剂是烃的纯溶剂。纯溶剂价格较高,通常只用于一些特殊用途中。 2.溶剂油 石油是由多种烃类组成的混合物,经过分馏处理得到不同沸点范围的产品。根据沸,抿范围通常把石油产品分为石油醚、汽油、煤油、柴油、润滑油、石蜡和沥青。其中沸点范围在30~90℃以戊烷和己烷为主要成分的石油醚和沸点范围在40~200℃烃分子含碳数在4~12的汽油,有很好的溶解性能。在工业生产中常做溶剂使用,称为溶剂油或溶剂汽油。近年来还开发出相当于煤油乃至轻柴油馏分做高沸点溶剂油,拓宽了溶剂油的概念。煤油是石油分馏时,沸点在175~325℃范围的馏分,由于馏程长所包含的烃类成分复杂。在一定情况下也可以做溶剂使用,如美国干洗业使用的干洗溶剂汽油(stoddard solvent)实际上是一种不易燃的煤油溶剂。因此广义上溶剂油包括多种沸程范围的烃类混合物以及己烷、苯、甲苯、二甲苯纯烃类溶剂。为了叙述上的方便,本书介绍的溶剂油是指由石油分馏得到的烃类混合物溶剂。 (1)溶剂油按沸程分类根据分馏过程的沸程,溶剂油大致分为三类:把沸程在100℃凋以下的称为低沸点溶剂油,如工业上的6号抽提溶剂油,沸程为60~90℃;把沸程在100~150℃的称为中沸点溶剂油,如橡胶溶剂油,沸程在80~120℃;把沸程高于150℃的称为高调沸点溶剂油,如油漆溶剂油,沸程为140—200℃,油墨溶剂油干点达360℃都属于高沸点溶剂油。从沸程范围看,溶剂油大多数属于汽油馏分。 (2)溶剂油的化学成分溶剂油是各种烃类的混合物,主要成分有开链烷烃、烯烃、环烷烃和芳香烃。由于烯烃化学性质活泼、安定性差,不适合作溶剂使用,所以一般溶剂油中含烯烃很少,成分以其他三类烃为主。 低沸程溶剂油,如6号抽提溶剂油,120号橡胶溶剂油,200号油漆溶剂油中主要成分是烷烃和环烷烃。有时称为脂肪烃类溶剂,脂肪烃溶剂油成分有直链烷烃、支链烷烃、环烷烃。由于不同结构烷烃的溶解性能不同,所以又可以根据其主要成分进一步分类,如以支链烷烃为主要成分的溶剂油,称为异构烷烃溶剂油,它的溶解性能优于一般脂肪烃溶剂油而高沸程溶剂油中甲苯、二甲苯等芳烃含量较大称为芳烃类溶剂油,如近年兴起的高沸点芳烃溶剂油主要成分就是分子中含9个碳原子的芳烃。 溶剂油的性能与其化学成分有密切关系,由于烃类的溶解能力顺序为:芳烃>环烷烃> 链烷烃。所以相同沸程的溶剂油中含链烷烃、环烷烃多的比含芳烃较多的溶剂油苯胺点高、贝壳松脂丁醇值低,溶解能力差。 纯芳香烃溶剂油虽然溶解能力强,但毒性也大,因此目前工业上出现用高芳香烃溶剂油和低芳香烃溶剂油来代替苯、甲苯、二甲苯等纯芳香烃溶剂使用的趋势。这样虽然溶解能力稍有降低,但降低了溶剂油的毒性,也降低了生产成本。而且为降低溶剂油的毒性,各国对溶剂油中的芳香

NMR常见溶剂峰和水峰

注:JHD为溶剂本身得其她1H对与之相对应得1H之间得耦合常数,JCD为溶剂本身1H对13C得耦合常数,H2O与交换了D得HOD上得1H产生得即水峰得化学位移 氯仿:小、中小、中等极性 DMSO:芳香系统(日光下自然显色、紫外荧光)。对于酚羟基能够出峰。芳香化合物还就是芳香甙,都为首选。 吡啶:极性大得,特别就是皂甙 对低、中极性得样品,最常采用氘代氯仿作溶剂,因其价格远低于其它氘代试剂。极性大得化合物可采用氘代丙酮、重水等。 针对一些特殊得样品,可采用相应得氘代试剂:如氘代苯(用于芳香化合物、芳香高聚物) 、氘代二甲基亚砜(用于某些在一般溶剂中难溶得物质) 、氘代吡啶(用于难溶得酸性或芳香化合物)等。 丙酮:中等极性 甲醇:极性大 氯仿—甲醇: 石:乙5;1小极性 石:丙2:1——1:1中等极性 氯仿:甲醇6:1极性以上含有一个糖 2:1 含有两个糖 含有糖得三萜皂甙:一般用吡啶 ?常见溶剂得化学位移 常见溶剂得1H在不同氘代溶剂中得化学位移值

常见溶剂得化学位移 常见溶剂得13C在不同氘代溶剂中得化学位移值

核磁知识(NMR)?一:样品量得选择??氢谱,氟谱,碳谱至少需要5mg、1H-1HCOSY,1H-1HN OESY, 1H-13C HMBC, 1H-13C HSQC需要10-15mg、碳谱需要30mg、 二:如何选择氘代溶剂? 常用氘代溶剂: CDCl3,DMSO,D2O,CD3OD、特殊氘代溶剂:CD3COCD3, C6D6, CD3C N。 极性较大得化合物可以选择用D2O或CD3OD,如果想要观察活泼氢切记不能选择D2O与CD3OD。 CDCl3为人民币2-3元,D2O为人民币6元,DMSO为人民币10元,CD3OD为人民币30元。 Solvent 化学位移(ppm) 水峰位移(ppm) CDCl3 7、26 1、56?DMSO 2、50 3、33?CD3OD 3、31 4、87?D2O4、79 CD3COCD3 2、052、84

NMR常见溶剂峰和水峰

N M R常见溶剂峰和水峰 Revised as of 23 November 2020

13C的耦合常数,H2O和交换了D的HOD上的1H产生的即水峰的化学位移 氯仿:小、中小、中等极性 DMSO:芳香系统(日光下自然显色、紫外荧光)。对于酚羟基能够出峰。芳香化合物还是芳香甙,都为首选。 吡啶:极性大的,特别是皂甙 对低、中极性的样品,最常采用氘代氯仿作溶剂,因其价格远低于其它氘代试剂。极性大的化合物可采用氘代丙酮、重水等。 针对一些特殊的样品,可采用相应的氘代试剂:如氘代苯(用于芳香化合物、芳香高聚物)、氘代二甲基亚砜(用于某些在一般溶剂中难溶的物质)、氘代吡啶(用于难溶的酸性或芳香化合物)等。 丙酮:中等极性 甲醇:极性大 氯仿—甲醇: 石:乙5;1小极性 石:丙2:1——1:1中等极性 氯仿:甲醇6:1极性以上含有一个糖 2:1含有两个糖 含有糖的三萜皂甙:一般用吡啶

常见溶剂的化学位移 常见溶剂的1H在不同氘代溶剂中的化学位移值 常见溶剂的化学位移 常见溶剂的13C在不同氘代溶剂中的化学位移值

核磁知识(NMR) 一:样品量的选择 氢谱,氟谱,碳谱至少需要,1H-1HNOESY,1H-13CHMBC,1H-13CHSQC需要10-15mg.碳谱需要30mg. 二:如何选择氘代溶剂 常用氘代溶剂:CDCl3,DMSO,D2O,CD3OD.特殊氘代溶剂:CD3COCD3,C6D6,CD3CN。 极性较大的化合物可以选择用D2O或CD3OD,如果想要观察活泼氢切记不能选择D2O 和CD3OD。 CDCl3为人民币2-3元,D2O为人民币6元,DMSO为人民币10元,CD3OD为人民币30元。 Solvent化学位移(ppm)水峰位移(ppm) CDCl3 DMSO CD3OD D2O CD3COCD3

常用有机溶剂极性表

微波化学-溶剂极性 1.前言:只有极性物质能吸收微波,非极性物质不吸收微波,一般介电常数e>15者,称之为极性溶剂,在进行实验时,务必确保反应的试剂中含有极性物质。而介电常数e<15者决不能单独作为反应样品进行微波加热,否则会造成磁控管打火,烧坏仪器。如果试验中所用试剂为非极性时,在不影响实验的情况下,应该混合加入极性溶剂或者极性物质以利反应,如:碳化硅 2.常用有机溶剂的极性表 溶剂介电常数(e) 溶剂介电常数(e) 溶剂介电常数(e) 三甲基苯 1.90 丁酸乙酯 5.10 甲丙酮16.80 环己烷 2.02 溴苯 5.17 苯乙酮17.30 四氯化碳 2.24 丁胺 5.40 苯甲醛17.80 1,2-二氧六环 2.25 丁酸甲酯 5.60 丁醇17.80 苯 2.30 氯苯 5.62 异丙醇17.90 对二甲苯 2.30 苯甲酸乙酯 6.02 环己酮18.20 三甲苯 2.30 乙酸乙酯 6.02 苯乙腈18.30 二甲苯 2.40 乙酸 6.15 丁酮18.50 甲苯 2.40 乙胺 6.30 异丁醇18.70 三乙胺 2.42 乙酸甲酯 6.70 丙酮20.70 萘 2.50 甲酸乙酯7.10 丁腈20.70 7.20 乙酸酐21.00 三甲胺 2.50 1,2-二甲氧基乙 烷 邻二甲胺 2.57 苯胺7.30 甲醛23.00 二硫化碳 2.60 四氢呋喃7.58 酒精24.30 己酸 2.60 正丁醇7.80 乙醇24.50 戊酸 2.60 2,2,2-三氟乙醇8.55 苯甲腈26.00 乙醛 2.90 三氟乙酸8.55 乙二腈27.00 正丁酸 2.90 二氯乙烷8.93 丙腈27.70 丁酸 3.00 邻二氯苯9.93 甲醇32.70 呋喃 3.00 1,2-二氯乙烷10.36 硝基苯34.82 乙苯 3.00 2-甲基2-丙醇10.90 硝基甲烷35.87 36.70 丙酸 3.10 丁酸酐12.00 N,N-二甲基甲 酰胺 丁醚 3.10 吡啶12.50 乙二醇37.00 辛酸 3.20 苯甲醇13.00 乙腈37.50 三氯乙烯 3.40 二苯甲酮13.00 N,N-二甲基乙37.80

相关主题
文本预览
相关文档 最新文档