当前位置:文档之家› 拓扑优化技术在汽车结构件设计中的应用_瞿元

拓扑优化技术在汽车结构件设计中的应用_瞿元

拓扑优化技术在汽车结构件设计中的应用_瞿元
拓扑优化技术在汽车结构件设计中的应用_瞿元

结构优化设计论文

结构优化课程设计 学院土木学院 专业工程力学 班级1001

学号100120118 姓名崔亚超

总结结构优化设计的原理、方法及发展趋势 崔亚超 工程力学1001班学号100120118 摘要:阐述了工程结构优化设计理论从最初的截面优化发展到形状优化、拓扑优化的基本历程及其相关特点,对优化设计选用的各种算法进行归类,并简述结构优化设计的发展趋势。 关键词:尺寸优化;形状优化;拓扑优化;优化算法 Summary structural optimization design principles, methods and development trends Abstract:The structural optimization of engineering design theory from the initial cross-section to optimize the development of shape optimization, topology optimization of the basic course and its related characteristics, the optimum design on the range of algorithms are classified, and to outline the development trend of structural optimization design . Key words:size optimization; shape optimization; topology optimization; optimization algorithm 0 引言 结构优化设计的目的在于寻求既安全又经济的结构形式,而结构形式包括了关于尺寸、形状和拓扑等信息I对于试图产生超出设计者经验的有效的新型结构来说,优化是一种很有价值的工具,优化的目标通常是求解具有最小重量的结构B同时必须满足一定的约束条件,以获得最佳的静力或动力等性态特征。 集计算力学、数学规划、计算机科学以及其他工程学科于一体的结构优化设计是现代构设计领域的重要研究方向。它为人们长期所追求最优的工程结构设计尤其是新型结构设计提供了先进的工具,成为近代设计方法的重要内容之一。 结构优化设计也使得计算力学的任务由被动的分析校核上升为主动的设计与优化,由此结构优化也具有更大的难度和复杂性。它不仅要以有限元等数值方法作为分析手段,而且还要进一步计算结构力学性态的导数值。它要面向工程设计中的各种实际问题建立优化设计模型,根据结构与力学的特点对数学规划方法进行必要的改进。因此,结构优化设计是一综合性、实用性很强的理论和技术。 目前,结构优化设计的应用领域已从航空航天扩展到船舶、桥梁、汽车、机械、水利、建筑等更广泛的工程领域,解决的问题从减轻结构重量扩展到降低应力水平、改进结构性能和提高安全寿命等更多方面。 由于结构优化设计给工程界带来了经济效益及近年来有限元研究和应用的相对成熟,计算机条件的进一步改善和普及,人们对结构优化设计的研究和应用的呼声更高了。无论国内还是国外,对这一现代技术的需求都有增长的趋势。随着设计技术的更新和产品竞争的加剧,结构优化设计将会有更大的发展。

汽车荷载等级

6 汽车及人群荷载 6.0.1 《标准》(97)中的车辆荷载在形式上为四个等级,即汽车—超20级、挂车—120; 汽车—20级、挂车—100;汽车—15级、挂车—80;汽车—10级、履带—50。 同时规定,新建公路桥涵的设计不采用汽车—15级、挂车—80荷载,只是为便 于国家统计工作的连续性而保留这一级荷载。 《标准》(97)所规定的以车队为计算荷载图式的车辆荷载标准,是设计公路桥 梁及其它构造物所规定的计算荷载。为了保证桥梁的安全储备和使用寿命,对 桥上实际行驶的车辆轴重和总重必须予以严格限制,一般情况下,不允许采用 设计的极限值。因此,设计轴荷载多大,桥上实际行驶车辆的轴荷载也允许多 大,这是不对的,车辆设计荷载与车辆轴载、总载限制是两个不同的概念,不 可混为一谈。世界上有一些国家制定了车辆轴载限值标准。他们在制定设计车 辆荷载标准及车辆轴重限值时,除了考虑本国的国民经济发展水平外,同时考 虑了采用重型汽车提高轴重限值而获得的运输经济效益与相应增加的公路基本 建设投资及原有公路网的补强改造费用之间的合理平衡。由于提高轴重对公路 投资的影响十分惊人,长期以来,各国政府都采用了极其慎重的态度。表6.0.1-1 列出了几个经济较发达国家车辆荷载设计值和允许轴载值,表6.0.1-2列举了 一些国家和地区的轴载限值。

现行公路桥涵结构设计用车辆荷载标准模式是根据我国建国以后公路上交通荷载的实际情况,经过相当长时期的分析、研究和修正确定的。经过几十年的修订、完善,其分级逐步完善、科学、合理,基本适应了我国公路桥涵结构发展的需求。

1972年,在修订《标准》时,对原车辆荷载标准进行了一次检查,一方面向用车单位作调查,另一方面对按标准设计的桥梁通过一些重型卡车的能力作了计算比较。调查及计算分析的结果是:公路上最常行驶的车辆,解放牌一级总重不超过100kN,改装后的黄河牌和一些越野车总重不超过300kN,这些都不超过或略超过标准车加重车,对较重的车要加以验算。 鉴于车辆总重和轴重日趋增大,轴数也日渐增多,特别是发展大型集装箱运输后,通往集装箱港口码头的公路桥涵需考虑集装箱半挂车能否正常通行,而从一些计算资料可以看出,有些较重的卡车、自卸车、吊车和半挂、全挂车,在按汽车—20级、挂车—100设计的桥梁上还不能自由通行,因此,有必要在原有的车辆荷载标准中,增加一个较高的等级。 《标准》(81)确定,增加荷载等级汽车—超20级时,考虑了1978年京塘高速公路初步设计提出的两重车列形式,一是200kN车队或300kN车队插入一辆550kN 半挂车;二是原汽车—20级乘1.5倍,间距不变。后者虽然便于记忆和计算使用,但实际上并无300kN双轴车和450kN三轴车的车型,因此选定用200kN车队插入一辆550kN半挂车,车辆间距仍取15m,加重车前后的间距取10 m。在缺乏更多资料和科研成果的情况下,标准推荐暂用550kN半挂车插入200kN车队的形式作为新增加的车辆荷载等级标准即汽车—超20级。 为了保证桥涵的安全,对按荷载标准设计的桥梁的极限通过能力进行了计算。在制方《标准》(72)时曾对三个等级的荷载标准作过验算;制订《标准》(81)时,又检查了各级桥梁的极限通过能力,所用车辆除我国自己生产的车型外,也考虑了进口的车型。各国生产的普通载重卡车较重的是三轴车,而各国法定的车辆总重及轴重的限制,最大车重300kN左右,极个别超过300kN。载重更大的车辆则向半挂车发展。普通卡车有四轴的,其作用不比三轴大。同吨位卡车大多有长短车身之分,其轴距亦不同。验算通过能力时,选用了总重超过300kN或轴重超过120kN或重吨位轴距较短的车型。另外还选用了日渐增多的吊车,其重型四轴车可代表我国生产的双轴转向的四轴卡车。自卸车选用了载重120kN到320kN的各种车型。半挂车和全挂车取用载重150kN到500kN的各种车型。从验算结果看,上述车型通过汽车—15级桥梁的情况大体上比通过汽车—20级桥梁降低一级,即可以与标准车同时以单辆车慢行通过的只能单独通过、可以单独通过的只能单车慢车通过。 同时,又将在按汽车—20级荷载设计的桥梁上不易通过的重型车如Coles(柯尔斯)100t吊车、上海380(320kN自卸车)、汉阳960(500kN半挂车)及汉阳881全挂车等,与550kN半挂插入200kN车队作了比较,如以弯矩控制,跨径30m以下可与550kN半挂车队混行通过,跨径30m以上可单车通过,且都比汽车—20级通过情况为好。但是它与汽车—20集相比,级差不大,如跨径50m以下单向宽11.7m的简支梁桥、汽车—超20级的弯矩只比汽车—20级增大12%,剪力平均增大17%;对净-7(m)的双车道桥,则分别增大3.4%和5.9%,似乎不足以形成一级,整个车辆荷载标准如何分级有待于进一步的研究。

优化设计在材料中的应用

复合材料结构稳定性约束优化设计 纤维增强复合材料结构, 以高的比强度和比刚度, 在航空航天领 域得到了广泛的应用。许多空天结构的设计, 均利用复合材料结构特殊的屈曲特性, 以达到提高稳定性和降低结构重量的目的, 如机身、航天器的承力筒、直升机地板等。复合材料具有较强的可设计性, 可通过优化铺层参数, 如层数和纤维铺设角, 提高结构的临界屈曲载荷, 在满足稳定性要求的前提下减轻结构重量。有关复合材料结构稳定性优化以及稳定性约束优化的研究不断发展, 如文献[ 1] 研究了层合板临界屈曲载荷的优化方法及灵敏度分析方法, 文献[ 2] 通过引入层合板刚度矩阵求解过程的中间变量,对屈曲载荷进行了优化; 近年来遗传算法也逐渐被应用于该问题, 扩大了研究对象的结构形式范围,提高了优化设计的效率。但是, 多数复合材料稳定性方面的优化工作采用的是确定性的优化设计方法, 即不考虑材料及载荷的不确定性, 得到的优化结果濒临失效边界, 难以满足结构的可靠性要求。纤维增强复合材料, 材料性能离散度大, 工作环境复杂, 各向异性的特点使其对载荷相当敏感。20 世纪90 年代, 设计者们逐渐意识到不确定性因素给复合材料结构带来的影响[ 3], 因此复合材料结构的可靠性优化设计越来越多地受到工程界的重视, 并开展了相关研究。文献[ 4, 5] 基于层合板临界屈曲载荷的解析表达式, 构建极限状态方程, 计算结构的失效概率。但是, 工程实际中的结构通常需要使用有限元等方法进行结构分析, 缺少显式的极限状态函数, 造成可靠度计算困难。对此, 一些学者提出了结构可靠性分析的响应面 法, 使 可靠度计算得以简化,并且一般能够满足工程精度

ANSYS拓扑优化原理讲解以及实例操作

拓扑优化是指形状优化,有时也称为外型优化。 拓扑优化的目标是寻找承受单载荷或多载荷的物体的最佳材料分配方案。这种方案在拓扑优化中表现为“最大刚度”设计。与传统的优化设计不同的是,拓扑优化不需要给出参数和优化变量的定义。目标函数、状态变量和设计变量(参见“优化设计”一章)都是预定义好的。用户只需要给出结构的参数(材料特性、模型、载荷等)和要省去的材料百分比。给每个有限元的单元赋予内部伪密度来实现。这些伪密度用PLNSOL ,TOPO 命令来绘出。拓扑优化的目标——目标函数——是在满足结构的约束(V )情况下减少结构的变形能。减小结构的变形能相当于提高结构的刚度。这个技术通过使用设计变量。 结构拓扑优化的基本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻求最优材料分布的问题。通过拓扑优化分析,设计人员可以全面了解产品的结构和功能特征,可以有针对性地对总体结构和具体结构进行设计。特别在产品设计初期,仅凭经验和想象进行零部件的设计是不够的。只有在适当的约束条件下,充分利用拓扑优化技术进行分析,并结合丰富的设计经验,才能设计出满足最佳技术条件和工艺条件的产品。连续体结构拓扑优化的最大优点是能在不知道结构拓扑形状的前提下,根据已知边界条件和载荷条件确定出较合理的结构形式,它不涉及具体结构尺寸设计,但可以提出最佳设计方案。拓扑优化技术可以为设计人员提供全新的设计和最优的材料分布方案。拓扑优化基于概念设计的思想,作为结果的设计空间需要被反馈给设计人员并做出适当的修改。最优的设计往往比概念设计的方案结构更轻,而性能更佳。经过设计人员修改过的设计方案可以再经过形状和尺寸优化得到更好的方案。 优化拓扑的数学模型 优化拓扑的数学解释可以转换为寻求最优解的过程,对于他的描述是:给定系统描述和目标函数,选取一组设计变量及其范围,求设计变量的值,使得目标函数最小(或者最大)。一种典型的数学表达式为: ()()()12,,0 ,,0min ,g x x v g x x v f x v ?=??≤?? ?? && 式中,x -系统的状态变量;12g g 、-一等式和不等式的结束方程;(),f x v -目标函数; v -设计变量。 注:在上述方程中,x 作为系统的状态变量,并不是独立的变量,它是由设计变量得 出的,并且与设计变量相关。 优化拓扑所要进行的数学运算目标就是,求取合适的设计变量v ,并使得目标函数值最小。 基于ANSYS 的优化拓扑的一般过程 (进行内容排版修改) 在ANSYS 中,进行优化拓扑,一般分为6个步骤。具体流程见图5-1:

拓扑优化经典99行程序解读

3188-1-1.html Sigmund教授所编写的top优化经典99行程序,可以说是我们拓扑优化研究的基础; 每一个新手入门都会要读懂这个程序,才能去扩展,去创新; 99行程序也有好多个版本,用于求解各种问题,如刚度设计、柔顺机构、热耦合问题,但基本思路大同小异; 本文拟对其中的一个版本进行解读,愿能对新手有点小小的帮助。 不详之处,还请论坛内高手多指点 读懂了该程序,只能说是略懂拓扑优化理论了, 我手里就有一些水平集源程序是成千上万行,虽然在99行的基础上成熟了很多,但依然还有很多的发展空间。 源程序如下: %%%% A 99 LINE TOPOLOGY OPTIMIZATION CODE BY OLE SIGMUND, JANUARY 2000 %%% %%%% CODE MODIFIED FOR INCREASED SPEED, September 2002, BY OLE SIGMUND %%% function top(nelx,nely,volfrac,penal,rmin); nelx=80; nely=20; volfrac=0.4; penal=3; rmin=2; % INITIALIZE x(1:nely,1:nelx) = volfrac; loop = 0; change = 1.; % START ITERATION while change > 0.01 loop = loop + 1; xold = x; % FE-ANAL YSIS [U]=FE(nelx,nely,x,penal); % OBJECTIVE FUNCTION AND SENSITIVITY ANAL YSIS [KE] = lk; c = 0.; for ely = 1:nely for elx = 1:nelx n1 = (nely+1)*(elx-1)+ely; n2 = (nely+1)* elx +ely; Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1); c = c + x(ely,elx)^penal*Ue'*KE*Ue; dc(ely,elx) = -penal*x(ely,elx)^(penal-1)*Ue'*KE*Ue; end end

建筑结构设计的优化方法及应用分析 (2)

建筑结构设计的优化方法及应用分析 在建筑造价中,结构造价的比例非常大。因此,研究建筑结构设计的优化方法并将其应用于实践具有非常积极的现实意义。文章分析了建筑结构设计的优化方法和应用。 标签:建筑结构设计;优化;方法;应用 引言:伴随我国建筑业的快速发展,对建筑设计进行优化也是设计者的一个重要研究课题。为了解决建筑面积与土地面积的矛盾,建筑本身的性质与理论知识与实际情况之间的矛盾,优化了建筑结构。 1、建筑结构设计优化的内容及意义 建筑结构的优化主要体现在两个方面。一是建筑工程整体结构的优化设计;二是建筑工程局部结构的优化设计。其中,局部结构优化设计的目标主要包括以下几个方面:基本结构方案、屋面系统方案、围护结构方案、结构细节等。当对上述目标进行优化时,往往涉及到选择、受力分析和成本分析。总之,在优化建筑结构设计过程中,不仅要严格执行设计规范,而且要充分结合施工项目的具体情况,从而最终提高建筑工程的综合经济效益。建筑结构优化的重要性主要是两点,一是提高建筑工程的安全性和可靠性,二是降低建筑工程的总造价。通过对比分析发现,在适当的应用下,建筑结构设计优化方法能最大限度地降低建筑工程总造价30%。通过优化方法的有效应用,一方面可以最大限度地提高材料的性能,另一方面可以为实际的规划执行提供一系列有用的工作。 2、建筑结构设计的优化方法 2.1概念设计优化 建筑结构的概念设计是设计者将自己的理论知识和设计要求和建筑环境结合起来设计建筑结构。在设计时,应考虑许多非唯一的数值和不可预测的不可抗拒因素。例如,在设计建筑物时,需要考虑其抗震性能。地震不能通过预测和针对性的设计发生,所以在设计中,应加强地震多发区域内每一栋建筑物的抗震性能,尤其要注意建筑物的抗震性能,是设计优化的这些因素的设计优化的概念。 2.2模型设计优化 在优化设计概念后,还应优化模型的结构。首先,在设计变量的选择中,需要选择的变化内容越来越少,但作为参考标准的基本价值,减少了优化设计的难度,提高了设计的可靠性;其次,针对较大的接触因素,建立相应的功能结构设计和分析,降低建筑成本,减少错误概率的设计,加强建筑整体性优化,减少设计和施工工作的工作量;第三是衡量建筑结构的工作条件,工作环境通常是复杂多变的,具体的建设需要考虑的各个部分稳定、结构应力极限,整体结构刚性和

机械结构优化设计

机械结构优化设计 ——周江琛2013301390008 摘要:机械优化设计是一门综合性的学科,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。本文重点介绍机械优化设计方法的同时,对其原理、优缺点及适用范围进行了总结,并分析了优化方法的最新研究进展。关键词:优化方法约束特点函数 优化设计是一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立

目标函数和约束条件,并使目标函数获得最优值一种现代设计方法,目前机械优化设计已广泛应用于航天、航空和国防等各部门。优化设计是20世纪60年代初发展起来的,它是将最优化原理和计算机技术应用于设计领域,为工程设计提供一种重要的科学设计方法。利用这种新方法,就可以寻找出最佳设计方案,从而大大提高设计效率和质量。因此优化设计是现代设计理论和方法的一个重要领域,它已广泛应用于各个工业部门。优化方法的发展经历了数值法、数值分析法和非数值分析法三个阶段。20世纪50年代发展起来的数学规划理论形成了应用数学的一个分支,为优化设计奠定了理论基础。20世纪60年代电子计算机和计算机技术的发展为优化设计提供了强有力的手段,使工程技术人员把主要精力转到优化方案的选择上。最优化技术成功地运用于机械设计还是在20世纪60年代后期开始,近年来发展起来的计算机辅助设计(CAD),在引入优化设计方法后,使得在设计工程中既能够不断选择设计参数并评选出最优设计方案,又可加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新日益所以今天,把优化设计方法与计算机辅助设计结合起来,使设计工程完全自动化,已成为设计方法的一个重要发展趋势。 优化设计方法多种多样,主要有以下几种:1无约束优化设计法;无约束优化设计是没有约束函数的优化设计,无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法,如最速下降法、共轭梯度法、牛顿法及变尺度法等。另一类是只利用目标函数值的无约束优化方法,如坐标轮换法、单形替换法及鲍威尔法等。此法具有计算

结构拓扑优化的发展现状及未来

结构拓扑优化的发展现状及未来 王超 中国北方车辆研究所一、历史及发展概况 结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算结构力学中已经被认为是最富挑战性的一类研究工作。目前有关结构拓扑优化的工程应用研究还很不成熟,在国外处在发展的初期,尤其在国内尚属于起步阶段。1904 年Michell在桁架理论中首次提出了拓扑优化的概念。自1964 年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20 世纪80 年代初,程耿东和N. Olhoff在弹性板的最优厚度分布研究中首次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化设计,开创了连续体结构拓扑优化设计研究的新局面。1993年和提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002 年罗鹰等提出三角网格进化法,该方法在优化过程中实现了退化和进化的统一,提高了优化效率。 二、拓扑优化的工程背景及基本原理 通常把结构优化按设计变量的类型划分成三个层次:结构尺寸优化、形状优化和拓扑优化。尺寸优化和形状优化已得到充分的发展,但它们存在着不能变更结构拓扑的缺陷。在这样的背景下,人们开始研究拓扑优化。拓扑优化的基本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻求最优材料的分布问题。寻求一个最佳的拓扑结构形式有两种基本的原理:一种是退化原理,另一种是进化原理。退化原理的基本思想是在优化前将结构所有可能杆单元或所有材料都加上,然后构造适当的优化模型,通过一定的优化方法逐步删减那些不必要的结构元素,直至最终得到一个最优化的拓扑结构形式。进化原理的基本思想是把适者生存的生物进化论思想引入结构拓扑优化,它通过模拟适者生存、物竞天择、优胜劣汰等自然机理来获得最优的拓扑结构。 三、结构拓扑优化设计方法 目前常使用的拓扑优化设计方法可以分为两大类:退化法和进化法。 退化法即传统的拓扑优化方法,一般通过求目标函数导数的零点或一系列迭代计算过程求最优的拓扑结构。目前常用于拓扑优化的退化法有基结构方法、均匀化方法、变密度法、变厚度法等。 基结构方法(GSA)的思路是假定对于给定的桁架节点,在每两个节点之间用杆件连结起来得到的结构称为基结构。按照某种规则或约束,将一些不必要的杆件从基本结构中删除,认为最终剩下的构件决定了结构的最佳拓扑。基结构方法更适合于桁架和框架结构的拓扑优化。基结构法是在有限的子空间内寻优,容易丢失最优解,另外还存在组合爆炸、解的奇异性等问题。 均匀化方法(HA)引入微结构的单胞,通过优化计算确定其材料密度分布,并由此得出最优的拓扑结构。均匀化方法主要应用于连续体的拓扑优化设计,它不仅能用于应力约束和位移约束,也能用于频率约束。目前用均匀化方法来进行拓扑优化设计的有一般弹性问题、热传导问题、周期渐进可展曲面问题、非线性热弹性问题、振动问题和骨改造问题等。 变密度法是一种比较流行的力学建模方式,与采用尺寸变量相比,它更能反映拓

结构优化设计在房屋结构设计中的运用

结构优化设计在房屋结构设计中的运用 发表时间:2019-04-04T09:06:49.333Z 来源:《建筑学研究前沿》2018年第34期作者:严明煜 [导读] 建筑行业的发展机遇与挑战共存,并且随着越来越多的建筑企业参与到市场竞争中,使得建筑行业的竞争也越发激烈。因此,如果建筑企业想要在暗流涌动的市场格局中争得一席之地,就必须要改进原有的建筑结构设计,优化设计技术水平。因此,当前对建筑结构设计中优化技术的研究是必不可少的。 严明煜 浙江东南建筑设计有限公司浙江杭州 310000 摘要:建筑行业的发展机遇与挑战共存,并且随着越来越多的建筑企业参与到市场竞争中,使得建筑行业的竞争也越发激烈。因此,如果建筑企业想要在暗流涌动的市场格局中争得一席之地,就必须要改进原有的建筑结构设计,优化设计技术水平。因此,当前对建筑结构设计中优化技术的研究是必不可少的。 关键词:建筑结构设计;优化技术;应用探讨 1建筑结构设计优化的概念、特点以及重要意义 所谓建筑结构设计优化,主要是指建筑在最初的设计之时,除了要保障房屋建筑等的施工安全性以及实用性,还要能够在基本满足人们最基本生活要求的同时,尽量保证房屋结构不仅美观,还要合理、舒适,使得房屋建筑具有安全性、适用性、经济性、科学性、美观等的综合性设计方案。一般建筑结构设计优化方法普遍具有以下几个特点:(1)建筑结构优化设计方法具有多样性和综合性的特点。(2)建筑结构优化设计方法是与艺术等审美标准相融合的设计,直观效果比较强。(3)建筑结构优化設计的安全系数得到了整体的提高。(4)建筑结构优化设计的适用性增强。(5)建筑结构优化设计能够体现当今时代的低碳要素,具有节能性和环保性。(6)建筑结构优化设计的经济化趋向愈来愈明显。(7)建筑结构优化设计在管理中更加简易、方便、快捷。(8)建筑结构优化设计具有科学性(9)建筑结构优化设计具有明显的创新意识、突破了传统的设计形式。建筑结构设计优化方法在房屋结构设计中的应用具有以下重要意义:建筑结构优化设计方法在房屋结构设计的应用中,是以优化房屋的结构、保障房屋建筑的质量及其安全为目的的。根据近年来我国城市建筑的发展趋势以及科学技术的发展情况来看,与传统的房屋设计相比,经过优化设计的建筑所采取的设计理念以及设计技术更为先进和科学,能够充分发挥房屋建筑建材的性能以及其设备的性能的优势,成本支出也更为低廉,从而实现企业利益的最大化。除此之外,建筑结构优化设计方法应用于房屋结构设计中,能够实现房屋建筑内部结构的协调和整合,有效提高房屋建筑的质量以及安全性。现代的建设结构优化设计方案和传统的建设房屋比较,运用设计方法后的建筑可以降低工程的建设投入成本和投资,提高建筑结构的优化方法,可以节省建设材料的使用,充分利用建设材料。 2结构设计优化技术在建筑结构设计中的步骤 2.1结构优化模型 房屋结构整体优化设计方法分以按3个步骤进行。首先,选择设计变量。一般把对设计要求起主要影响作用的参数作为设计变量,如目标控制参数(结构造价C1和损失期望C2)和约束控制参数(结构的可靠度PS);而将那些对设计要求来讲,变化范围不大或是根据结构要求或局部性的设计考虑就能满足设计要求的参数等作为预定参数,这可以大大减少设计、计算和编制程序的工作量;其次,确定目标函数。寻求一组满足预定条件的截面几何尺寸和钢筋截面积以及失效概率,从而使总费用最小;第三,确定约束条件。房屋结构基于可靠度优化设计的约束条件,则包括尺寸约束、结构强度约束、应力约束、变形约束、裂缝宽度约束、构件单元约束、结构体系约束、从正常使用极限状态下的弹性约束到最终极限状态的弹塑性约束、从可靠指标约束到确定性约束条件等。在设计中,要使结构优化设计应用于实际房屋结构工程,则是路房屋结构设计中实际的约束条件与目标约束条件相比较,保证各约束条件都符合现行规范的要求,以实现最优设计。 2.2设定优化设计计算方案 房屋结构基于可靠度的优化设计问题属于比较复杂的多变量、多约束非线性优化问题,一般情况下,在计算过程中,应转化问题求解,即将有约束优化问题转化为无约束问题。可以利用起来的优化设计计算方法有复合形法、拉氏乘子法、Powell法等。 2.3进行程序设计 根据基于可靠度的结构优化模型和选择的优化设计计算方法,编制功能齐全、运算速度快的综合程序。 2.4结果分析 对计算结果进行分析,确定最优设计方案。 在上述步骤的执行过程中,涉及的问题包括多个方面,所以要全方位、多角度地考虑。这主要是因为建设投资这项工程的耗资非常大,涉及到的情况非常多,所以,总法则和考虑必须综合进行,不能片面地追求资金的节约而不顾设计的优化作用。技术与经济之间存在一对矛盾,要能够正确处理,因为它是控制投资中至关重要的环节。因此,在设计中片面强调经济节约是不正确的,应满足技术上的相应要求,使项目达到相应的功能倾向,与此同时,要反对重视技术,轻经济、设计保守浪费的现象。 3建筑结构设计优化在房屋设计中的具体运用 3.1整体和布局的统一性 以湖南省某处建筑设计为例,建筑平面图如图1所示,在建筑设计过程当中,经常会运用到艺术建筑设计理念,在项目的整体性工程设计方面,需要对建筑设计和艺术性设计实施完美的结合。因此,在建设过程中需要充分地考虑到整体建筑项目风格以及对建筑环境的和谐统一。从另外一个角度上来进行分析,建筑的局部美和整体性设计上都需要进行和谐统一,不管是在走线的方式还是建筑给排水管道的铺设上,都需要以整体性和安全性为主要的设计原则,在充分的保证建筑安全性的前提下来进行美观性设计。 3.2建筑结构的优化设计 在建筑结构设计优化工作当中,需要充分考虑到建筑剪力墙的优化设计,在建筑优化设计过程中主要表现在对建筑的安全性能的保障方面。充分结合建筑设计的中心位置以及剪力墙的整体受力形式,尽可能降低剪力墙的设计指标,在降低建筑受力方面,需要重点考虑建

连续体结构拓扑优化方法及存在问题分析

编号:SY-AQ-00556 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 连续体结构拓扑优化方法及存 在问题分析 Topology optimization method of continuum structure and analysis of existing problems

连续体结构拓扑优化方法及存在问 题分析 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 文章深入分析国内外连续体结构拓扑优化的研究现状,介绍了拓扑优化方法的发展及实现过程中存在的问题。对比分析了均匀化方法,渐进结构优化法,变密度法的优缺点。研究了连续体结构拓扑优化过程中产生数值不稳定现象的原因,重点讨论了灰度单元,棋盘格式,网格依赖性的数值不稳定现象,并针对每一种数值不稳定现象提出了相应的解决办法。 结构拓扑优化设计的主要对象是连续体结构,1981年程耿东和Olhof在研究中指出:为了得到实心弹性薄板材料分布的全局最优解,必须扩大设计空间,得到由无限细肋增强的板设计。此研究被认为是近现代连续体结构拓扑优化的先驱。 目前,国内外学者对结构拓扑优化问题进行了大量研究,这些

研究大多数建立在有限元法结构分析的基础上,但由于有限元法中单元网格的存在,结构拓扑优化过程中常常出现如灰度单元,网格依赖性和棋盘格等数值不稳定的现象。本文介绍了几种连续体结构拓扑优化方法及每种方法存在的问题,并提出了相应的解决办法。 1.拓扑优化方法 连续体结构拓扑优化开始于1988年Bendoe和Kikuchi提出的均匀化方法,此后许多学者相继提出了渐进结构优化方法、变密度法等拓扑优化数学建模方法。 1.1.均匀化方法 均匀化方法即在设计区域内构造周期性分布的微结构,这些微结构是由同一种各向同性材料实体和孔洞复合而成。采用有限元方法进行分析,在每个单元内构造不同尺寸的微结构,微结构的尺寸和方向为拓扑优化设计变量。1988年Bendsoe研究发现,通过在结构中引入具有空洞微结构的材料模型,将困难的拓扑设计问题转换为相对简单的材料微结构尺寸优化问题。 很多学者发展了均匀化方法,Suzhk进行了基于均匀化方法结

建筑结构设计优化方法的研究应用

建筑结构设计优化方法的研究应用 发表时间:2017-06-19T16:42:00.213Z 来源:《基层建设》2017年6期作者:郑学毅 [导读] 本文对建筑结构空间利用率的优化进行了重点探讨,对建筑结构优化的理念进行了阐释和延伸。 广东南雅建筑工程设计有限公司广东广州 515000 摘要:一个建筑要达到精美的效果,设计师需要把其美观设计与结构设计紧密结合起来。实现建筑结构设计优化是一个复杂而系统的过程,通常被归入综合决策的范畴。在实际优化环节,既要考虑实用性和安全性,又要考虑经济性,还应考虑整体效果,总之,要平衡各方面的关系。本文对建筑结构空间利用率的优化进行了重点探讨,对建筑结构优化的理念进行了阐释和延伸,希望能对类似工程建设提供一些借鉴和帮助。 关键词:建筑结构设计;优化;方法;应用 1.建筑结构设计优化的内容及意义 建筑结构设计优化主要体现在两个方面,一是对建筑工程总体结构进行优化设计,二是对建筑工程局部结构进行优化设计。其中,建筑工程局部结构的优化设计的对象主要包括以下几点:1)基础结构方案;2)屋盖系统方案;3)围护结构方案;4)结构细部等。对上述对象进行优化设计时,通常还会涉及选型、受力分析以及造价分析等诸多内容。总之,对建筑结构设计进行优化的过程中,不仅要严格依据设计规范执行,还应充分结合建筑工程的具体情况,最终提高建筑工程的综合经济效益。建筑结构设计优化的意义主要在于两点,一是提高建筑工程的安全性及可靠性,二是降低建筑工程的总造价。通过对比分析发现,建筑结构设计优化方法应用得当的情况下,能大幅降低建筑工程的总造价,最高可达30%。通过优化方法的有效应用,一方面能够最大限度体现物质的性能,另一方面能够为规划的实际执行提供一系列有用的参考资料。 2.建筑结构设计优化方法的应用步骤 2.1 建立结构设计优化模型 对建筑整体结构设计进行优化时,一般步骤如下:1)确定设计变量。所谓设计变量指的是可能会对建筑整体效果或者实用性产生影响的一系列参数,如目标控制函数(以整体建筑结构造价控制为代表),又或者约束控制参数(以整体建筑结构的可靠度控制为代表)等。在实际选取过程中,应对参数进行适当的精简,不对那些相关性较小的参数进行研究,如此一来,能够大幅降低模型的计算强度,同时有效减少编程的工作量;2)建立目标函数。目标函数主要包括两大方面,一是建筑的整体效果,二是建筑的整体实用性。寻找一组有效参量。这组参量既要满足建筑使用功能,又要符合既定的结构截面尺寸以及钢筋截面积。从而保证求得的目标函数值达到最优;3)定义约束条件。通常,建筑结构的约束条件涉及诸多内容,既包括建筑的可靠度约束、强度约束,又包括应力变形约束,还包括裂缝宽度约束等。在具体设计环节,应保证加入约束条件的考量之后,实际结构设计满足现行的设计规范,符合最优设计标准的相关要求。 2.2 优化设计方案的选择 通常情况下,有多种建筑结构设计优化方案可供选择。进行选择时,常常将基于可靠度的方案列为重点考虑对象。对该种方案进行实际计算时,既要面对关系错综复杂的多种变量,又要面对数量众多的约束条件,再加上它们都属于非线性问题,所以,在计算过程中,通常先要将其转化为无约束条件的线性问题,然后求解。在上述一系列计算过程中,通常可以采用如下两种优化计算方法:1)拉普拉斯算子法;2)复合形法。在选取具体算法的过程中,一方面要考虑算法的精度,另一方面要考虑算法的计算速率,总之,要对算法进行综合而全面的考虑,从而选定一个最佳的算法。 2.3 具体的程序设计 当确定具体的建筑结构设计优化方案之后,便会进入到具体的程序设计环节,即编制一个功能完备、运算速率良好、综合效果优异的计算程序。程序设计将会涉及诸多内容,其中最为主要的包括两大方面,一是工程指标的选取,二是建筑的功能需要。由于编程涉及广泛且内容繁复,本文不对其进行详细论述[6]。 2.4 结果分析 对计算结果进行分析是一个十分关键的过程,关系到整个设计优化的成与败,所以,在分析的过程中应保证考虑的全面性,主要包括以下几个方面:1)建筑结构的成本;2)建筑结构的实用性;3)建筑结构的整体空间效果。建筑结构是一项复杂而系统的工程,再加上耗资较大,所以,在设计优化的过程中,应站在整体的角度进行分析,无论是片面追求资金的节省,还是片面追求建筑实用性的增加都是不对的。总而言之,就是协调好技术和经济之间的关系,寻求二者之间的平衡,进而展开合理的优化[7]。 3.优化结构设计技术在实践中的应用方法 在设计好优化结构设计方案后,就可以将该理论方法应用于实践之中。结构设计的优化,是目前一个比较普遍的课题,要达到利用结构优化的方法在不改变适用性能的前提下达到降低工程造价的目的,将结构设计优化方法应用于实践之中,这是我们建筑工程设计人员所追求的目标。结构设计优化设计应用于项目的整体设计、前期设计,抗震设计等设计的各分部环节,发挥着巨大的效益。在按照结构设计优化的方法及模型进行实践的过程中,下面就这几个方面进行详细描述。 3.1 参与结构设计优化的前期工作 因为前期方案的确定直接影响建筑的总投资,而现在存在的普遍问题就是前期方案阶段结构设计并不进行参与,建筑师进行建筑设计时大多并不考虑结构的合理性以及它的可行性,但是建筑设计的结果却直接对结构设计造成影响,某些方案可能会增加结构设计的难度,并使得建筑的总投资提高。如果在方案的初期,结构优化设计就能参与进来,那么我们就能针对不同的建筑类别,选择合理的结构形式,合理的设计方案,获得一个良好的开端。 3.2 将概念设计和细部结构设计进行优化 概念设计应用于没有具体数值量化的情况,例如地震设防烈度,因为它的不确定性,计算式难免与现实有较大的差异,在进行设计的时候就要采用概念设计的方法,把数值作为辅助和参考的依据。设计过程中需要设计人员灵活的运用结构设计优化的方法,达到最佳的效果。 3.3 优化下部的地基基础结构设计 地基基础的结构设计优化首先要选择合适的方案,如果为桩基础,那么要根据现场地质条件选择桩基类型,尽量节省造价。桩端持力

汽车荷载等级

6 汽车及人群荷载 6.0.1《标准》(97)中的车辆荷载在形式上为四个等级,即汽车—超20级、挂车—120; 汽车—20级、挂车—100;汽车—15级、挂车—80;汽车—10级、履带—50。 同时规定,新建公路桥涵的设计不采用汽车—15级、挂车—80荷载,只是为便 于国家统计工作的连续性而保留这一级荷载。 《标准》(97)所规定的以车队为计算荷载图式的车辆荷载标准,是设计公路桥 梁及其它构造物所规定的计算荷载。为了保证桥梁的安全储备和使用寿命,对 桥上实际行驶的车辆轴重和总重必须予以严格限制,一般情况下,不允许采用 设计的极限值。因此,设计轴荷载多大,桥上实际行驶车辆的轴荷载也允许多 大,这是不对的,车辆设计荷载与车辆轴载、总载限制是两个不同的概念,不 可混为一谈。世界上有一些国家制定了车辆轴载限值标准。他们在制定设计车 辆荷载标准及车辆轴重限值时,除了考虑本国的国民经济发展水平外,同时考 虑了采用重型汽车提高轴重限值而获得的运输经济效益与相应增加的公路基本 建设投资及原有公路网的补强改造费用之间的合理平衡。由于提高轴重对公路 投资的影响十分惊人,长期以来,各国政府都采用了极其慎重的态度。表6.0.1-1 列出了几个经济较发达国家车辆荷载设计值和允许轴载值,表6.0.1-2列举了 一些国家和地区的轴载限值。

现行公路桥涵结构设计用车辆荷载标准模式是根据我国建国以后公路上交通荷载的实际情况,经过相当长时期的分析、研究和修正确定的。经过几十年的修订、完善,其分级逐步完善、科学、合理,基本适应了我国公路桥涵结构发展的需求。

1972年,在修订《标准》时,对原车辆荷载标准进行了一次检查,一方面向用车单位作调查,另一方面对按标准设计的桥梁通过一些重型卡车的能力作了计算比较。调查及计算分析的结果是:公路上最常行驶的车辆,解放牌一级总重不超过100kN,改装后的黄河牌和一些越野车总重不超过300kN,这些都不超过或略超过标准车加重车,对较重的车要加以验算。 鉴于车辆总重和轴重日趋增大,轴数也日渐增多,特别是发展大型集装箱运输后,通往集装箱港口码头的公路桥涵需考虑集装箱半挂车能否正常通行,而从一些计算资料可以看出,有些较重的卡车、自卸车、吊车和半挂、全挂车,在按汽车—20级、挂车—100设计的桥梁上还不能自由通行,因此,有必要在原有的车辆荷载标准中,增加一个较高的等级。 《标准》(81)确定,增加荷载等级汽车—超20级时,考虑了1978年京塘高速公路初步设计提出的两重车列形式,一是200kN车队或300kN车队插入一辆550kN 半挂车;二是原汽车—20级乘1.5倍,间距不变。后者虽然便于记忆和计算使用,但实际上并无300kN双轴车和450kN三轴车的车型,因此选定用200kN车队插入一辆550kN半挂车,车辆间距仍取15m,加重车前后的间距取10 m。在缺乏更多资料和科研成果的情况下,标准推荐暂用550kN半挂车插入200kN车队的形式作为新增加的车辆荷载等级标准即汽车—超20级。 为了保证桥涵的安全,对按荷载标准设计的桥梁的极限通过能力进行了计算。在制方《标准》(72)时曾对三个等级的荷载标准作过验算;制订《标准》(81)时,又检查了各级桥梁的极限通过能力,所用车辆除我国自己生产的车型外,也考虑了进口的车型。各国生产的普通载重卡车较重的是三轴车,而各国法定的车辆总重及轴重的限制,最大车重300kN左右,极个别超过300kN。载重更大的车辆则向半挂车发展。普通卡车有四轴的,其作用不比三轴大。同吨位卡车大多有长短车身之分,其轴距亦不同。验算通过能力时,选用了总重超过300kN或轴重超过120kN或重吨位轴距较短的车型。另外还选用了日渐增多的吊车,其重型四轴车可代表我国生产的双轴转向的四轴卡车。自卸车选用了载重120kN到320kN的各种车型。半挂车和全挂车取用载重150kN到500kN的各种车型。从验算结果看,上述车型通过汽车—15级桥梁的情况大体上比通过汽车—20级桥梁降低一级,即可以与标准车同时以单辆车慢行通过的只能单独通过、可以单独通过的只能单车慢车通过。 同时,又将在按汽车—20级荷载设计的桥梁上不易通过的重型车如Coles(柯尔斯)100t吊车、380(320kN自卸车)、汉阳960(500kN半挂车)及汉阳881全挂车等,与550kN半挂插入200kN车队作了比较,如以弯矩控制,跨径30m以下可与550kN半挂车队混行通过,跨径30m以上可单车通过,且都比汽车—20级通过情况为好。但是它与汽车—20集相比,级差不大,如跨径50m以下单向宽11.7m 的简支梁桥、汽车—超20级的弯矩只比汽车—20级增大12%,剪力平均增大17%;对净-7(m)的双车道桥,则分别增大3.4%和5.9%,似乎不足以形成一级,整个车辆荷载标准如何分级有待于进一步的研究。

结构优化设计的几点应用

结构优化设计的几点应用 摘要:提出结构优化设计的概念,重点分析和推导了钢筋混凝土受弯构件造价最省的条件,可以为设计人员判断受弯构件的截面是否优化提供参考。 关键词:结构优化设计;钢筋混凝土受弯构件;造价 1. 引言 一般结构设计的流程按图一进行,结构选型、布置和截面等是设计师根据设计要求和实践经验,参考类似的工程设计确定的。设计中大量的工作都是对初步选定的设计方案进行校核,现行设计规范的表述模式一般是不等式,如,因此满足不等式的结构方案必定是无限多种的。在满足设计规范和使用要求的前提下,另外确定一个特定指标使其达到极大或极小(如造价最省、工期最短、自重最轻、梁高最小等),就是结构优化设计。

优化设计用数学的方法描述就是目标函数的极值问题。一个结构的设计方案是由若干个变量来描述的,这些变量可以是构件的截面尺寸,也可以是结构的形状布置,还可以是材料的力学或物理参数。结构设计的所有变量计为[X],结构设计必须满足建筑功能和设计规范的要求,也就

是所有的变量必须满足一定的约束条件: H(X)=0 G(X)≥0 设定的优化目标必定是[X]的函数F(X),F(X)→min(或max)所求的一组解[X0]就是最优化设计的解。 [X]的维数决定了优化设计的过程离开计算机是无法实现的,遗憾的是现阶段的结构设计软件除少数钢结构软件有构件截面的自动优选外,一般都没有引入优化设计的概念。因此现阶段可以操作的优化设计依然是电脑与人脑的结合,即所谓的概念设计,根据一定的经验指标判断计算结果是否已达优化,也就是如图二所示,在一般设计的流程中加入最优化的判断。 2. 结构优化设计的分类: 根据结构设计的流程,优化设计可以分为宏观优化和微观优化,宏观优化包括结构选型和结构布置的优化,微观优化主要是指杆件截面的优化。 结构选型的优化包括基础方案和上部结构的优化,结构选型的优劣直接决定了结构设计的质量,更多的依靠设计人的经验和能力,当复杂的问题超出经验的范围时,对不同的结构方案进行试算不失为一种可行的方法,这时忽略一些微观的因素,相当于大大降低了自变量[X]的维数,少量的计算比较就可以找到比较优化的结构选型。比如框架-筒体的超高层建筑,外框架可采用钢筋混凝土、钢管混凝土、型钢混凝土,可以加斜撑,也可以做加强层,在不能准确判断采用哪种方案的时候,逐一试算,比较钢材和混凝土的用量或其他目标函数,可以在较短的时间内

相关主题
文本预览
相关文档 最新文档