当前位置:文档之家› 2020年中考数学一模试题(及答案)

2020年中考数学一模试题(及答案)

2020年中考数学一模试题(及答案) 一、选择题

1.如图所示,已知A(1

2

,y1),B(2,y2)为反比例函数

1

y

x

图像上的两点,动点P(x,0)

在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()

2020年中考数学一模试题(及答案)

A.(1

2

,0)B.(1,0)C.(

3

2

,0)D.(

5

2

,0)

2.如图,下列四种标志中,既是轴对称图形又是中心对称图形的为()A.B.C.D.

3.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位

似图形,且相似比为1

3

,点A,B,E在x轴上,若正方形BEFG的边长为12,则C点坐

标为()

2020年中考数学一模试题(及答案)

A.(6,4)B.(6,2)C.(4,4)D.(8,4)4.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°5.-2的相反数是()

A.2B.1

2

C.-

1

2

D.不存在

6.如图,直线l1∥l2,将一直角三角尺按如图所示放置,使得直角顶点在直线l1上,两直角边分别与直线l1、l2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为()

2020年中考数学一模试题(及答案)

A .25°

B .75°

C .65°

D .55°

7.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )

2020年中考数学一模试题(及答案)

A .

B .

C .

D .

8.下列计算正确的是( ) A .a 2?a=a 2 B .a 6÷a 2=a 3 C .a 2b ﹣2ba 2=﹣a 2b

D .(﹣

32a )3=﹣39

8a

9.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(3

4)-,,顶点C 在x 轴的负半轴上,函数(0)k

y x x

=

<的图象经过顶点B ,则k 的值为( )

2020年中考数学一模试题(及答案)

A .12-

B .27-

C .32-

D .36-

10.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )

A .(1,2,1,2,2)

B .(2,2,2,3,3)

C .(1,1,2,2,

3)

D .(1,2,1,1,2)

11.某公司计划新建一个容积V(m 3)一定的长方体污水处理池,池的底面积S(m 2)与其深度h (m )之间的函数关系式为()0S V

h h

=

≠,这个函数的图象大致是( ) A . B .

C .

D .

12.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()

2020年中考数学一模试题(及答案)

A

2020年中考数学一模试题(及答案)

2

3

π﹣23

2020年中考数学一模试题(及答案)

B.

1

3

π﹣3C.

4

3

π﹣23D.

4

3

π﹣3

二、填空题

13.关于x的一元二次方程2310

ax x

--=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a的取值范围是___________

14.如图,添加一个条件:,使△ADE∽△ACB,(写出一个即可)

15.不等式组

324

1

11

2

x x

x

x

≤-

?

?

?-

-<+

??

的整数解是x=.

16.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为.

17.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数k y x

=

在第一象限的图象经过点D ,交BC 于E ,若点E 是BC 的中点,则OD 的长为_____.

2020年中考数学一模试题(及答案)

18.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1

c a

+的值等于_______.

19.如图,反比例函数y=

k

x

的图象经过?ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,?ABCD 的面积为6,则k=_____.

2020年中考数学一模试题(及答案)

20.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____.

三、解答题

21.荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.

(1)请直接写出批发购进乌鱼所需总金额y (元)与进货量x (千克)之间的函数关系式;

(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?

2020年中考数学一模试题(及答案)

22.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民

对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

2020年中考数学一模试题(及答案)

请根据以上信息回答:

(1)本次参加抽样调查的居民有多少人?

(2)将两幅不完整的图补充完整;

(3)若居民区有8000人,请估计爱吃D粽的人数;

(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.

23.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.

整理情况频数频率

非常好0.21

较好700.35

一般m

不好36

请根据图表中提供的信息,解答下列问题:

(1)本次抽样共调查了名学生;

(2)m=;

(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?

(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.

24.解不等式组

341

51

2

2

x x

x

x

≥-

?

?

?-

-

??>

,并把它的解集在数轴上表示出来

25.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔

船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据2≈1.41,3≈1.73)

2020年中考数学一模试题(及答案)

【参考答案】***试卷处理标记,请不要删除

一、选择题

1.D

解析:D

【解析】

【分析】

求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.

【详解】

∵把A(1

2

,y1),B(2,y2)代入反比例函数y=

1

x

得:y1=2,y2=

1

2

∴A(1

2

,2),B(2,

1

2

),

∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,

即此时线段AP与线段BP之差达到最大,

2020年中考数学一模试题(及答案)

设直线AB的解析式是y=kx+b,

把A、B的坐标代入得:

2

122

k b ???

?+??=, 解得:k=-1,b=

5

2

, ∴直线AB 的解析式是y=-x+52

, 当y=0时,x=52

, 即P (

5

2,0), 故选D . 【点睛】

本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.

2.B

解析:B 【解析】

解:A .不是轴对称图形,是中心对称图形,不符合题意; B .既是轴对称图形,也是中心对称图形,符合题意; C .不是轴对称图形,是中心对称图形,不符合题意; D .不是轴对称图形,也不是中心对称图形,不符合题意. 故选B .

3.A

解析:A 【解析】 【分析】

直接利用位似图形的性质结合相似比得出AD 的长,进而得出△OAD ∽△OBG ,进而得出AO 的长,即可得出答案. 【详解】

∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13

, ∴

1

3

AD BG =, ∵BG =12, ∴AD =BC =4, ∵AD ∥BG , ∴△OAD ∽△OBG ,

3 OB

0A1 4OA3

= +

解得:OA=2,

∴OB=6,

∴C点坐标为:(6,4),

故选A.

【点睛】

此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键.4.C

解析:C

【解析】

【分析】

首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.

【详解】

解:设此多边形为n边形,

根据题意得:180(n-2)=540,

解得:n=5,

∴这个正多边形的每一个外角等于:360

5

?

=72°.

故选C.

【点睛】

此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)?180°,外角和等于360°.

5.A

解析:A

【解析】

试题分析:根据只有符号不同的两数互为相反数,可知-2的相反数为2.

故选:A.

点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互为相反数,可直接求解.

6.C

解析:C

【解析】

【分析】

依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.

【详解】

如图,∵∠1=25°,∠BAC=90°,

∴∠3=180°-90°-25°=65°,

∵l1∥l2,

∴∠2=∠3=65°,

2020年中考数学一模试题(及答案)

故选C.

【点睛】

本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.

7.B

解析:B

【解析】

试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.

8.C

解析:C

【解析】

【分析】

根据同底数幂的乘法运算可判断A;根据同底数幂的除法运算可判断B;根据合并同类项可判断选项C;根据分式的乘方可判断选项D.

【详解】

A、原式=a3,不符合题意;

B、原式=a4,不符合题意;

C、原式=-a2b,符合题意;

D、原式=-27

8a

,不符合题意,

故选C.

【点睛】

此题考查了分式的乘除法,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键.

9.C

解析:C

【解析】

【分析】

【详解】

∵A (﹣3,4),

2020年中考数学一模试题(及答案)

∴, ∵四边形OABC 是菱形,

∴AO=CB=OC=AB=5,则点B 的横坐标为﹣3﹣5=﹣8, 故B 的坐标为:(﹣8,4),

将点B 的坐标代入k y x

=

得,4=8k -,解得:k=﹣32.故选C .

考点:菱形的性质;反比例函数图象上点的坐标特征.

10.D

解析:D 【解析】 【分析】

根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A ,B 答案,而3的个数应为3个,由此可排除C ,进而得到答案. 【详解】

解:由已知中序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,

A 、2有三个,即序列S 0:该位置的三个数相等,按照变换规则,应为三个3,故A 不满足条件;

B 、2有三个,即序列S 0:该位置的三个数相等,按照变换规则,应为三个3,故B 不满足条件;

C 、3有一个,即序列S 0:该位置的数出现了三次,按照变换规则,应为三个3,故C 不满足条件;

D 、2有两个,即序列S 0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件, 故选D . 【点睛】

本题考查规律型:数字的变化类.

11.C

解析:C 【解析】 【分析】 【详解】

解:由题意可知:00v h >>, , ∴ (0)v s h h

=

≠中,当v 的值一定时,s 是h 的反比例函数, ∴函数 (0)v s h h

=

≠的图象当00v h >>,时是:“双曲线”在第一象限的分支.

故选C.

12.C

解析:C

【解析】

分析:连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC 的度数,然后求出菱形ABCO及扇形AOC的面积,则由S菱形ABCO﹣S扇形AOC可得答案.详解:连接OB和AC交于点D,如图所示:

2020年中考数学一模试题(及答案)

∵圆的半径为2,

∴OB=OA=OC=2,

又四边形OABC是菱形,

∴OB⊥AC,OD=1

2

OB=1,

在Rt△COD中利用勾股定理可知:22

213

-=,3

∵sin∠COD=

3 CD

OC

=

∴∠COD=60°,∠AOC=2∠COD=120°,

∴S菱形ABCO=1

2

B×AC=

1

2

×2×33

S扇形AOC=

2

12024

3603

π

π

??

=,

则图中阴影部分面积为S菱形ABCO﹣S扇形AOC=4

23 3

π-

故选C.

点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=1

2 a?b

(a、b是两条对角线的长度);扇形的面积=

2

360

n rπ

,有一定的难度.

二、填空题

13.

解析:

9

4

-

【解析】

【分析】

【详解】

解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,

解得:a>?9 4

设f(x)=ax2-3x-1,如图,

2020年中考数学一模试题(及答案)

∵实数根都在-1和0之间,

∴-1<?

3

2a

-

<0,

∴a<?3

2

且有f(-1)<0,f(0)<0,

即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,

∴?9

4

<a<-2,

故答案为?9

4

<a<-2.

14.∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;

解析:∠ADE=∠ACB(答案不唯一)

【解析】

【分析】

【详解】

相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件:

由题意得,∠A=∠A(公共角),

则添加:∠ADE=∠ACB或∠AED=∠ABC,利用两角法可判定△ADE∽△ACB;

添加:AD AE

AC AB

=,利用两边及其夹角法可判定△ADE∽△ACB.

15.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【

解析:﹣4.

【解析】

【分析】

先求出不等式组的解集,再得出不等式组的整数解即可.

【详解】

解:

324

1

11

2

x x

x

x

≤-

?

?

?-

-<+

??

,

∵解不等式①得:x≤﹣4,

解不等式②得:x>﹣5,

∴不等式组的解集为﹣5<x≤﹣4,

∴不等式组的整数解为x=﹣4,

故答案为﹣4.

【点睛】

本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.

16.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD交于点E连接DFFMMNDN∵将菱形ABCD以点O为中心按顺时针方向分别旋转

90°180°270°后形成的图形∠BAD=60°AB=2

解析:12﹣

2020年中考数学一模试题(及答案)

【解析】

【分析】

【详解】

试题分析:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,

∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,

∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,

2020年中考数学一模试题(及答案)

∴∠AOE=45°,ED=1,

2020年中考数学一模试题(及答案)

2020年中考数学一模试题(及答案)

﹣1,

∴S正方形DNMF=2

2020年中考数学一模试题(及答案)

1)×2

2020年中考数学一模试题(及答案)

1)×

1

2

=8﹣

2020年中考数学一模试题(及答案)

S△ADF=1 2

2020年中考数学一模试题(及答案)

×AD×AFsin30°=1,

∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣43=12﹣43.

故答案为12﹣43.

考点:1、旋转的性质;2、菱形的性质.

17.【解析】【分析】设D(x2)则E(x+21)由反比例函数经过点DE列出关于x的方程求得x的值即可得出答案【详解】解:设D(x2)则E(x+21)∵反比例函数在第一象限的图象经过点D点E∴2x=x+2

解析:1

2

x

x

【解析】

【分析】

设D(x,2)则E(x+2,1),由反比例函数经过点D、E列出关于x的方程,求得x的值即可得出答案.

【详解】

解:设D(x,2)则E(x+2,1),

∵反比例函数

k

y

x

=在第一象限的图象经过点D、点E,

∴2x=x+2,

解得x=2,

∴D(2,2),

∴OA=AD=2,

∴2222,

OD OA OD

=+=

故答案为:2 2.

【点睛】

本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D、E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.

18.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:

解析:【解析】

【分析】

根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.

【详解】

解:根据题意得:

△=4﹣4a(2﹣c)=0,

整理得:4ac﹣8a=﹣4,

4a(c﹣2)=﹣4,

∵方程ax2+2x+2﹣c=0是一元二次方程,

∴a≠0,

等式两边同时除以4a得:

1

2

c

a -=-,

则1

2

c

a

+=,

故答案为:2.

【点睛】

本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.

19.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴

解析:-3

【解析】

分析:由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.

详解:过点P做PE⊥y轴于点E,

2020年中考数学一模试题(及答案)

∵四边形ABCD为平行四边形

∴AB=CD

又∵BD⊥x轴

∴ABDO为矩形

∴AB=DO

∴S矩形ABDO=S?ABCD=6

∵P为对角线交点,PE⊥y轴

∴四边形PDOE为矩形面积为3

即DO?EO=3

∴设P点坐标为(x,y)

k=xy=﹣3

故答案为:﹣3

点睛:本题考查了反比例函数比例系数k的几何意义以及平行四边形的性质.

20.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键

解析:1

【解析】

解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.

点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.

三、解答题

21.(1)y=

26(2040)

24(40)

x x

x x

?

?

>

?

;(2)该经销商应购进草鱼25千克,乌鱼50千克,才能

使进货费用最低,最低费用为1400元.

【解析】

【分析】

【详解】

(1)批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式

y=

26(2040) 24(40)

x x

x x

?

?

>

?

(2)设该经销商购进乌鱼x千克,则购进草鱼(75﹣x)千克,所需进货费用为w元.

由题意得:

40

89%(75)95%93%75 x

x x

>

?

?

?-+??…

解得x≥50.

由题意得w=8(75﹣x)+24x=16x+600.

∵16>0,∴w的值随x的增大而增大.

∴当x=50时,75﹣x=25,W最小=1400(元).

答:该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.

22.(1)600(2)见解析

(3)3200(4)

【解析】

(1)60÷10%=600(人).

答:本次参加抽样调查的居民有600人.(2分)

(2)如图;…(5分)

2020年中考数学一模试题(及答案)

(3)8000×40%=3200(人).

答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)(4)如图;

2020年中考数学一模试题(及答案)

(列表方法略,参照给分).…(8分)

P(C粽)==.

答:他第二个吃到的恰好是C粽的概率是.…(10分)

23.(1)200;(2)52;(3)840人;(4)1 6

【解析】

分析:(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数;

(2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m的值;

(3)利用总人数乘以对应的频率即可;

(4)利用树状图方法,利用概率公式即可求解.

详解:(1)本次抽样共调查的人数是:70÷0.35=200(人);

(2)非常好的频数是:200×0.21=42(人),

一般的频数是:m=200﹣42﹣70﹣36=52(人),

(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)

=840(人);

(4)根据题意画图如下:

2020年中考数学一模试题(及答案)

∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,

其中两次抽到的错题集都是“非常好”的情况有2种,

∴两次抽到的错题集都是“非常好”的概率是

21

= 126

点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要

注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.

24.-1<x≤1

【解析】

【分析】

分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.

【详解】

解:

341 {

2020年中考数学一模试题(及答案)

51

2

2

x x

x

x

≥-

-

-

解不等式①可得x≤1,

解不等式②可得x>-1

在数轴上表示解集为:

所以不等式组的解集为:-1<x≤1.

【点睛】

本题考查了解不等式组,熟练掌握计算法则是解题关键.

25

2020年中考数学一模试题(及答案)

.A、C之间的距离为10.3海里.

【解析】

【分析】

【详解】

解:作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°.

设CD=x,在Rt△ACD中,可得AD=x,

在Rt△ABD中,可得BD3x.

又∵BC=20,∴x3x=20,解得:x =31).

∴AC2231) 1.4110(1.731)10.29310.3

x=≈??-=≈ (海里).答:A、C之间的距离为10.3海里.

下载文档原格式(Word原格式,共18页)
相关文档
  • 中考数学试题及答案

  • 中考数学一模试题

  • 中考数学试题含答案

  • 年中考数学一模试题

  • 中考数学一模试卷

  • 北京市中考数学一模

相关文档推荐: