当前位置:文档之家› 热力学第一定律齐齐哈尔大学物理化学考试参考

热力学第一定律齐齐哈尔大学物理化学考试参考

热力学第一定律齐齐哈尔大学物理化学考试参考
热力学第一定律齐齐哈尔大学物理化学考试参考

2.9 某理想气体,m 2.5V C R =。今有5mol 该气体恒压降温50 ℃。求过程的W ,Q ,ΔU ,ΔH 。

解: 恒压过程

[]2121()( )58.3145(50)J 2.079J W p V V nR T T =--=--=-??-= 由于理想气体热力学能只与温度有关,所以

[],m 21()5 2.58.3145(50)J 5.196kJ V U nC T T ?=-=???-=-

Q =Δ

U -W =( 5.196- 2.079-)kJ= 7.275kJ - 7.275kJ p H Q Q ?===-

2.10 2mol 某理想气体的,m

3.5p C R =。由始态100 kPa ,50 dm 3

,先恒容加热使压力升高至200 kPa ,再恒压冷却使体积缩小至25 dm 3

。求整个过程的W ,Q ,ΔU ,ΔH 。

解: 题设过程可用下图表示。

3145

.821050101003

3111????=

=-nR V p T K=300.68 K 3145.821050102003

3222????=

=-nR V p T K=601.36 K 3145

.821025102003

3333????=

=-nR V p T K=300.68 K 2.17 单原子理想气体A 与双原子理想气体B 的混合物共5 mol ,摩尔分数y B = 0.4,始态温度T 1 = 400 K ,压力p 1 = 200 kPa 。今该混合气体绝热反抗恒外压p = 100 kPa 膨胀到平衡态。求末态温度T 2及过程的W ,ΔU ,ΔH 。

解:单原子理想气体的()23A m ,R C V =,()2

5A m ,R

C p =,双原子理想气体的

()25B m ,R C V =,()2

7B m ,R C p =,则混合理想气体的平均摩尔热容 =m ,V C y A ()A m ,V C +y B ()R R

R C V 9.14.0256.023B m ,=?+?=

=m ,p C y A ()A m ,p C +y B ()R R

R C p 9.24.02

76.025B m ,=?+?=

()()1212m ,9.1T T R n T T C n U V -?=-=?

恒外压膨胀 ()???

? ??-=???? ??--=--=21111212T P pT nR p nRT p nRT p V V p W 绝热膨胀 Q =0,ΔU = W , 所以()???

?

??-=-21112m ,T p pT nR T T C n V

代入数据 ()22100

1.9400K 400K 200

T T ?-=?- 解出终态温度 T 2=331.03 K

()(),m 215 1.98.3145331.03400J V U nC T T ?=-=???-???? 5.448kJ =-

5.448kJ W U =?=-

()(),m 215 2.98.3145331.03400J p H nC T T ?=-=???-????8.315kJ =-

2.21已知水在100 ℃,101.325kPa 下的摩尔蒸发焓668.40m vap =?H kJ·mol -1

,试分别计算下列两过程的Q ,W ,ΔU ,ΔH 。(水蒸气可按理想气体处理) (1)在100 ℃,101.325 kPa 条件下,1 kg 水蒸发为水蒸气。

(2) 在恒定100 ℃的真空容器中,1 kg 水全部蒸发为水蒸气,并且水蒸气压力恰好为101.325 kPa 。

解: M (H 2O)=18.02×10-3 kg ?mol -1,23

21(H O)(H O)18.0210m n M -==

? mol=55.49 mol (1)过程为恒压过程 Q H n =?=(H 2O)m vap H ?(55.4940.668)=? kJ 2256.67= kJ

g l g 2()(H O)W p V V pV n RT =--≈-=-(55.498.3145373.15)=-?? J 172.16=- kJ

[]2256.67(172.16)U Q W ?=+=+- kJ 2084.51= kJ

(2)外压为0,故W =0

H n ?=(H 2O)m vap H ?(55.4940.668)=? kJ 2256.67= kJ

g l g 2

3()

()(H O ) 2256.67(55.498.3145373.1510)k J =2084.51k J

U H p V H p V V H p V H n R T

-?=?-?=?--≈?-=?-??=-????? (2084.510)kJ 2084.51kJ Q U W =?-=-=

2.23 已知100 kPa 下冰的熔点为0 ℃,此时冰的比熔化焓

3.333fus =?h J ·g -1

。水和冰

的平均质量定压热容分别为p c (l )= 4.184 J ·g -1

·K -1

, p c (s )= 2.000 J ·g -1

·K -1

。今在绝

热容器内向1 kg 50 ℃的水中投入0.8 kg 温度-20 ℃的冰。求:

(1)末态的温度;

(2)末态水和冰的质量。

解:(1)这是一个绝热恒压过程。50 ℃的水降温到0 ℃,放出的热量为

Q (水)=m (水) p c (水)(50 ℃―0 ℃)()1000 4.18450J 209.2kJ =??= ―20 ℃的冰升温到0 ℃,所需热量为

Q (冰)=m (冰)p c (冰)[0 ℃―(―20 ℃)]=()800 2.00020J 32.00kJ ??=

若冰全部熔化,所需热量为

fus Q (冰)m = (冰) h fus ?()800333.3J 266.64kJ =?=

因为Q (冰)<Q (水)<Q (冰)+fus Q (冰),即1 kg50℃的水降温到0℃,放出的热量足以使0.8 kg 、―20 ℃的冰升温到0 ℃,但不可能将0.8 kg 冰全部熔化。所以终态时是冰水

混合物,温度为0 ℃。 (2)设有x g 冰熔化,则

fus ()()[50C 0C]()()[0C (20C)]p p m c m c x h ?-?=?--?+?水水冰冰

)50184.41000(??J )20000.2800(??=J+(x ?333.3J ·g -1

)

熔化冰的质量 x = 531.65 g

末态冰的质量 ()(800531.65)g 268.35g m =-=冰,末态 末态水的质量 g 65.1531g )65.5311000()(=+==末态水,m

2.26 已知水(H 2O ,l)在100 ℃的摩尔蒸发焓△vap H m = 40.668 kJ·mol - 1

,水和水蒸气

在25~100 ℃间的平均摩尔定压热容分别为,m 2(H O ,l)p C = 75.75 J·mol -1·K -1

和,m 2(H O ,g)p C

= 33.76 J·mol -1·K -1

。求在25 ℃时水的摩尔蒸发焓。

解:在101.325kPa 下水的沸点是100℃。在25 ℃下水的蒸发是一个不可逆过程,设计下图的可逆途径来计算25 ℃时水的摩尔蒸发焓。

vap m (298.15K)H ?→ (2)?→

[]2

1

,1,m 2(H O ,l)75.75(373.15298.15)T m p T H C dT ?==?-?

mol -1 5.681=kJ·mol -1 ,2vap m 40.668m H H ?=?=kJ·

mol -1

[]2

1

,3,m 2(H O ,g)33.76(298.15373.15)T m p T H C dT ?==?-?

mol -1 2.532=-J·mol -1 在101.325kPa 及25 ℃时水的摩尔蒸发焓为

vap m ,1,2,3(298.15K)(5.68140.668 2.532)m m m H H H H ?=?+?+?=+-J·

mol -1 =43.817kJ·mol -1

2.27 在25 ℃下,密闭恒容的容器中有10 g 固体萘(s)H C 810在过量的O 2 (g )中完全燃烧成CO 2 (g )和H 2O (l)。过程放热401.727 kJ 。求:

(1)C 10H 8 (s) + 12O 2 (g)====10CO 2 (g) + 4H 2O (1)的反应进度; (2)C 10H 8 (s)的c m U ?;

(3)C 10H 8 (s)的c m H ?。

2.28 应用附录中有关物质在25℃的标准摩尔生成焓的数据,计算下列反应在25℃时的r m H ?及r m U ?。

(1) 4NH 3 (g) + 5O 2 (g)====4NO (g) + 6H 2O (g) (2) 3NO 2 (g) + H 2O (1)====2HNO 3 (1) + NO (g) (3) Fe 2O 3 (s) + 3C(石墨)====2Fe (s) + 3CO (g) 解:(1)由教材附录查出各物质标准摩尔生成焓数据:

f m H ?(NH 3,g)=11.46- kJ ·mol -1

;f m H ?(O 2,g)=0;

f m H ?(NO,g) 25.90= kJ ·mol -1;f m H ?(H 2O,g)818.241-= kJ ·mol -1

r m H ?=[f m f m 24(NO,g)6(H O,g)]H H ?+?f m 3f m 2[4(NH ,g)5(O ,g)H H -?+?]

)818.241(625.904[-?+?=)]11.46(4-?- kJ ·mol -147.905-= kJ ·mol -1

r m U ?=r m H ?-B(g)B(g)

RT ν∑

)5464(1047.905[3--+-?-=]15.2983145.8?? J ·mol -195.907-= kJ ·mol -1

(2)由教材附录查出各物质标准摩尔生成焓数据:

f m H ?(NO 2,g) 18.33=kJ ·mol -1;f m H ?(H 2O,1) 83.285-= kJ ·mol -1

f m H ?(HNO 3,1) 10.174-= kJ ·mol -1

;f m H ?(NO,g) 25.90= kJ ·mol -1

r m H ?=[f m 3f m 2(HNO 1)(NO,g)H H ?+?,]f m 2f m 2[3(NO ,g)(H O 1)]H H -?+?,

]25.90)10.174(2{[+-?=)]}83.285(18.333[-+?- kJ ·mol -1

66.71-= kJ ·mol -1

r m U ?=r m H ?-B(g)B(g)

RT ν∑

]15.2983145.8)31(1066.71[3??--?-= J ·mol -1 70.66-= kJ ·mol -1

(3)由教材附录查出各物质标准摩尔生成焓数据:

f m H ?(Fe 2O 3,s) 2.824-= kJ ·mol -1;f m H ?(CO,g) 525.110-= kJ ·mol -1

r m H ?=3 m

f H ?(CO,g)-f m H ?23(Fe O ,s) )]2.824()525.110(3[---?= kJ ·mol -1

63.492= kJ ·mol -1

r m U ?=r m H ?-B(g)B(g)

RT ν∑

)15.2983145.831063.492(3??-?= J ·mol -119.485= kJ ·mol -1

2.38某双原子理想气体1 mol 从始态350 K ,200 kPa 经过如下五个不同过程达到各自的平衡态,求各过程的功W 。

(1) 恒温可逆膨胀到50 kPa ;

(2) 恒温反抗50 kPa 恒外压不可逆膨胀;

(3) 恒温向真空膨胀到50 kPa ; (4) 绝热可逆膨胀到50 kPa ;

(5) 绝热反抗50 kPa 恒外压不可逆膨胀。

解:(1)21ln d 21

p p nRT V p W V V -=-=???? ?

????-=50200ln 3503145.81 J=–4.034 kJ (2)???

?

??--=--=112)(p nRT p nRT p V V p W ???? ??--=11p p nRT

?????

???? ??-???-=2005013503145.81 J=–2.183 kJ (3)外压为0 ,故W =0

(4)双原子理想气体热容比 5

72/52/7m ,m ,===R R C C

V p γ

由理想气体绝热可逆过程方程式 γ

γγγ--=12

2111p T p T 得系统末态的温度 12

7

1212200350K 235.53K 50p T T p γ

γ--????==?= ? ?????

绝热膨胀)(12m ,T T nC U W V -=?=??

????-???=)35053.235(3145.8251 J 379.2-= kJ (5)恒外压膨胀 ???? ??-=???? ?

?--=--=21111212)(T p pT nR p nRT p nRT p V V p W 绝热膨胀0=Q ,W U =? 所以 ???

?

??-=-21112m ,)(T p pT nR T T nC V

代入数据 22502.5(350K)350K 200R T R T ???-=?-

??? 终态温度T 2=275 K )(12m ,T T nC W V -= ??

????-???=)350275(3145.8251 J=–1.559 kJ

2.39 5mol 双原子气体从始态300K ,200 kPa ,先恒温可逆膨胀到压力为50 kPa ,再绝热可逆压缩到末态压力200 kPa 。求末态温度T 及整个过程的W ,Q ,ΔU 及ΔH 。

解: 题设过程可用下图表示。

双原子理想气体热容比

5

72/52/7m ,m ,===R R C C

V p γ

由理想气体绝热可逆过程方程式 1122

33T p T p γγγγ

--=得系统末态的温度 12

7

232350300K 445.80K 200p T T p γ

γ

--

????==?= ?

?

??

??

因为(1)0U ?=,所以

12200(1)(1)ln

58.3145300ln 50p Q W nRT p ??=-==??? ???

J=17.29 kJ

(2)0Q =

整个过程的热 (1)(2)17.29 kJ Q Q Q =+=

物理化学热力学第一定律总结

热一定律总结 一、 通用公式 ΔU = Q + W 绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V 恒压(W ’=0):W =-p ΔV =-Δ(pV ),ΔU = Q -Δ(pV ) → ΔH = Q p 恒容+绝热(W ’=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0 焓的定义式:H = U + pV → ΔH = ΔU + Δ(pV ) 典型例题:3.11思考题第3题,第4题。 二、 理想气体的单纯pVT 变化 恒温:ΔU = ΔH = 0 变温: 或 或 如恒容,ΔU = Q ,否则不一定相等。如恒压,ΔH = Q ,否则不一定相等。 C p , m – C V , m = R 双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2 典型例题:3.18思考题第2,3,4题 书2.18、2.19 三、 凝聚态物质的ΔU 和ΔH 只和温度有关 或 典型例题:书2.15 ΔU = n C V , m d T T 2 T 1 ∫ ΔH = n C p, m d T T 2 T 1 ∫ ΔU = nC V , m (T 2-T 1) ΔH = nC p, m (T 2-T 1) ΔU ≈ ΔH = n C p, m d T T 2 T 1 ∫ ΔU ≈ ΔH = nC p, m (T 2-T 1)

四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程) ΔU ≈ ΔH –ΔnRT (Δn :气体摩尔数的变化量。如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。 101.325 kPa 及其对应温度下的相变可以查表。 其它温度下的相变要设计状态函数 不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m 计算。 或 典型例题:3.18作业题第3题 五、化学反应焓的计算 其他温度:状态函数法 Δ H m (T ) = ΔH 1 +Δ H m (T 0) + ΔH 3 α β β α Δ H m (T ) α β ΔH 1 ΔH 3 Δ H m (T 0) α β 可逆相变 298.15 K: ΔH = Q p = n Δ H m α β Δr H m ? =Δf H ?(生) – Δf H ?(反) = y Δf H m ?(Y) + z Δf H m ?(Z) – a Δf H m ?(A) – b Δf H m ?(B) Δr H m ? =Δc H ?(反) – Δc H ?(生) = a Δc H m ?(A) + b Δc H m ?(B) –y Δc H m ?(Y) – z Δc H m ?(Z) ΔH = nC p, m (T 2-T 1) ΔH = n C p, m d T T 2 T 1 ∫

热力学第一定律试题

热力学第一定律试题 (一)填空题(每题2分) 1.1-1-1-9 理想气体等温可逆膨胀过程,ΔU 0,ΔH 0,Q 0,W 0。 (填>、=、<) 2.1-1-1-11 气体分子数增加的反应,在恒容无非体积功的条件下,ΔU ΔH,ΔH Q,ΔU Q,W 0。(填>、=、<) 3.1-1-1-9 将热量Q传给一定量的理想气体,(1)若体积不变,则这热量转变为;(2)若温度不变,则这热量转变为;(3)若压 力不变,则这热量转变为。 4.1-1-1-9 在一个绝热箱内装有浓硫酸和水,开始中间用隔膜分开,然后弄破隔膜,使水和浓硫酸混合,以水和浓硫酸为体系,则Q 0,W 0,ΔU 0。(填>、=、<) 5.1-1-1-13 1mol液态苯在298K时置于恒容氧弹中完全燃烧,生成水和二氧化碳气体,同时放热3264KJ·mol-1。则其等压燃烧热为 。 .1-1-1-13 反应C(石墨) + O2 CO2(g)的ΔH,是CO2(g)的热,是C(石墨)的热。 7.1-1-1-9 有3molH2(可视为理想气体),由298K加热到423K,则此过程的ΔU为。 8.1-1-1-9 1mol双原子理想气体,从温度300K绝热压缩到500K,则焓变为。 9. 1-1-1-3 体系经历不可逆循环后,ΔU 0,ΔH 0。 (二)选择题(每题1分) 10.1-4-2-1 有一敞口容器中放有水溶液,如果以此溶液为体系,则为:() (A) 孤立体系 (B) 封闭体系 (C) 敞开体系 (D) 绝热体系 11.1-4-2-1把一杯水放在刚性绝热箱内,若以箱内热水及空气为体系,则该体系为:() (A) 敞开体系 (B) 封闭体系 (C)孤立体系 (D)绝热体系 12.1-4-2-2 以下性质为容量性质的是() (A) 温度 (B) 密度 (C) 压力 (D) 体积 13.1-4-2-2 以下性质为强度性质的是() (A) 内能 (B) 温度 (C) 体积 (D) 焓 14.1-4-2-3下列不符合热力学平衡状态含义的叙述是() (A) 系统内各部分之间及系统与环境间有不平衡作用力存在 (B) 系统内部各处温度相同,且不随时间变化

热力学第一定律及其思考

热力学第一定律及其思考 摘要:在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械可以使系统不断的经历状态变化后又回到原来状态,而不消耗系统的内能,同时又不需要外界提供任何能量,但却可以不断地对外界做功。在热力学第一定律提出之前,人们经过无数次尝试后,所有的种种企图最后都以失败而告终。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。本文就这一伟大的应用于生产生活多方面的定律的建立过程、具体表述、及生活中的应用——热机,进行简单展开。 关键字:内能;热力学;效率;热机 1.热力学第一定律的产生 1.1历史渊源与科学背景 火的发明和利用是人类支配自然力的伟大开端,是人类文明进步的里程碑。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些著名科学家所接受,成为十八世纪热力学占统治地位的理论。 十九世纪以来热之唯动说渐渐地为更多的人们所注意。特别是英国化学家和物理学家克鲁克斯(M.Crookes,1832—1919),所做的风车叶轮旋转实验,证明了热的本质就是分子无规则运动的结论。热动说较好地解释了热质说无法解释的现象,如摩擦生热等。使人们对热的本质的认识大大地进了一步。戴维以冰块摩擦生热融化为例而写成的名为《论热、光及光的复合》的论文,为热功提供了有相当说服力的实例,激励着更多的人去探讨这一问题。 1.2热力学第一定律的建立过程 19世纪初,由于蒸汽机的进一步发展,迫切需要研究热和功的关系,对蒸汽机“出力”作出理论上的分析。所以热与机械功的相互转化得到了广泛的研究。1836年,俄国的赫斯:“不论用什么方式完成化合,由此发出的热总是恒定的”。1830年,法国萨迪·卡诺:“准确地说,它既不会创生也不会消灭,实际上,它只改变了它的形式”。这时能量转化与守恒思想的已经开始萌发,但卡诺的这一思想,在1878年才公开发表,此时热力学第一定律已建立了。 德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。迈尔在一次驶往印度尼西亚的航行中,给生病的船员做手术时,发现血的颜色比温带地区的新鲜红亮,这引起了迈尔的沉思。他认为,食物中含有的化学能,可转化为热能,在热带情况下,机体中燃烧过程减慢,因而留下了较多的氧。迈尔的结论是:“因此力(能量)是不灭的,而是可转化的,不可称量的客体”。并在1841年、1842年撰文发表了他的观点,在1845年的论文中,更明确写道:“无不能生有,有不能变无。”“在死的或活的自然界中,这个力(能)永远处于循环和转化之中。” 焦耳设计了实验测定了电热当量和热功当量,用实验确定了热力学第一定律,补充了迈尔的论证。1845年,焦耳为测定机械功和热之间的转换关系,设计了“热功当量实验仪”,并反复改进,反复实验。1849年发表《论热功当量》,1878年发表《热功当量的新测定》,最后得到的数值为423.85公斤·米/千卡,焦耳测热功当量用了三十多年,实验了400多次,

大学物理习题详解No.11 热力学第一定律

?物理系_2012_09 《大学物理AII 》作业 No.11 热力学第一定律 一、判断题:(用“T ”和“F ”表示) [ F ] 1.热力学第一定律只适用于热力学系统的准静态过程。 解:P284我们把涉及热运动和机械运动范围的能量守恒定律称为热力学第一定律。无论是准静态过程还是非静态过程均是适用的,只是不同过程的定量化的具体形式不同 [ F ] 2.平衡过程就是无摩擦力作用的过程。 解:平衡过程即是过程中的中间状态均视为平衡态,与是否存在摩擦无关。 [ T ] 3.在p -V 图上任意一线段下的面积,表示系统在经历相应过程所作的功。 解:P281,根据体积功的定义。 [ F ] 4.置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态一定都是平衡态。 解:P253平衡态就是系统的宏观量具有稳定值的状态。 [ T ] 5.热力学第一定律表明:对于一个循环过程,外界对系统作的功一定等于系统传给外界的热量。 解:P294 二、选择题: 1.一定量的理想气体,开始时处于压强、体积、温度分别为1p 、1V 、1T 的平衡态,后来变到压强、体积、温度分别为2p 、2V 、2T 的终态,若已知12V V >,且12T T =,则以下各种说法中正确的是: [ D ] (A) 不论经历的是什么过程,气体对外所作的净功一定为正值 (B) 不论经历的是什么过程,气体从外界所吸的净热量一定为正值 (C) 若气体从始态变到终态经历的是等温过程,则气体吸收的热量最少 (D) 如果不给定气体所经历的是什么过程,则气体在过程中对外所作的净功和从外界吸热的正负皆无法判断 解:? = 2 1 d V V V p A 只适用于准静态过程,对于任意过程,无法只根据12V V >,12T T =判断A 和Q 的正负。 2.一定量的理想气体,经历某过程后,它的温度升高了。则根据热力学定律可以断定: (1) 该理想气体系统在此过程中吸了热; (2) 在此过程中外界对该理想气体系统作了正功。 (3) 该理想气体系统的内能增加了。 (4) 在此过程中理想气体系统既从外界吸了热,又对外作了正功。 以上正确的断言是: [ C ] (A) (1)、(3) (B) (2)、(3) (C) (3) (D) (3)、(4) (E) (4) 解:内能是温度的单值函数,温度升高只能说明内能增加了,而功和热量都与过程有关,不能只由温度升降而判断其正负。 3.若在某个过程中,一定量的理想气体的内能E 随压强 p 的变化关系为一直线(其延长线过E ~ p 图的原点),则该过程为 [ C ] (A) 等温过程 (B) 等压过程 (C) 等容过程 (D) 绝热过程 解:由图可以看出, 恒量,即等容过程。,而恒量==?===imR CM P T PC RT i M m E C P E 22)( 4.如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为0p ,右边为真空。今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是 [ B ] (A) 0p (B) 2/0p (C) 02p r (D) r p 2/0 () v p C C /=γ 解:绝热自由膨胀过程中Q = 0,A = 0,由热力学第一定律,有 0=?E ,膨胀前后T 不变。由状态方程知膨胀前后:

2.2热力学第一定律对理想气体的应用

§2.2 热力学第一定律对理想气体的应用 2.2.1、等容过程 气体等容变化时,有=T P 恒量,而且外界对气体做功0=?-=V p W 。根据 热力学第一定律有△E=Q 。在等容过程中,气体吸收的热量全部用于增加内能,温度升高;反之,气体放出的热量是以减小内能为代价的,温度降低。 p V i T C n E Q V ???= ??=?=2 式中 R i T E v T Q C V ?=??=?=2)(。 2.2.1、等压过程 气体在等压过程中,有=T V 恒量,如容器中的活塞在大气环境中无摩擦地自 由移动。 根据热力学第一定律可知:气体等压膨胀时,从外界吸收的热量Q ,一部分用来增加内能,温度升高,另一部分用于对外作功;气体等压压缩时,外界对气体做的功和气体温度降低所减少的内能,都转化为向外放出的热量。且有 T nR V p W ?-=?-= T nC Q p ?= V p i T nC E v ??=?=?2 定压摩尔热容量p C 与定容摩尔热容量V C 的关系有R C C v p +=。该式表明:1mol 理想气体等压升高1K 比等容升高1k 要多吸热8.31J ,这是因为1mol 理想气体等压膨胀温度升高1K 时要对外做功8.31J 的缘故。 2.2.3、等温过程 气体在等温过程中,有pV =恒量。例如,气体在恒温装置内或者与大热源想

接触时所发生的变化。 理想气体的内能只与温度有关,所以理想气体在等温过程中内能不变,即△E =0,因此有Q=-W 。即气体作等温膨胀,压强减小,吸收的热量完全用来对外界做功;气体作等温压缩,压强增大,外界的对气体所做的功全部转化为对外放出的热量。 2.2.4、绝热过程 气体始终不与外界交换热量的过程称之为绝热过程,即Q=0。例如用隔热良好的材料把容器包起来,或者由于过程进行得很快来不及和外界发生热交换,这些都可视作绝热过程。 理想气体发生绝热变化时,p 、V 、T 三量会同时发生变化,仍遵循=T pV 恒 量。根据热力学第一定律,因Q=0,有 )(21122V p V p i T nC E W v -=?=?= 这表明气体被绝热压缩时,外界所作的功全部用来增加气体内能,体积变小、温度升高、压强增大;气体绝热膨胀时,气体对外做功是以减小内能为代价的,此时体积变大、温度降低、压强减小。气体绝热膨胀降温是液化气体获得低温的重要方法。 例:0.020kg 的氦气温度由17℃升高到27℃。若在升温过程中,①体积保持不变,②压强保持不变;③不与外界交换热量。试分别求出气体内能的增量,吸收的热量,外界对气体做的功。 气体的内能是个状态量,且仅是温度的函数。在上述三个过程中气体内能的增量是相同的且均为: J T nC E v 6231031.85.15=???=?=?

热力学第二定律的建立

热力学第二定律的建立

热力学第二定律的建立 1850年克劳修斯提出热力学第二定律以后,至20世纪初,一直被作为与热力学第一定律并列的热力学两大基本定律,引起学术界特别是物理学界的极大重视。这两个基本定律的发现,使热力学在19世纪50年代初时起,被看作近代物理学中的一个新兴的学科,和物理学家们极其热衷的重要领域,得到物理学家和化学家们的关注。 1、热力学第二定律产生的历史背景 18世纪末惠更斯和巴本(Dents Papin,1647~1714)实验研究的燃气汽缸,塞维利(Thomas Savery,1650~1715)于1798年制成的“矿工之友”,及纽可门(Newcomen Thomas,1663~1729)于1712年发明的“大气机”等早期的蒸汽机,都是利用两个不同温度的热源(锅炉和水)并使部分热量耗散的方法使蒸汽机作功的,也可以说不自觉地运用热力学第二定律的思想,进行设计的。瓦特改进纽可门蒸汽机的关键,是以冷凝器取代大气作为第二热源,因而使耗散的热量大大降低。为了进一步减少热的耗散量和

提高热效率与功率,18世纪末和19世纪40年代又先后研制成中低压和高低压二级膨胀式蒸汽机。热机的整个发展史说明,它的热效率可以不断提高和耗散的热量可以逐渐减少。但是,热机的热效率至今虽然逐渐有所提高,但耗散的热量永远也不可能消除。因此,卡诺的可逆循环只可趋近而永远也无法达到。这就提出了一个十分重要的问题,就是卡诺提出的“在蒸汽机内,动力的产生不是由于热质的实际消耗,而是由热体传到冷体,也就是重新建立了平衡”的论断中,最后的话是不正确的,这不仅因为他相信热质说引起的,而且因为在无数事实中,这种热平衡在一个实际热机中是不可达到的。事实说明,机械功可以完全转化为热,但在不引起其他变化的条件下,热却不可能完全转化为机械功。 人们设想,如果出现一个制成这样永动机的先例,即一个孤立热力学系统会从低温热源取热而永恒地做功,那么大地和海洋几乎可以作为无尽的低温热源,做功将是取之不尽的。事实上这与热力学原理相矛盾的,这就意味着可能有一个新的热力学基本定律在起着作用。综上可见,虽然有的事件是不违背热力学第一定律的但也不可

第二章热力学第一定律练习题及答案

第一章热力学第一定律练习题 一、判断题(说法对否): 1.当系统的状态一定时,所有的状态函数都有一定的数值。当系统的状态发生 变化时,所有的状态函数的数值也随之发生变化。 2.在101.325kPa、100℃下有lmol的水和水蒸气共存的系统,该系统的状态 完全确定。 3.一定量的理想气体,当热力学能与温度确定之后,则所有的状态函数也完 全确定。 4.系统温度升高则一定从环境吸热,系统温度不变就不与环境换热。 5.从同一始态经不同的过程到达同一终态,则Q和W的值一般不同,Q + W 的值一般也不相同。 6.因Q P = ΔH,Q V = ΔU,所以Q P与Q V都是状态函数。 7.体积是广度性质的状态函数;在有过剩NaCl(s) 存在的饱和水溶液中,当温度、压力一定时;系统的体积与系统中水和NaCl的总量成正比。8.封闭系统在压力恒定的过程中吸收的热等于该系统的焓。 9.在101.325kPa下,1mol l00℃的水恒温蒸发为100℃的水蒸气。若水蒸气可视为理想气体,那么由于过程等温,所以该过程ΔU = 0。 10.一个系统经历了一个无限小的过程,则此过程是可逆过程。 11.1mol水在l01.325kPa下由25℃升温至120℃,其ΔH= ∑C P,m d T。12.因焓是温度、压力的函数,即H = f(T,p),所以在恒温、恒压下发生相变时,由于d T = 0,d p = 0,故可得ΔH = 0。 13.因Q p = ΔH,Q V = ΔU,所以Q p - Q V = ΔH - ΔU = Δ(p V) = -W。14.卡诺循环是可逆循环,当系统经一个卡诺循环后,不仅系统复原了,环境也会复原。 15.若一个过程中每一步都无限接近平衡态,则此过程一定是可逆过程。16.(?U/?V)T = 0 的气体一定是理想气体。 17.一定量的理想气体由0℃、200kPa的始态反抗恒定外压(p环= 100kPa) 绝热膨胀达平衡,则末态温度不变。 18.当系统向环境传热(Q < 0)时,系统的热力学能一定减少。

物理学史2.2 热力学第一定律的建立

2.2热力学第一定律的建立 2.2.1准备阶段 19世纪40年代以前,自然科学的发展为能量转化与守恒原理奠定了基础。主要从以下几个方面作了准备。 1.力学方面的准备 机械能守恒是能量守恒定律在机械运动中的一个特殊情况。早在力学初步形成时就已有了能量守恒思想的萌芽。例如,伽利略研究斜面问题和摆的运动,斯梯芬(Stevin,1548—1620)研究杠杆原理,惠更斯研究完全弹性碰撞等都涉及能量守恒问题。17世纪法国哲学家笛卡儿已经明确提出了运动不灭的思想。以后德国哲学家莱布尼兹(Leibniz,1646—1716)引进活力(Vis viva)的概念,首先提出活力守恒原理,他认为用mv2度量的活力在力学过程中是守恒的,宇宙间的“活力”的总和是守恒的。D.伯努利(Daniel Bernoulli,1700—1782)的流体运动方程实际上就是流体运动中的机械能守恒定律。 永动机不可能实现的历史教训,从反面提供了能量守恒的例证,成为导致建立能量守恒原理的重要线索。 至19世纪20年代,力学的理论著作强调“功”的概念,把它定义成力对距离的积分,并澄清了它和“活力”概念之间的数学关系,提供了一种机械“能”的度量,这为能量转换建立了定量基础。1835年哈密顿(W.R.Hamilton,1805—1865)发表了《论动力学的普遍方法》一文,提出了哈密顿原理。至此能量守恒定律及其应用已经成为力学中的基本内容。 2.化学、生物学方面的准备 法国的拉瓦锡(https://www.doczj.com/doc/3d18024176.html,voisier,1743—1794)和拉普拉斯(https://www.doczj.com/doc/3d18024176.html,place,1749—1827)曾经研究过一个重要的生理现象,他们证明豚鼠吃过食物后发出动物热与等量的食物直接经化学过程燃烧所发的热接近相等。德国化学家李比希(J.Liebig,1803—1873)的学生莫尔(F.Mohr,1806—1879)则进一步认为不同形式的“力”(即能量)都是机械“力”的表现,他写道: “除了54种化学元素外,自然界还有一种动因,叫做力。力在适当的条件下可以表现为运动、化学亲和力、凝聚、电、光、热和磁,从这些运动形式中的每一种可以得出一切其余形式。” 他明确地表述了运动不同形式的统一性和相互转化的可能性。 3.热学方面的准备

高中物理-热力学第一定律

高中物理-热力学第一定律 如图,一个质量为m 的T 形活塞在气缸内封闭一定量的理想气体,活塞体积可忽略不计,距气缸底部h 0处连接一U 形细管(管内气体的体积可忽略)。初始时,封闭气体温度为T 0,活塞距离气缸底部1.5h 0,两边水银柱存在高度差。已知水银密度为ρ,大气压强为p 0,气缸横截面积为S ,活塞竖直部分高为1.2h 0,重力加速度为g 。 (1)通过制冷装置缓慢降低气体温度,当温度为多少时两边水银面恰好相平? (2)从开始至两水银面恰好相平的过程,若气体放出的热量为Q ,求气体内能的变化。 【参考答案】(1) (2)0.3h 0(p 0S +mg )–Q 【试题解析】(1)初态时,气体压强,体积V 1=1.5h 0S ,温度为T 0 要使两边水银面相平,气缸内气体的压强p 2=p 0,此时活塞下端一定与气缸底接触,V 2=1.2h 0 设此时温度为T ,由理想气体状态方程有 解得 (2)从开始至活塞竖直部分恰与气缸底接触,体积变小,气体压强不变,外界对气体做功,其后体积不变,外界对气体不做功,故外界对气体做的功W =p 1ΔV =()×0.3h 0S 由热力学第一定律有ΔU =W –Q =0.3h 0(p 0S +mg )–Q 【知识补给】 状态变化与内能变化 中学常见的状态变化主要有等温变化、等容变化、等压变化和绝热变化。 000455p ST p S mg +10mg p p S =+11220p V p V T T =000455p ST T p S mg =+0mg p S +

(1)等温变化:理想气体的内能等于分子动能,不变;一般气体的分子间距较大,分子间作用力为引力,体积增大,则分子势能增大,内能增大。 (2)等容变化:理想气体的内能随温度升高而增大;一般气体分子势能不变,温度升高时分子动能增大,内能增大;体积不变则外界对气体不做功,内能变化只与热传递有关。 (3)等压变化:理想气体的内能随温度升高而增大;一般气体温度升高时,分子平均速率增大,压强不变,则分子数密度应减小,即体积增大,分子势能和分子动能都增大,内能增大。(4)绝热变化:与外界无热交换,内能变化只与体积变化,即外界对气体做的功有关;理想气体的体积增大时,内能减小,温度降低,压强减小;一般气体的体积增大时,内能减小,分子势能增大,分子动能减小,温度降低,压强减小。 下列说法正确的是 A.物体的温度升高,物体内所有分子热运动的速率都增大 B.物体的温度升高,物体内分子的平均动能增大 C.物体吸收热量,其内能一定增加 D.物体放出热量,其内能一定减少 如图所示为密闭的气缸,外力推动活塞P压缩气体,对缸内气体做功800 J,同时气体向外界放热200 J,缸内气体的 A.温度升高,内能增加600 J B.温度升高,内能减少200 J C.温度降低,内能增加600 J D.温度降低,内能减少200 J 如图所示,一定质量的理想气体从状态A依次经过状态B、C和D后再回到状态A,其中A→B和C→D为等温过程,B→C为等压过程,D→A为等容过程。

高中物理-热力学第一定律

热力学第一定律 热力学第一定律 热力学第一定律内容是:研究对象内能的改变量,等于外界对它传递的热量与外界对它所做的功之和。 注:热量的传导与做功均需要注意正负性。 热力学第一定律公式 热力学第一定律公式: △U=W+Q 其中,△U——内能的变化量,单位焦耳(J),如果为负数,则说明研究对象内能减小。 Q——研究对象吸收的热量,单位焦耳(J),如果为负数,则说明研究对象向外释放热量。 在自然态下,Q传导具有方向性,即只能从高温物体向低温物体传递热量。 W——外界对研究对象做的功,单位焦耳(J),如果为负数,则说明研究对象对外界做功。

热力学第一定律理解误区之吸热内能一定增加? 老师:并非如此。如果对外做功,内能可能不变,甚至减小。 物体的内能是变大还是变小,取决于两个外在因素,其一是吸收(或放出)热量,另外一个是做功。 如果吸收了10J的热量,向外界做了20J的功,物体的内能不会增加,反而会减小(减小10J)。 热力学第一定律深入理解之温度与分子平均动能关系 老师:分子平均动能Ek与热力学温度T是正比例关系,即分子平均动能Ek越大,热力学温度T就越大。 分子平均动能Ek是微观表现方式,而热力学温度T是宏观表现方式。 热力学第一定律深入理解之做功与气体体积关系 老师:W与气体的体积相关,V减小,则是外界对气体做正功(压缩气体)。

反之,V增大,则是外界对气体做负功(气体膨胀向外界做功)。 热力学第一定律深入理解之能量守恒定律在热学的变形式 老师:从热力学第一定律公式来看: △U=W+Q 这与能量守恒定律是一致的。能量守恒定律的内容是:能量既不会凭空产生,也不会凭空消失,只能从一个物体传递给另一个物体,而且能量的形式也可以互相转换。 在热学领域,物体内能改变同样遵守能量守恒定律。物体内能的增加,要么是伴随着外界做功,要么是由外界热量传导引起的。 在物体A内能增加的同时,物体B因为向A做功能量减小,或者物体C把自身内能以热量形式向物体A传导,自身能量减小。 如果以A+B+C总系统为研究对象,这个系统的总能量,依然是守恒的。 热力学第一定律深入理解之理想气体的内能 老师:如果研究对象是一定量的理想气体,就不用考虑分子势能。 那么这部分气体内能变化△U,就只与分子平均动能Ek相关,宏观表现就是只和温度T相关。热力学第一定律的发展与意义简介 热力学第一定律本质上与能量守恒定律是的等同的,是一个普适的定律,适用于宏观世界和微观世界的所有体系,适用于一切形式的能量。 自1850年起,科学界公认能量守恒定律是自然界普遍规律之一。

热力学第一定律基本概念和重点总结要点

本章内容: 介绍有关热力学第一定律的一些基本概念,热、功、状态函数,热力学第一定律、热力学能和焓,明确准静态过程与可逆过程的意义,进一步介绍热化学。 第一节热力学概论 ?热力学研究的目的、内容 ?热力学的方法及局限性 ?热力学基本概念 一.热力学研究的目的和内容 目的:热力学是研究热和其它形式能量之间相互转换以及转换过程中所应遵循的规律的科学。内容:热力学第零定律、第一定律、第二定律和本世纪初建立的热力学第三定律。其中第一、第二定律是热力学的主要基础。 把热力学中最基本的原理用来研究化学现象和化学有关的物理现象,称为化学热力学。 化学热力学的主要内容是: 1.利用热力学第一定律解决化学变化的热效应问题; 2.利用热力学第二律解决指定的化学及物理变化实现的可能性、方向和限度问题,建 立相平衡、化学平衡理论; 3.利用热力学第三律可以从热力学的数据解决有关化学平衡的计算问题 二、热力学的方法及局限性 方法: 以热力学第一定律和第二定律为基础,演绎出有特定用途的状态函数,通过计算某变化过程的有关状态函数改变值,来解决这些过程的能量关系和自动进行的方向、限度。 而计算状态函数的改变只需要根据变化的始、终态的一些可通过实验测定的宏观性质,并不涉及物质结构和变化的细节。 优点: ?研究对象是大数量分子的集合体,研究宏观性质,所得结论具有统计意义。 ?只考虑变化前后的净结果,不考虑物质的微观结构和反应机理,简化了处理方法。局限性: 1.只考虑变化前后的净结果,只能对现象之间的联系作宏观的了解,而不能作微观的 说明或给出宏观性质的数据。 例如:热力学能给出蒸汽压和蒸发热之间的关系,但不能给出某液体的实际蒸汽压的数值是多少。 2.只讲可能性,不讲现实性,不知道反应的机理、速率。 三、热力学中的一些基本概念 1.系统与环境 系统:用热力学方法研究问题时,首先要确定研究的对象,将所研究的一部分物质或空间,从其余的物质或空间中划分出来,这种划定的研究对象叫体系或系统 (system)。 环境:系统以外与系统密切相关的其它部分称环境(surrounding 注意: 1.体系内可有一种或多种物质,可为单相或多相,其空间范围可以是固定或 随过程而变。 2.体系和环境之间有分界,这个分界可以是真实的,也可以是虚构的,既可 以是静止的也可以是运动的。 根据体系与环境的关系将体系区分为三种:

热力学第一定律选自测题+答案

1、对于理想气体的内能有下述四种理解: (1) 状态一定,内能也一定 (2) 对应于某一状态的内能是可以直接测定的 (3) 对应于某一状态,内能只有一个数值,不可能有两个或两个以上的数值 (4) 状态改变时,内能一定跟着改变 其中正确的是: ( D ) (A) (1),(2) (B) (3),(4) (C) (2),(4) (D) (1),(3) 2、下面陈述中,正确的是: ( C ) (A) 虽然Q和W是过程量,但由于Q V =ΔU,Q p=ΔH,而U和H是状态函数,所以Q V和Q p是状态 函数 (B) 热量是由于温度差而传递的能量,它总是倾向于从含热量较多的高温物体流向含热量较少 的低温物体 (C) 封闭体系与环境之间交换能量的形式非功即热 (D) 两物体之间只有存在温差,才可传递能量,反过来体系与环境间发生热量传递后, 必然要 引起体系温度变化 4、"压强",即物理化学中通常称为"压力"的物理量,其量纲应该是什么 (A) (A) 动量 (B) 力 (C) 动能 (D) 加速度 面积·时间面积·时间面积·时间面积·质量 5、一体系如图,隔板两边均充满空气(视为理想气体),只是两边压力不等,已知p右 0 (C) Q > 0 W < 0 ΔU > 0 (D)ΔU = 0 , Q=W≠ 0 8、对于孤立体系中发生的实际过程,下列关系中不正确的是: (D) 热力学第一定律,上课有例 题

物理化学知识点总结(热力学第一定律)

物理化学知识点总结 (热力学第一定律) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

热力学第一定律 一、基本概念 1.系统与环境 敞开系统:与环境既有能量交换又有物质交换的系统。 封闭系统:与环境只有能量交换而无物质交换的系统。(经典热力学主要研究的系统) 孤立系统:不能以任何方式与环境发生相互作用的系统。 2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度 T、压强p、体积V等。根据状态函数的特点,我们 把状态函数分成:广度性质和强度性质两大类。 广度性质:广度性质的值与系统中所含物质的量成 正比,如体积、质量、熵、热容等,这种性质的函数具 有加和性,是数学函数中的一次函数,即物质的量扩大 a倍,则相应的广度函数便扩大a倍。 强度性质:强度性质的值只与系统自身的特点有关,与物质的量无关,如温度,压力,密度,摩尔体积等。 注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。

二、热力学第一定律 热力学第一定律的数学表达式: 对于一个微小的变化状态为: dU= 公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。或者说dU与过程无关而δQ和δW却与过程有关。这里的W既包括体积功也包括非体积功。 以上两个式子便是热力学第一定律的数学表达式。它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。 三、体积功的计算 1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。将一 定量的气体装入一个带有理想活塞的容器中,活塞上部施加外压。当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气

热力学第一定律习题1

第一章 热力学第一定律 一 . 选择题: 1. 恒容下,一定量的理想气体,当温度升高时内能将 ( ) (A) 降低 (B) 增加 (C) 不变 (D) 增加、减少不能确 定 2. 在一刚性的绝热箱中,隔板两边均充满空气,(视为理想气体),只 是两边压力不等, 已知 P右< P左,则将隔板抽去后应有 ( ) (A) Q = 0 W = 0 △U = 0 (B) Q = 0 W < 0 △U > 0 (C) Q > 0 W < 0 △U > 0 (D) △U = 0 , Q = W ≠ 0 3. 有一容器四壁导热,上部有一可移动的活塞,在该容器中同时放入 锌块和盐酸, 发生化学反应后活塞将上移一定距离,若以锌和盐酸为体系则 ( ) (A) Q < 0 , W = 0 , △rU < 0 (B) Q = 0 , W > 0 , △rU < 0 (C) Q < 0 , W > 0 , △rU = 0 (D) Q < 0 , W > 0 , △rU < 0 4. 苯在一个刚性的绝热容器中燃烧, 则 C6H6(l) + (15/2)O2(g) = 6CO2+ 3H2O(g) ( ) (A) △U = 0 , △H < 0 , Q = 0 (B) △U = 0 , △H > 0 , W = 0 (C) Q = 0 , △U = 0 , △H = 0 (D) Q = 0 , △U ≠ 0 , △H ≠ 0 5. 1mol,373K,标准压力下的水经下列二个不同过程达到 373K,标准

压力下的水气, (1) 等温等压可逆蒸发 (2) 真空蒸发,这二个过程中功和热 的关系为( ) (A) W1> W2 Q1> Q2 (B) W1< W2 Q1< Q2 (C) W1= W2 Q1= Q2 (D) W1> W2 Q1< Q2 6. 有一高压钢筒,打开活塞后气体喷出筒外,当筒内压力与筒外相等 时关闭活塞, 此时筒内温度将 ( ) (A) 不变 (B) 升高 (C) 降低 (D) 无法判定 7. 封闭体系从 1 态变 B 态,可以沿两条等温途径: (甲)可逆途径 (乙)不可逆途径 则下列关系式 ⑴ △U可逆> △U不可逆 ⑵ W可逆 > W不可逆 ⑶ Q可逆 > Q不可逆 ⑷ ( Q可逆 - W可逆) > ( Q不可逆 - W不可逆) 正确的是 ( ) (A) (1),(2) (B) (2),(3) (C) (3),(4) (D) (1),(4) 8. 化学反应在只做体积功的等温等压条件下,若从反应物开始进行反 应,则此反应 (A) 是热力学可逆过程 (B) 是热力学不可逆过程 (C) 是否可逆不能确定 (D) 是不能进行的过程 9. 1mol 单原子理想气体从 298K,202.65kPa 经历 ① 等温 ② 绝 热 ③ 等压三条途径可逆膨胀使体积增加到原来的 2 倍,所作的功分 别为 W1,W2,W3,三者的关系是 ( ) (A) W1> W2> W3 (B) W2> W1> W3 (C) W3> W2> W1 (D) W3> W1> W2

热力学第一定律试题

热力学第一定律试题 (一)填空题(每题2分) 1。1—1—1-9 理想气体等温可逆膨胀过程,ΔU0,ΔH 0,Q 0, W 0. (填>、=、<) 2.1-1-1-11气体分子数增加的反应,在恒容无非体积功的条件下,ΔU ΔH,ΔH Q,ΔU Q,W 0。(填>、=、<) 3.1-1—1-9 将热量Q传给一定量的理想气体,(1)若体积不变,则这热量转变为;(2)若 温度不变,则这热量转变为;(3)若压力不变,则这热量转变为。 4.1-1-1-9 在一个绝热箱内装有浓硫酸和水,开始中间用隔膜分开,然后弄破隔膜,使水和浓硫酸混合,以水和浓硫酸为体系,则Q 0,W 0,ΔU 0。(填〉、=、〈) 5。1-1-1-13 1mol液态苯在298K时置于恒容氧弹中完全燃烧,生成水和二氧化碳气体,同时放热326 4KJ·mol—1。则其等压燃烧热为。 6.1-1-1—13 反应C(石墨) +O2 CO2(g)的ΔH,是CO2(g)的热,是C(石墨)的 热. 7.1-1—1—9 有3molH2(可视为理想气体),由298K加热到423K,则此过程的ΔU为。 8。1-1—1-9 1mol双原子理想气体,从温度300K绝热压缩到500K,则焓变为。 9。1-1—1-3体系经历不可逆循环后,ΔU 0,ΔH0。 (二)选择题(每题1分) 10.1—4-2-1 有一敞口容器中放有水溶液,如果以此溶液为体系,则为:( ) (A)孤立体系 (B)封闭体系(C)敞开体系(D) 绝热体系 11.1—4-2-1把一杯水放在刚性绝热箱内,若以箱内热水及空气为体系,则该体系为:()(A)敞开体系(B)封闭体系(C)孤立体系 (D)绝热体系 12.1—4-2-2 以下性质为容量性质的是( ) (A)温度(B) 密度 (C)压力 (D)体积 13。1—4-2-2 以下性质为强度性质的是( ) (A)内能(B) 温度 (C)体积(D)焓 14.1-4—2-3下列不符合热力学平衡状态含义的叙述是( ) (A) 系统内各部分之间及系统与环境间有不平衡作用力存在(B)系统内部各处温度相同,且不随时 间变化 (C) 当系统内有化学反应发生并达到平衡时,系统的物质组成不随时间变化 (D) 系统内相数及各相组成不随时间变化 15.1—4-2-3有关状态函数的描述不正确的是() (A)状态一定,值一定; (B) 在数学上有全微分的性质; (C) 其循环积分等于零;(D)所有状态函数的绝对值都无法确定。 16.1-4-2-9 理想气体等温膨胀,环境将热传给系统,则系统的() (A)ΔH<0,ΔU>0 (B)ΔH>0,ΔU〈0 (C)ΔH<0,ΔU〈0(D) ΔH=0,ΔU=0 17.1—4-2-6 下列表示式中正确的是() (A)等压过程,ΔH=ΔU+ PV(B)等压过程,ΔH =0 (C) 等压过程,ΔH =ΔU + V P (D)恒容过程,ΔH=0 18.1—4-2-14 在绝热钢弹中,发生一个放热的分子数增加的化学反应,则() (A)Q〉0,W>0,ΔU >0 (B) Q=0,W=0,ΔU〉0 (C) Q=0,W=0,ΔU =0 (D) Q<0,W〉0,ΔU〈0 19.1-4—2-9 某理想气体发生一绝热不可逆过程,下列关系式不成立的是() (A) PVγ=常数(B) dU= -δW (C) dU= C v dT (D) PVm=RT

02章 热力学第一定律及其应用

第二章热力学第一定律及其应用 1. 如果一个体重为70kg的人能将40g巧克力的燃烧热(628 kJ) 完全转变为垂直位移所要作的功 ,那么这点热量可支持他爬多少高度? 2. 在291K和下,1 mol Zn(s)溶于足量稀盐酸中,置换出1 mol H2并放热152 kJ。若以Zn和盐酸为体系,求该反应所作的功及体系内能的变化。 3.理想气体等温可逆膨胀,体积从V1胀大到10V1,对外作了41.85 kJ的功,体系的起始压力为202.65 kPa。 (1)求V1。 (2)若气体的量为2 mol ,试求体系的温度。 4.在101.325 kPa及423K时,将1 mol NH3等温压缩到体积等于10 dm3, 求最少需作多少功? (1)假定是理想气体。 (2)假定服从于范德华方程式。 已知范氏常数a=0.417 Pa·m6·mol-2, b=3.71× m3/mol. 5.已知在373K和101.325 kPa时,1 kg H2O(l)的体积为1.043 dm3,1 kg水气的体积为1677 dm3,水的 =40.63 kJ/mol 。当1 mol H2O(l),在373 K 和外压为时完全蒸发成水蒸气时,求 (1)蒸发过程中体系对环境所作的功。 (2)假定液态水的体积忽略而不计,试求蒸发过程中的功,并计算所得结果的百分误差。 (3)假定把蒸汽看作理想气体,且略去液态水的体积,求体系所作的功。(4)求(1)中变化的和。 (5)解释何故蒸发热大于体系所作的功? 6.在273.16K 和101.325 kPa时,1 mol的冰熔化为水,计算过程中的功。

已知在该情况下冰和水的密度分别为917 kg·m-3和1000 kg·m-3。 7.10mol的气体(设为理想气体),压力为1013.25 kPa,温度为300 K,分别求出等温时下列过程的功: (1)在空气中(压力为101.325 kPa)体积胀大1 dm3。 (2)在空气中膨胀到气体压力也是101.325 kPa。 (3)等温可逆膨胀至气体的压力为101.325 kPa。 8.273.2K,压力为5×101.325 kPa的N2气2 dm3,在外压为101.325 kPa下等温膨胀,直到N2气的压力也等于101.325 kPa为止。 求过程中的W,ΔU ,ΔH 和Q。假定气体是理想气体。 9.0.02kg乙醇在其沸点时蒸发为气体。已知蒸发热为858kJ/kg.蒸汽的比容为0.607 m3/kg。 试求过程的ΔU ,ΔH,Q,W(计算时略去液体的体积)。 10. 1× kg水在373K,101.325 kPa压力时,经下列不同的过程变为373 K, 压力的汽,请分别求出各个过程的W,ΔU ,ΔH 和Q 值。 (1)在373K,101.325 kPa压力下变成同温,同压的汽。 (2)先在373K,外压为0.5×101.325 kPa下变为汽,然后加压成373K,101.325 kPa压力的汽。 (3)把这个水突然放进恒温373K的真空箱中,控制容积使终态为101.325 kPa 压力的汽。 已知水的汽化热为2259 kJ/kg。 11. 一摩尔单原子理想气体,始态为2×101.325 kPa,11.2 dm3,经pT=常数的可逆过程压缩到终态为4×101.325 kPa,已知C(V,m)=3/2 R。求: (1)终态的体积和温度。 (2)ΔU 和ΔH 。 (3)所作的功。

热力学第一定律的内容及应用

目录 摘要 (1) 关键字 (1) Abstract: ...................................................................................... 错误!未定义书签。Key words .................................................................................... 错误!未定义书签。引言 (1) 1.热力学第一定律的产生 (1) 1.1历史渊源与科学背景 (1) 1.2热力学第一定律的建立过程 (2) 2.热力学第一定律的表述 (3) 2.1热力学第一定律的文字表述 (3) 2.2数学表达式 (3) 3.热力学第一定律的应用 (4) 3.1焦耳实验 (4) 3.2热机及其效率 (5) 总结 (7) 参考文献 (7)

热力学第一定律的内容及应用 摘要:热力学第一定律亦即能量转换与守恒定律,广泛地应用于各个学科领域。本文回顾了其建立的背景及经过,它的准确的文字表述和数学表达式,及它在理想气体、热机的应用。 关键字:热力学第一定律;内能定理;焦耳定律;热机;热机效率 引言 在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。本文就这一伟大的应用于生产生活多方面的定律的建立过程、具体表述、及生活中的应用——热机,进行简单展开。 1.热力学第一定律的产生 1.1历史渊源与科学背景 人类使用热能为自己服务有着悠久的历史,火的发明和利用是人类支配自然力的伟大开端,是人类文明进步的里程碑。中国古代就对火热的本性进行了探讨,殷商时期形成的“五行说”——金、木、水、火、土,就把火热看成是构成宇宙万物的五种元素之一。 北宋时刘昼更明确指出“金性苞水,木性藏火,故炼金则水出,钻木而生火。”古希腊米利都学派的那拉克西曼德(Anaximander,约公元前611—547) 把火看成是与土、水、气并列的一种原素,它们都是由某种原始物质形成的世界四大主要元素。恩培多克勒(Empedocles,约公元前500—430)更明确提出四元素学说,认为万物都是水、火、土、气四元素在不同数量上不同比例的配合,与我国的五行说十分相似。但是人类对热的本质的认识却是很晚的事情。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些著名科学家所接受,成为十八世纪热力学占统治地位的

相关主题
文本预览
相关文档 最新文档