当前位置:文档之家› IP网络组播技术的新发展

IP网络组播技术的新发展

IP网络组播技术的新发展
IP网络组播技术的新发展

IPTV系统中的IP组播技术

IPTV又称为网络电视、宽带电视,是利用宽带网络为用户提供交互式服务的一种业务。通过IPTV业务,用户可以得到高质量(接近DVD水平)的数字媒体服务,可以自由选择宽带IP网的视频节目,实现媒体提供者和媒体消费者的实质性互动。 IP组播 在ADSL上实现IPTV业务是基于IP组播技术的。组播技术是一种点到多点的网络技术,其目的是减轻网络负载和媒体服务器的负担。组播方式分为静态组播和动态组播,由于实际应用中用户的需求总是变化的,所以在IPTV中一般采用动态组播。 1. 组播协议 从协议角度讲,在IP组播中用到的协议由两部分组成:运行在主机与组播路由器之间的路由协议IGMP (Internet Group Management Protocol)和运行在各个组播路由器之间的组播路由协议,如PIM-SM、PIM-DM、MSDP和DVMRP等。 IP组播的实现主要是基于IGMP协议的,IGMP协议是第三层协议,是TCP/IP的标准之一,所有接收IP组播的机器都需要IGMP。 2. 组播地址 从通信层次上讲,IP组播分为两个层面:IP组播和以太网组播。根据IANA(Internet Assigned Number Authority)规定,组播报文的地址使用D类IP地址,其范围从224.0.0.0到239.255.255.255。组播MAC地址的高24bit固定为0x015e,同时需要注意的是组播地址都只能作为目的地址,而不能作为源地址来使用。IP组播地址和MAC地址以一种映射关系相关联,MAC地址的低23位映射为组播MAC的低23位,如图一所示。组播MAC 地址和组播IP地址的这种映射关系不是唯一对应的,因为在32位IP组播地址可以变化的28bit中只映射了其中的23bit,还剩下5bit是可以自由变化的,所以每32个IP组播地址映射一个组播MAC地址。 DSLAM上实现IP组播基本原理 1. DSLAM简介 DSLAM(数字用户线路接入复用器)是ADSL系统中的局端设备,其功能是接纳所有的DSL线路,汇聚流量,相当于一个二层交换机。 DSLAM从产生到现在大致经历了三个阶段,各阶段的区别在于交换内核,上联口以及由此引起的不同QoS,具体如表一所示。 2. IGMP Proxy和IGMP Snooping 由于采用了不同的交换内核和上联口,因此在DSLAM上进行IP组播可以采用IGMP Proxy和IGMP Snooping 两种方式。 IGMP Proxy的实现机理:DSLAM靠拦截用户和路由器之间的IGMP报文建立组播表,Proxy设备的上联端口执行主机的角色,下联端口执行路由器的角色; IGMP Snooping的实现机理:DSLAM以侦听主机发向路由器IGMP成员报告消息的方式,形成组成员和交换机端口的对应关系,DSLAM则根据该对应关系,将收到的组播数据包转发到组成员的端口。

组播ip与组播mac的映射

组播ip与组播mac的映射 IP组播和单播的目的地址不同,IP组播的目的地址是组地址——D类地址. D类地址是从224.0.0.0到239.255.255.255之间的IP地址 其中224.0.0.0到224.0.0.255是被保留的地址 224.0.0.1表示子网中所有的组播组 224.0.0.2表示子网中的所有路由器 224.0.0.5表示OSPF(Open Shortest Path First)路由器 224.0.0.6表示OSPF指定路由器 224.0.0.12表示DHCP(Dynamic Host Configuration Protocol)服务器. D类地址是动态分配和恢复的瞬态地址.每一个组播组对应于动态分配的一个D类地址;当组播组结束组播时,相对应的D类地址将被回收,用于以后的组播.在D类地址的分配中,IETF建议遵循以下的原则: 全球范围:224.0.1.0~238.255.255.255; 有限范围:239.0.0.0~239.255.255.255; 本地站点范围:239.253.0.0~239.253.0.16; 本地机构范围:239.192.0.0~239.192.0.14. 2层的MAC地址是如何与3层的IP地址进行映射的呢?通过将MAC地址的前25位强行规定位0100.5e,而后23位对应IP地址的后23位,而组播IP地址的前4位均相同如:IP地址:1110yyyy.yxxxxxxx.xxxxxxx.xxxxxxxx MAC地址:00000001.00000000.01011110.0xxxxxxx.xxxxxxx.xxxxxxxx 例如:组播IP地址224.215.145.230应该映射到下列哪个组播MAC地址?( ) (A)01-00-5e-57-91-e6(B)01-00-5e-d7-91-e6 (C)01-00-5e-5b-91-e6(D)01-00-5e-55-91-e6 用二进制来换算,将215.145.230换算成1101,0111,1001,0001,1110,0110,取最后23位放到MAC地址中的23位可以计算得出答案是A。 显然有32个IP地址(有5个y可以不一样)对应一个MAC地址,所以要避免在同

IP组播路由协议详细介绍

IP组播路由协议详细介绍 一、概述 1、组播技术引入的必要性 随着宽带多媒体网络的不断发展,各种宽带网络应用层出不穷。IP TV、视频会议、数据和资料分发、网络音频应用、网络视频应用、多媒体远程教育等宽带应用都对现有宽带多媒体网络的承载能力提出了挑战。采用单播技术构建的传统网络已经无法满足新兴宽带网络应用在带宽和网络服务质量方面的要求,随之而来的是网络延时、数据丢失等等问题。此时通过引入IP组播技术,有助于解决以上问题。组播网络中,即使组播用户数量成倍增长,骨干网络中网络带宽也无需增加。简单来说,成百上千的组播应用用户和一个组播应用用户消耗的骨干网带宽是一样的,从而最大限度的解决目前宽带应用对带宽和网络服务质量的要求。 2、IP网络数据传输方式 组播技术是IP网络数据传输三种方式之一,在介绍IP组播技术之前,先对IP网络数据传输的单播、组播和广播方式做一个简单的介绍: 单播(Unicast)传输:在发送者和每一接收者之间实现点对点网络连接。如果一台发送者同时给多个的接收者传输相同的数据,也必须相应的复制多份的相同数据包。如果有大量主机希望获得数据包的同一份拷贝时,将导致发送者负担沉重、延迟长、网络拥塞;为保证一定的

服务质量需增加硬件和带宽。 组播(Multicast)传输:在发送者和每一接收者之间实现点对多点网络连接。如果一台发送者同时给多个的接收者传输相同的数据,也只需复制一份的相同数据包。它提高了数据传送效率。减少了骨干网络出现拥塞的可能性。 广播(Broadcast)传输:是指在IP子网内广播数据包,所有在子网内部的主机都将收到这些数据包。广播意味着网络向子网每一个主机都投递一份数据包,不论这些主机是否乐于接收该数据包。所以广播的使用范围非常小,只在本地子网内有效,通过路由器和交换机网络设备控制广播传输。 二、组播技术 1、 IP组播技术体系结构 组播协议分为主机-路由器之间的组成员关系协议和路由器-路由 器之间的组播路由协议。组成员关系协议包括IGMP(互连网组管理协议)。组播路由协议分为域内组播路由协议及域间组播路由协议。域内组播路由协议包括PIM-SM、PIM-DM、DVMRP等协议,域间组播路由协议包括MBGP、MSDP等协议。同时为了有效抑制组播数据在链路层的扩散,引入了IGMP Snooping、CGMP等二层组播协议。 IGMP建立并且维护路由器直联网段的组成员关系信息。域内组播路由协议根据IGMP维护的这些组播组成员关系信息,运用一定的组播路

IP组播地址

IP组播地址 组播协议的地址在IP协议中属于D类地址。 D类地址是从224.0.0.0到239.255.255.255之间的IP地址其中224.0.0.0到224.0.0.255是被保留的地址。 组播协议的地址范围类似于一般的单播地址,被划分为两个大的地址范围, 239.0.0.0—239.255.255.255是私有地址,供各个内部网在内部使用,这个地址的组播不能上公网,类似于单播协议使用的192.168.X.X和10.X.X.X。 224.0.1.0—238.255.255.255是公用的组播地址,可以用于Internet上。 下面是一些常见的有特殊用途的IP组播地址 224.0.0.0 - Base address 224.0.0.1 -网段中所有支持多播的主机 224.0.0.2 -网段中所有支持多播的路由器 224.0.0.4 -网段中所有的DVMRP路由器 224.0.0.5 -所有的OSPF路由器 224.0.0.6 -所有的OSPF指派路由器 224.0.0.7 -所有的ST路由器 224.0.0.8 -所有的ST主机 224.0.0.9 -所有RIPv2路由器 224.0.0.10 -网段中所有支的路由器 224.0.0.11 - Mobile-Agents 224.0.0.12 - DHCP server / relay agent服务专用地址 224.0.0.13 -所有的PIM路由器 224.0.0.22 -所有的IGMP路由器 224.0.0.251 -所有的支持组播的DNS服务器

224.0.0.9 RIPv2支持组播更新。 224.0.0.22 IGMPv2使用此地址,这个协议的本意是减少广播,让组员以组播形式通信。 224.0.0.5 224.0.0.6这两个是ospf协议使用的组播地址。 在broadcast network不论是DR,BDR,DRother,大家发送hello packet的时候目标地址都是AllSPFRouter(224.0.0.5);DRother向DR,BDR发送DD,LSA request或者LSA UPdate时目标地址是AllDRouter(224.0.0.6);DR,BDR向DRother发送DD,LSA Request或者LSA Update 时目标地址是AllSPFRouter(224.0.0.5);retransmit的LSA都是unicast,LSA ACK要看是explicit ack(unicast)还是implicit ack(multicast 224.0.0.6); 组播IP地址与以太网二层MAC地址的映射: IP组播地址用于标识一个IP组播组。IANA把D类地址空间分配给IP组播,范围从224.0.0.0到239.255.255.255,IP组播地址前四位均为1110。 从224.0.0.0至224.0.0.255被IANA保留为网络协议使用。例如:244.0.0.1 全主机组244.0.0.2 全多播路由器组244.0.0.3 全DVMRP路由器组244.0.0.5 全OSPF路由器组。在这一范围的多播包不会被转发出本地网络,也不会考虑多播包的TTL值。 地址从239.0.0.0至239.255.255.255作为管理范围地址,保留为私有内部域使用。 如下图所示,以太网和FDDI的MAC地址01:00:5E:00:00:00到01:00:5E:7F:FF:FF用于将三层IP组播地址映射为二层地址,即IP组播地址中的低23位放入IEEE MAC地址的低23位。IP组播地址有28位地址空间,但只有23位被映射到IEEE MAC地址,这样会有32个IP 组播地址映射到同一MAC地址上。 组播的应用和实现 一、引言 1.1 、问题的引出 近年来,随着网络技术的发展,使得各种单一媒体相继成为网络传输中的数据,进而各种媒体的融合使得网络多媒体运用层出不穷。目前,在 Internet 上产生了许多新的应用,其中不少是高带宽的多媒体应用,譬如网络视频会议 ( 可视化 IP 电话会议系统 ) 、网络音频 / 视频广播、多媒体远程教育、远程会诊,而传统网络最初是为数据传输而设计的,是典型的点点通信模式,是为保证数据可靠传输而设计的,所用的传输协议多为点到点的协议。其所具有的特点将增加

IP组播基础 华为数通HCIP

单播:网络中传输的信息量与需要该信息的用户量成正比。多份内容相同的信息发送给不同用户,对信源及网络带宽都将造成巨大压力 广播:无需接收信息的主机也将收到该信息,这样不仅信息安全得不到保障,且会造成同一网段中信息泛滥 组播:有效地解决了单播和广播在点到多点应用中的问题。组播源只发送一份数据,数据在网络节点间被复制、分发,且只发送给需要该信息的接收者 传统点到点应用:(传统的电子邮件、WEB、网上银行等) 特点:1.服务提供端以单个用户为单位提供服务(同时只有一个数据发送者和接收者) 2.不同用户与服务提供端的通信数据存在差异 两个通信实体之间的通信过程如下: 1.Server封装数据包并发出,其中源IP为自身IP,目的IP为远端Client地址,源MAC为自身MAC地址,目的MAC为网关路由器的MAC地址。 2.网关路由器收到数据包,解封装后根据目的IP查找路由表,确定去往目的IP的下一跳地址及出接口。重新封装源数据包,从相应出接口发给下一跳设备继续转发。 3.经过路由器的多次逐条转发,数据包到达Client所在网络,Client收到数据后,对数据包进行解封装并交由本机上层应用协议处理。 新型点到多点应用:(在线直播、网络电视、视频会议等) 特点:1.服务提供端以一组用户为单位提供服务 2. 同组用户与服务提供端的通信数据无差异 3.对信息安全性、传播范围、网络带宽提出了较高的要求 部署方式: 1.单播:在一台源IP主机和一台目的IP主机之间进行(网络上绝大部分的数据都是以单播的形式传输的,例如电子邮件收发、网上银行都是采用单播实现的)(逐跳) 特点: 1.一份单播报文,使用一个单播地址作为目的地址,若网络中存在N个接收者,则Source需要发送N份单播报文 2.网络为每份单播报文执行独立的数据转发,形成一条独立的数据传送通路 缺陷: 1.重复流量过多 2.消耗设备和链路带宽资源 3.难以保证传输质量 2.广播:一台源IP主机和网络中所有其它的IP主机之间进行,属于一对所有的通讯方式,所有主机都可以接收到(不管是否需要) 特点:1.一份广播报文,使用一个广播地址作为目的地址。 2.不管是否有需求,保证报文被网段中的所有用户主机接收 缺点:只能在一个网段 1.地域范围限制 2.安全性无法保障 3.有偿性无法保障

IP组播故障排除指南

内容 前言 前提条件 需求 使用的组件 惯例 背景信息 由于 RPF 故障,路由器未向主机转发多播数据包 诊断问题 可能的修正 由于源端 TTL 设置,路由器未向主机转发多播数据包 诊断问题 可能的修正 由于路由器的 TTL 阈值,路由器未转发多播数据包 诊断问题 可能的修正 多个成本相等的路径造成多余的返回路径转发行为 诊断问题 可能的修正 为什么没有在所有可用的等价路径之间进行 IP 多播负载均衡? 可能的修正 为什么在路由器上收到 IP 多播“INVALID_RP_JOIN”错误消息? 诊断问题 - 第 1 部分 诊断问题 - 第 2 部分 CGMP 不能防止多播数据包泛洪 诊断问题 观察 可能的修正 由于源端/接收端的放置问题,CGMP 不能防止多播数据包泛洪 诊断问题 可能的修正 CGMP 不能防止某些组地址的多播数据包泛洪 可能的修正 收到重复的多播数据包流 原因 1 可能的修复方法 1 原因 2 可能的修复方法 2 原因 3 可能的修复方法 3 多播数据包为什么被丢弃? 原因 1

可能的修复方法 1 原因 2 可能的修复方法 2 前言 本文介绍 IP 多播的常见问题和解决方案。 前提条件 需求 本文档没有任何特定的要求。 使用的组件 本文档不限于特定的软件和硬件版本。 惯例 有关文档规则的详细信息,请参阅Cisco 技术提示规则。 背景信息 在排除多播路由故障时,最主要的问题是源地址。多播有一个反向路径转发检查(RPF 检查)的概念。当多播数据包到达某个接口时,RPF 进程将检查以确保此传入接口是单播路由用于抵达多播数据包源的传出接口。此 RPF 检查进程将防止出现环路。组播路由不转发数据包,除非数据包的source通过反向路径转发(RPF)检查。数据包通过此 RPF 检查后,多播路由将仅根据目标地址转发数据包。 类似单播路由,组播路由有几份可用的协议,例如独立于协议的组播密集模式(PIM-DM), PIM 稀疏模式(PIM-SM),距离矢量组播路由协议(DVMRP)、组播边界网关协议(MBGP)和组播源发现协议(MSDP)。本文将通过案例研究详细介绍各种问题的解决过程。您将了解用于迅速查明问题的命令并学习如何解决问题。这里列出的案例研究适用于各种协议,除非特别说明。

ip组播设计与实现

学年论文﹙设计﹚ 题目 IP组播技术设计与实现 学生姓名学号 所在院(系)电子与信息工程 专业班级 指导教师 2010年 6 月 25 日

IP组播技术研究与实现 【摘要】介绍了ip组播技术的传输方式、地址、体系结构、应用模式、以及利用window 的WinSock的API应用编程的基本命令和方法步骤 【关键词】ip组播;ip地址;机构体系;组播协议;WinSock;API编程 The ip multicast engineering research with realizes Abstract:Introduced the ip multicast technology's transmission mode, the address, the architecture, the application pattern, as well as use window WinSock the API application programming basic command and the method step Key words:ip multicast; ,ip address, Organization system, Multicast agreement, WinSock, API programming 0 引言 随着网络技术的不断完善和发展, 以全球互联网(internet)为代表的各种网络在近十年得到了迅猛的发展。网络带宽越来越高, 用户数量越来越多, 视频点播(VOD/AOD)、远程教学、新闻发布、网络电视,多站点文件传输、多媒体远程教育、计算机支持的协同工作等新类型的多媒体业务将成为新一轮运营竞争的焦点,在这种情况下, 采用传统的客户服务器模型将重浪费网络资源, 相同的数据可能在网上传播很多次, 在一些带宽较低的链路上, 极可能引起严重的通信瓶径,就必然带来了网络拥挤问题。为了缓解网络瓶颈, 人们提出各种方案, 主要包括采用:链路聚合技术, 以增加互连带宽采用服务器的集群技术,以改变网络流量结构、减轻主干网的瓶颈应用Qos机制, 把带宽分配给一部分应用采用IP组播技术,有效解决网络的拥塞等,IP组播技术以其独特的优越性使它成为当前网络多媒体信息技术的佼佼者。 1 IP组播技术 1.1组播简介 谈IP组播技术之前我们先说说IPv4定义包的的几中传输方式:

相关主题
文本预览
相关文档 最新文档