当前位置:文档之家› 厦门大学无机化学第07章 化学键和分子结构

厦门大学无机化学第07章 化学键和分子结构

厦门大学无机化学第07章 化学键和分子结构
厦门大学无机化学第07章 化学键和分子结构

第七章化学键和分子结构

7.1 简介 (1)

7.2 离子键 (2)

7.3 价键理论 (10)

7.4 杂化轨道理论 (17)

7.5 价层电子对互斥理论 (24)

7.6 分子轨道理论 (28)

7.7 金属键理论 (34)

7.8 分子间作用力和氢键 (35)

7.9 晶体结构 (44)

7.1 简介

化学键和分子结构-简介

分子是物质能独立存在并保持其化学特性的最小微粒,而分子又是由原子组成的。组成分子的原子数可以少至只含一个原子,如稀有气体和蒸气状态,金属的单原子分子;也可以多达千千万万,例如一块金刚石晶体在一般情况下,分子是指由数目确定的原子组成的,具有一定稳定性的物质。迄今,人们发现112种元素。正是由这些元素的原子构成分子,从而构成了整个物质世界。那么原子与原子如何结合成分子;分子和分子又如何结合成宏观物体?前者是化学键问题,后者是分子间力的问题。

通常把分子中直接相邻的两个(或多个)原子之间强的相互作用力称为化学键。化学键可分为;离子键、共价键和金属键。在分子之间还存在一种较弱的分子间吸引力,称范德华尔力,还有氢键是属于一种较强、有方向性的分子间力。

化学键理论是当代化学的一个中心问题。研究分子内部的结构对探索物质的性质和功能都具有重要的意义。本章将在原子结构的基础上,着重讨论分子形成过程以及有关化学键理论。如:离子键理论、共价键理论(包括:电子配对法、杂化轨道理论、价层电子对互斥理论、分子轨道理论)以及金属能带理论等。同时对分子间作用力、氢键、分子的结构与物质性质之间的关系以及四种晶体结构等也做初步讨论。

7.2 离子键

7.2.1 离子键理论的基本要点

离子键

由电正性很大的元素(如碱金属)与电负性很大的元素(如卤素)所形成的化合物中组成的质点是离子,连接异号电荷离子的作用力主要是静电引力,这种化学键称为离子键。为了说明这类化合物的原子相互结合的本质,人们提出了离子键理论。

一、离子键理论的基本要点

1916年德国化学家科塞尔(Kossel)根据稀有气体具有稳定结构的事实提出了离子键理论。离子键的本质是正、负离子间的引力。其基本要点如下:

1、当活泼金属原子和活泼非金属原子在一定反应条件下互相接近时,它们都有达到稳定的稀有气体结构的倾向,由于原子间电负性相差较大,活泼金属原子易失去最外层电子而成为带正电荷的正离子(又称阳离子),而活泼非金属原子易得电子,使最外层电子充满而带负电荷成为负离子(又称阴离子)。例如:

2、正离子和负离子由于静电引力相互吸引而形成离子晶体。在离子晶体中,正、负离子相互吸引形成离子键。在离子键模型中,可近似地将离子视为球体。根据库伦定律,两个距离为γ,带有相反电荷,Z1e+和Z2e-的离子间的吸引力V吸引为:

相反电荷的离子之间,除静电引力外,还存在外层电子之间以及原子核之间的相互排斥作用。排斥势能与γ的关系为

式中,B和γ为常数,这时正负离子间的势能为

根据此式,可得V~γ的示意图7-1

当吸引作用和排斥作用平衡时,正离子和负离子在平衡位置附近振动,系统能量最低,形成稳定的化学键,这种化学键称为离子键。

对于晶体来说,一个正离子周围并非只有一个负离子,(反之亦然),因此需要考虑每个离子与周围所有其它离子间势能的总和(包括排斥能和吸引能)。另外,离子晶体中的离子在空间排斥方式很多,显然这是一个十分复杂的问题。其近似公式他如下:

式中,Z+和Z-分别为正、负离子电荷数,γ0是晶体中正、负离子间的最短距离,N A

为阿伏加德罗常数,A为马德隆(Madelung)常数,它与晶格的类型(包括原子配位数)有关,不同的晶体类型,A值相差并不大,n是与原子电子构型有关的因子。以NaF为例,γ0=231pm,

n=7,A=1.747,Z+=Z-=1,由7-2式可计算得V0为-902.1KJ.mol-1。

7.2.2 离子键的特征

二、离子键的特征

(1)离子键的本质是静电作用力。

它是由原子得失电子后形成的正、负离子之间通过静电引力作用而形成化学键。由此可见,当离子电荷越大,离子间的距离越小,离子间的引力越强,离子键越稳定。

(2)离子键没有方向性。

正因为离子键是由正、负离子通过静电吸引力作用结合而成的,且离子都是常电体,它的电荷分布是球形对称的,只要条件许可,它在空间各方向施展的电性作用相同,在吸引带异电荷的离子时,并不存在某一方向更有利的事。例如在氯化钠晶体中,每个Na+离子周围等距离地排列着6个Cl-离子,每个Cl-离子也同样排列着6个Na+离子。见图7-2(a)。

在氯化铯晶格中,Cs+离子被8个Cl-离子所包围,同样每个Cl-离子也被8个Cs+离子所包围。见图7-2(b)。

(3)离子键没有饱和性。

它是指只要空间位置许可,每个离子可以吸引尽可能多的带相反电荷的离子,当然,离子吸引带相反电荷的离子数目不是任意的,是有一定数目的。例如在氯化钠晶体中,一个钠离子的周围在距离γ0处有6个相反电荷的氯离子,这是由于正、负离子半径的相对大小,电荷多少等因素所决定的。这并不意味着每个钠离子周围吸引了6个氯离子后它的电场就饱和了。事实上,除了γ0处有6个异性电荷外,在稍远的距离(约为√2γ0)外,又有12个氯离子,再远些(√3γ0),又有8个氯离子等等。只不过静电引力随距离的增大而减弱。这就是离子键没有饱和性的含意。

基于离子键的特点,所以无法在离子晶体中辨认出独立的“分子”,只能认为整个晶体是个大分子。例如,在NaCl晶体中,不存在独立的氯化钠分子,NaCl只是氯化钠的化学式,表示晶体中Na+与Cl-数目比例为1:1,而不是分子式。

(4)键的离子性与电负性有关。

元素的电负性差别愈大,它们之间形成的化学键的离子性愈大。一般用离子性百分数来表示键的离子性相对共价键的大小。实验表明,即使电负性最小的铯(Cs)与电负性最大的氟(F)形成最典型的离子型化合物氟化铯中,铯的离子性也只有92%,它告诉我们,离子间不是纯粹的静电作用。仍有部分原子轨道重叠,且有一定的共价性。现以电负性差值为横坐标,以离子性百分数为纵坐标可得图7-3,从图中可以看出,电负性差值为1.7时,单键约具有50%的离子性。若;两个原子电负性差值大于1.7时,可判断它们之间形成离子键,该化合物为离子型化合物。例如氯和钠的电负性差值为2.23,所以NaCl晶体中键的离

子性为71%,是典型的离子型化合物。差值小于1.7,则可判断它们之间主要形成共价键,该物质为共价化合物。当然,电负性差值1.7并不是离子型化合物和共价型化合物的截然界线,仅是一个有用的参考数据。如氟与氢的电负性差值为1.78,单H-F键仍是共价键。虽然有例外,但是表7-1和图7-3仍不失其有用的参考价值。

表7-1 单键的离子性百分数与电负性差值之间的关系

数据引自L.Pauling.&.P.Pauling,Chemistry.Freemanand Company,San Francisco,(1975)

7.2.3 晶格能

三、晶格能

离子键的强度可用晶格能U0的大小来衡量。晶格能是指相互远离的气态正离子和负离子结合成1mol离子晶体时所释放的能量,或1mol离子晶体解离成自由气态离子时所吸收的能量。

晶格能(lattice energy)U0可用玻恩-哈伯循环(Born-Haber Cycle)计算得到。以NaF为例来说明热化学循环。下式中S为钠的升华热(Sublimation energy),表示1mol固态物质转变为气态时所吸收的能量:D为氟(F2)的解离能(dissociation energy),表示1mol 气态的双原子分子解离为2mol气态原子时所吸收的能量;I是电离能(ionization energy);E 是电子亲合能(election affinity);U0为晶格能;Q为生成热,即NaF(s)的生成焓。

根据能量守恒定律,生产热Q应等于各步能量变化总和:

该式除了晶格能之外,其余均可从实验测得。NaF 相应数据如下:Q为-596.3KJ.mol-1;S为108.8KJ.mol-1;D为76.62 KJ.mol-1;I为502.3 KJ.mol-1;E为-349.5 KJ.mol-1。代入(7-3)式,求得NaF的晶格能U为-907.5 KJ.mol-1。

晶格能也可以根据离子键理论进行计算获得,其结果与实验值相当接近,这也表明离子键理论的正确性。

在晶体类型相同时,晶格能与正、负离子电荷数成正比,与它们之间的距离γ0成反比。离子化合物的晶格能越大,正、负离子的结合力越强,相应晶体的熔点越高,硬度越大,压缩系数和热膨胀系数越小。表7-2列出常见NaCl型离子化合物的熔点、硬度随离子电荷及r0的变化情况,其中离子电荷的变化影响最突出。

表7-2 离子电荷、r0对晶格能和晶体熔点、硬度的影响

离子型化合物具有下列通性:

7.2.4 决定离子化合物性质的主要因素

四、决定离子化合物性质的主要因素

从离子键理论可知,组成离子化合物的基本微粒是离子,影响离子化合物性质的因素是多方面的。如离子电荷、离子半径和离子的电子构型等,但是离子化合物采用哪一种晶格,主要取决于阴、阳离子半径比,也就决定着化合物的性质。

1、离子电荷

指原子在形成离子化合物过程中失去或获得电子数。正离子通常只由金属原子形成,其电荷等于中性原子失去电子的数目。此外,还有一些带正电荷的原子团(如NH4+)等。负离子通常只由非金属原子形成,其电荷等于中性原子获得电子的数目;同样也还有带负电荷的原子团(如SO42-、CO32-等)。离子电荷高,与相反电荷的吸引力大,因而熔点、沸点就高。例如:CaO的熔点(2614℃)比NaCl(801℃)高。离子电荷不仅影响离子化合物的物理性质,也影响离子化合物的化学性质。又如铁形成Fe3+和Fe2+两种离子,它们相应的化学性质也就不同。

2、离子半径

它是指离子晶体中正、负离子接触的半径。在离子化合物中相邻的正、负离子的静电吸引作用和它的核外电子之间以及原子核之间的排斥作用达到平衡时,正、负离子间保持的最短距离称为核间距,结晶学上用符号d表示,可用x射线衍射法测定。核间距可以看作是相邻两个离子半径之和,即d=γ+ + γ-。如图7-4所示:

图7-4 离子半径示意图

由于核外电子没有固定的运动轨道,实验测得数值如何分割给正、负离子呢?它令化学家大费思索,不同的分割方法,得出不同的结果。早在1926年,戈德施米特(Goldschmidt)以光学法测得的F-半径和O2-半径依次为133 pm和132 pm为基础,再计算其它离子半径,如实验测得NaF和NaCl的核间距分别为230 pm和278 pm,根据d=γ++γ-即求得Na+和Cl-的离子半径

γNa+=230-133=97(pm)

γCl-=278-97=181(pm)

用这种方法推算出80多种离子半径。而鲍林(Pauling)是从核电荷数和屏蔽常数出发,也推算出一套离子半径,当今引用最广泛。见表7-3

表7-3 鲍林离子半径

*数据引自:Cotton F A,Wilkinson G.Advanced Inorganic Chemistry.4th ed.John Wiley &

Sons,1980

离子半径有如下变化规律:

(1)在周期表中,同一主族自上而下,电子层数依次增多,具有相同电荷的离子半径也依次增大,而在同一周期中,正离子的电荷数愈高,半径愈小;负离子的电荷数愈高,半径愈大。

(2)同一元素的正离子半径小于它的原子半径,简单的负离子半径大于它的原子半径,正离子半径一般较小,则在10~170 pm之间,负离子半径一般较大,则在130~250 pm之间。

(3)同一元素形成几种不同电荷的离子时,电荷高的正离子半径小。如

(4)对等电子离子而言,离子半径随负电荷的降低和正电荷的升高而减小。

O2- > F- > Na+ > Al3+

(5)相同电荷的过渡元素和内过渡元素正离子的半径均随原子序数的增加而减小。

离子半径的大小是决定离子型化合物中正、负离子静电引力的重要因素之一,也就是决定离子型化合物的离子键强弱的重要因素之一。离子半径愈小,离子间的引力就愈大,离子化合物的熔点、沸点也愈高。例如,NaF和LiF,钠和锂都是+1价,因为γNa+ >γLi+,故NaF的熔点(870℃)比LiF的熔点(1040℃)低。同样,离子半径的大小对离子化合物的其它性质也有影响。又如,在NaI、NaBr、NaCl中,I-、Br-、Cl-的还原性依次降低,而AgI、AgBr、AgCl的溶解度依次增大,颜色依次变浅,这都与离子半径的大小有着密切联系。

3、离子的电子构型

原子究竟能形成何种电子构型的离子,除决定于原子本身的性质和电子层构型本身的稳定外,还与其相作用的其它电子有关。一般简单的负离子,如F-、Cl-、O2-等的最外层都为稳定的稀有气体结构,即8电子构型。然而,对正离子来说,情况比较复杂,除了8电子结构外,还有其它多种构型。正离子的电子层构型大致有以下几种:

(1)2电子构型:最外层为2个电子的离子。如Li+、Be2+等。

(2)8电子构型:最外层为8个电子的离子。如K+等。

(3)18电子构型:最外层为18个电子的离子。如Zn2+、Cd2+、Ag+等。

(4)(18+2) 电子构型:次外层为18个电子,最外层为2个电子的离子。如Pb2+、Sn2+等。

(5)不饱和电子构型:最外层为9~17个电子的离子,如Fe2+、Mn2+等。

离子的电子层构型对化合物的性质有一定的影响,例如碱金属和铜分族,它们最外层只有1个ns电子,都能形成+1价离子,如Na+、K+、Cu+、Ag+,但由于它们的电子层构型不同。Na+、K+为8电子构型,Cu+、Ag+为18电子构型。因此它们的化合物(如氯化物)的性质就有明显的差别。如:NaCl易溶于水,CuCl、AgCl难溶于水。

7.3 价键理论

7.3.1 路易斯的经典共价学说

价键理论

离子键理论能很好地说明离子化合物的形成和性质,但不能说明由相同原子组成的单质分子(如H2、Cl2、N2等),也不能说明不同非金属元素结合生成的分子,如HCl、CO2、NH3等和大量的有机化合物分子形成的化学键本质。

1916年美国化学家路易斯(Lewis)为了说明分子的形成,提出了共价键理论,初步揭示了共价键与离子键的区别,随后的50年里共价键理论迅速发展。1927年海特勒(Heitler)和伦敦(Londen)用量子力学的成就,阐明了共价键的本质,后来鲍林等人发展这一成果,建立了现代价键理论(Valencebond theory,缩写为VB)也称电子配对法和杂化轨道理论以及价层电子互斥理论。1932年美国化学家密立根(Millilcan)和德国化学家洪特提出分子轨道理论(molecular-orbota,theory,缩写MO)。价键法是从处理氢分子结构推广得来的;分子轨道法是用薛定谔方程处理氢分子离子H2+的结果为基础发展起来的。它们在解释分子结构方面各有所长。

一、路易斯的经典共价学说

路易斯认为分子中原子之间可以通过共享电子对而使每一个原子具有稳定的稀有气体结构。原子通过共用电子对而形成的化学键称为共价键。两个原子间共用一对电子的共价键称为单键,共用二对电子的称为双键,共用三对电子的称为叁键。分子中两原子间共享电子对的数目叫键级,原子单独拥有的未成键的电子对称为孤对电子。共价分子中两个成键原子的核间距称键长。化学键结合的强弱用键能表示。下面所表达的电子结构统称为Lewis结构。

路易斯结构式的写法规则又称八隅体规则(即8电子结构)。至今简单分子的Lewis 结构式仍为化学家采用。其写法规则归纳如下:

①、根据分子式或离子式计算出总的价电子数目。多原子阴离子的价电子总数为各原子的价电子数之和再加上负电荷数;多原子阳离子则必须从各原子的价电子数之和减去阳离子电荷数;

②、画出分子或离子的骨架,用单键将原子连接起来。每一个单键扣两个电子。然后将其余电子当作未共用电子(孤对电子)分配在原子周围,以便尽可能使每个原子具有8个电子。如缺2个电子,以形成双键补之。如缺4个电子,则用叁键补之。但结构式中每个原子提供的电子数要与它的价电子数相符。

例如要写出甲醛(CH2O)的Lewis结构式,必须先算CH2O总电子数为4 +(1×2)+ 6

=12,骨架结构为,扣除3个单键用去6个电子后,余下6个电子,可以有下面三种排法:

(a)式O不成八隅体,(b)式C不成八隅体,只有(c)式在C、O之间形成双键,C、O 均具八隅体结构。

路易斯的共价概念能解释一些非金属原子形成共价分子的过程以及与离子键的区别。但还存在着许多不足:

⑴、Lewis结构不能说明为什么共用电子对就能使得两个原子牢固结合这一共价键本质。

⑵、八隅体规则的例外很多,如PCl5、SF6等。

⑶、不能解释某些分子的一些性质,如O2分子的磁性等。

这些问题可用现代价键理论和分子轨道理论给予回答。

7.3.2 共价键的形成和本质

二、共价键的形成和本质

海特勒和伦敦用量子力学处理氢原子形成氢分子时,得到了H2分子的位能曲线,便反映出氢分子的能量与核间距之间的关系以及电子状态对成键的影响。

假定A、B两原子中的电子自旋是相反的,当两个氢原子相互接近时,A原子的电子不仅受A核吸引,也受B核吸引。同理,B原子的电子不仅受B核吸引,也受A核吸引。整个系统的能量低于两个H原子单独存在的能量。当系统的能量达到最低点时,核间距如图7-5所示。

R0=87 pm(实验值为74 pm)。如果两原子继续接近,核之间的排斥力逐渐增大,系统的能量升高。在R0处两个氢原子形成化学键,它的能量最低,这种状态称为氢分子的基态。当体系的吸引与排斥达到平衡时,两核之间的距离为R0。如果两个氢原子的电子自旋平行,当它们相互接近时,量子力学可以证明,它们产生的相互排斥作用越是接近,能量就越高。结果是系统的能量始终高于两个单独存在的氢原子的能量,于是不能成键。这种不稳定状态称为H2分子的排斥态。如图7-6所示。

应用量子力原理,可以计算基态分子和排斥态电子云分布。计算结果表明,基态分子中两个核间的电子几率密度∣Ψ∣2远远大于排斥态分子中核间的电子云几率密度∣Ψ∣2。图7-6(a)(b)所示:

由图7-6可见,自旋相反的两个电子的电子云密集在2个原子核之间,使系统的能量降低,从而能形成稳定的共价键。而排斥态2个电子的电子云在核间稀疏,几率密度几乎为零,系统的能量增大,所以不能成键。从以上讨论可见,两个氢原子的1s轨道ψ1s都是正值,叠加后使两核间电子云浓密,并将两个原子核强烈地吸引在一起,同时,由于两核间的高电子云密度区域的存在,对两个原子核产生屏蔽作用,降低了两核间的正电排斥力,系统的势能降低,因而能够成键。由此也能看出共价键的本质仍是一种电性作用,但绝对不是正、负离子间的静电作用。

三、电子配对法的基本要点

电子配对法,简称VB法,它是用量子力学处理H2分子所得的结果的推广,其要点归纳如下:

1、自旋相反的两个单电子相互接近时,由于它们的波函数ψ符号相同,则原子轨道的对称性匹配,核间的电子云密集,体系的能量最低,能够形成稳定的化学键。若它们的波函数符号不同,则原子轨道对称性不匹配的重叠相当于上述的排斥态,不能形成化学键。

图7-7(a)为原子轨道对称性匹配的情况;(b)为对称性不匹配情况。

2、如果A 、B两原子各有一个未成对电子,且自旋相反,则可相互配对,共用电子形成稳定的共价单键。如果A 、B各有2个或3个未成对电子,则自旋吸相反也可以两两

配对,形成共价双键或共价叁键。如:氧分子双键,氮分子叁键。

3、原子轨道重叠时,轨道重叠愈多,电子在两核出现的机会愈大,体系的能量越低,形成的共价键也越稳定。因此,共价键应尽可能的沿着原子轨道最大重叠的方向形成,称为最大重叠原理。

7.3.4 共价键的类型

五、共价键的类型

Ⅰ、正常共价键与配位共价键

按共用电子对由成键原子提供的方式不同,可将共价键分为正常共价键和配位共价键。如果共价键的共用电子对是由两个成键的原子各提供1个电子,称为正常的共价键。如果共

价键的共用电子对由一个原子提供的称为配位共价键或称配位键。提供电子对的原子称为电子对给予体,接受电子对的原子称为电子对接受体。如F3BNH3的形成。

通常用“→”表示配位键。必须注意正常共价键和配位键的差别仅仅表现在成键过程中,虽然共用电子对的来源不同,但成键后,二者并无任何差别。

Ⅱ、σ键、π键和离域大π键

根据原子轨道重叠的对称性不同,共价键可分为σ键和π键。

1、σ键

如果原子轨道按“头碰头”的方式发生轨道重叠,轨道重叠的部分沿着键轴呈圆柱形对称,这种共价键称为σ键。键轴是指两原子核间的联线。

如图7-9所示,可以对键轴呈圆柱形对称的轨道重叠形式有S-S轨道重叠(H2分子),S-P轨道重叠(HCl分子),Px-Px轨道重叠(Cl2分子)。它们都形成σ键。

7.3.6 π键

2、π键

如果原子轨道按“肩并肩”的方式发生轨道重叠,轨道重叠部分对通过键轴的一个平面具有镜面反对称,这种共价键称为π键。(图7-10)除p-p轨道可以重叠形成π键外,p -d,d-d轨道重叠也可以形成π键。

由于σ键对键轴呈圆柱形对称,所以电子云在两核之间密集,π键对键轴平面呈镜面反对称,电子云在键轴上下密集(见图7-11)。σ键是两个成键原子轨道沿值最大的方向重叠而成,满足轨道最大重叠原理,两核间浓密的电子云将两个成键原子核强烈地吸引在一起,所以σ键的键能大,稳定性高。形成π键时轨道不可能满足最大重叠原理,只采用“肩并肩”的方式重叠,使得在键轴平面上的电子云密度为零,只有通过键轴平面上、下两块电子云将两核吸在一起,这二块π键电子云离核较远,一般情况是π键的稳定性小,π电子活泼,容

易参与化学反应。

如果两个原子可以形成多重键,其中必定先形成一个σ键,其余为π键。例如N2分子有三个键,一个σ键,两个π键,.示意如图7-12。

σ键由2p x-2p x轨道形成;π键分别2p y-2p y;2p z-2p z由轨道形成。p轨道的方向决定了N2分子中三个键互相垂直。

7.3.7 离域大π键

3、离域π键

由两个以上的轨道以“肩并肩”的方式重叠形成的键,称为离域π键或大π键。一般π键是由2个原子的p轨道叠加而成,电子只能在两个原子之间运动。而大π键是由多个原子提供多条同时垂直形成σ键所在平面的P轨道,所有的P轨道都符合“肩并肩”的条件,这些P 轨道就叠加而成一个大π键,电子就能在这个广泛区域中运动。例如苯分子中的大π键。实验证明,苯分子中六个碳原子之间的情况是等同的(指键长、键角、键能皆相同),价键理论认为苯分子中的6个碳原子皆采取sp2杂化,形成三条杂化轨道,其中一条杂化轨道与H 原子结合形成σ键,另外两条杂化轨道和相邻的两个碳原子结合形成两个σ键,组成了一个平面正六角形的骨架。(图7-13)此外,每个C原子还剩下一条垂直与该平面的P轨道,

并且相互平行,每个P轨道上有一个单电子,这六条相互平行的P轨道以“肩并肩”的方式重叠后形成大π键,6个P电子就在六个碳原子之间活动,形成了一个6 原子中心,6电子的大π键,用π66表示。通常大π键用符号πn m表示,n表示P轨道数,也是成键的原子数,m 表示电子数。综上所述,形成离域π键必须具备下面三个条件:第一是参与形成大π键的原子必须共平面;第二是每个原子必须提供一条相互平行的p轨道;第三是形成大π键所提供p电子数目必须小于p轨道数目的2倍(m < 2n)。

由于离域π键的形成可使体系的能量降低,使分子的稳定性增加,因此,在条件允许的情况下,分子将尽可能多的形成离域π键,一般最多可形成两个离域π键。例如在CO2分子中就存在二个大π键π34。C原子的价电子层为2s22p2,碳以sp杂化轨道与每个氧原子的2p x轨道重叠形成两个σ键,构成分子直线型骨架结构,三个原子的p y轨道垂直于通过键轴的平面,两两平行,并重叠形成一个大π键(πy)34。另外,三个原子的p z轨道也同样垂直于通过键轴的平面,两两互相平行,轨道重叠后又形成一个大π键(πz)34,这二个大π键互相垂直。

7.4 杂化轨道理论

7.4.1 杂化轨道理论的要点

杂化轨道理论

现代价键理论成功地解释了共价键地成键本质,以及共价键的方向性和饱和性等问题。随着近代物理技术的发展,人们已能用实验的方法确定许多共价分子的空间构型,同时发现用电子配对法解释分子的空间构型已遇到许多困难。例如,根据价键理论,水分子中氧原子的两个成键的2p轨道之间的夹角应为90°,而实验测得两个O-H键间得夹角为104°45′。又如碳原子的基态电子结构为1s22s22p x12p y1,只有2个未成对电子,应说只能形成两个共价键,键角应为90°,而实验测得最简单的碳氢化合物CH4,形成4个共价键,且C-H键间的夹角109°28′。为了阐明共价分子的空间结构,鲍林在电子配对法的基础上,于1931年提出了轨道杂化理论。我国化学家唐敖庆等于1953年统一处理了s-p-d-f轨道杂化,提出了杂化轨道的一般方法,进一步丰富了杂化理论的内容。

一、杂化轨道理论的要点

杂化轨道理论认为,在同一原子中能量相近的不同类型的几条原子轨道混杂起来,重新组成同等数目的能量完全相同的杂化原子轨道。在原子形成分子的过程中,经过激发、杂化、轨道重迭等过程,这就是杂化轨道理论的基本要点。

(1)激发。如在形成CH4的分子时,碳原子欲与4个氢结合,必定要从2s轨道的一个电子激发到2p z轨道上,才有4个未成对电子分别与四个氢结合成键。在成键过程中,激发和成键是同时发生的,从基态变为激发态所需的能量,可由形成更多的共价键而放出更多的能量来补偿。

(2)杂化。处于激发态的几条不同类型的原子轨道进一步线性组合成一组新的轨道,这种轨道重新组合的过程叫杂化。杂化后形成的新轨道称为杂化轨道。

(3)轨道重叠。杂化轨道的电子云分布更为集中,故杂化轨道的成键能力比未杂化的原子轨道的成键能力强。杂化轨道与其它原子成键时,同样要满足原子轨道最大重叠原理,原子轨道重叠愈多,形成的化合物愈稳定。化合物的空间构型也是由满足原子轨道最大重叠的方向决定的。

7.4.2 杂化类型

二、杂化类型

1、sp杂化

sp杂化轨道是由一个ns和一个np轨道组合而成。每条sp杂化轨道含有1/2s和1/2p

的成分。sp杂化轨道间的夹角180°,呈直线型。如BeCl2的分子结构。(图7-14为BeCl2分子的形成)。

2、sp2杂化

sp2杂化轨道是由一个ns和两个np轨道组合而成。每条sp2杂化轨道含有1/3s和2/3p 的成分。sp2杂化轨道间的夹角为120°,呈平面三角形。如BF3分子结构。(图7-15)

乙烯(C2H4)分子中的C原子也是采用sp2杂化轨道成键的。C原子用sp2杂化轨道彼此重叠形成C-C σ键,同时每个C原子还有一条未杂化的p轨道,含有一个电子,它们以“肩并肩”的方式重叠形成一个C-C间的π键,垂直于乙烯分子的平面,如图7-16所示。

杂化前

杂化后

3、sp3杂化

sp2杂化轨道是由一个ns轨道和三个np轨道组合而成。每条sp3杂化轨道含有1/4s和3/4p的成分。sp3杂化轨道间的夹角为109°28′,呈四面体构型,例如CH4结构。

大学无机化学教案全

无机化学教案 说明 一、课程教学的基本要求 本课程的教学环节包括课堂讲授,学生自学,讨论课、实验、习题、答疑和期中、期末 考试。通过本课程的学习使学生掌握物质结构、元素周期律、化学热力学、化学平衡(酸碱平衡、沉淀溶解平衡、?氧化还原平衡,配合离解平衡)和化学反应速率等基本概念和基本理论知识;理解和掌握重要元素及其化合物的结构、性质、反应规律和用途,训练和培养学 生科学思维能力和分析问题解决问题的能力,指导学生掌握正确的学习方法和初步的科学研究方法,帮助学生树立辨证唯物主义观点,为后继课程的学习打下坚实的基础。 二、教学方法、手段 主要运用启发式教学方法,注重在教学中实践“以学生为主体,以教师为主导”的素质 教育指导思想,充分运用多媒体教学、网络教学等多元化、全方位的教学手段,努力提高教 学质量。 三、考核方式 本课程分两学期讲授,第一学期讲授化学基础理论,第二学期讲授元素化学每学期考核一次,考核成绩由平时成绩20%期末考试(闭卷)成绩80%成。 四、学时分配(共计144学时)

五、目录 绪论 (4) 第1章原子结构和元素周期律 (4)

第2章分子结构 (9)

第3 章晶体结构 (13) 第4 章化学热力学基础 (23) 第5 章化学平衡 (30) 第6 章化学动力学基础 (32) 第7 章水溶液 (36) 第8 章酸碱平衡 (41) 第9 章沉淀平衡 (51) 第10 章电化学基础 (56) 第11 章配合物与配位平衡 (66) 第12 章氢和稀有气体 (73) 第13 章卤素 (74) 第14 章氧族元素 (80) 第15 章氮磷砷 (87) 第16 章碳硅硼 (97) 第17 章非金属元素小结.............................. 第18 章金属通论 (104) 第19章S区金属................................. 第20章P区金属................................. 第21 章ds 区金属............................... 第22章d 区金属(一)............................ 课程的主要内容绪论学时1[教学基本要求]介绍本课程的学习内容、目的、任务和方法。 [重点与难点]103 105 109 114 121

厦门大学无机化学习题16 过渡元素(二)

过渡元素(二) 1.试回答和解释下列事实: (1)PdCl 2·2PF 3比PdCl 2·2NH 3稳定?而BF 3·NH 3却比BF 3·PF 3稳定得多?这是为什么? (2)相应的化学式为PtCl 2(NH 3)2的固体有两种异构体(顺、反),它们的颜色不同,一种 是棕黄色,另一种是淡黄色;它们在水中的溶解度也有差别,其中溶解度较大的应是哪一种?为什么? (3)钌和锇的四氧化物都是低熔点的固体(RuO 4为298K 、OsO 4为314K ),试加以解释。 (4)ZrO 2的碱性比TiO 2强,为什么? (5)Nb 和Ta 的原子半径几乎相同,为什么? 2.Pt(NH 3)2(NO 3)2有α和β两种构形。α形与草酸反应生成Pt(NH 3)2C 2O 4,但β形与草酸反应得到的反应产物却是Pt(NH 3)2(C 2O 4H)2。为什么会出现不同的反应产物?用什么物理方法来区分α形和β形。请画出这两种配合物的结构式。 3.完成下列方程式 (1)Pt +HNO 3+HCl → (2)PdCl 2+CO +H 2O → (3)K 2PtCl 6+K 2C 2O 4 → (4)MoO 42-+Zn 2++H + → (5)Mo 3+ +NCS - → (6)(NH 4)2PtCl 6 → (7)K 2PtCl 6+N 2H 2·2HCl → (8)ZrCl 4+H 2O → (9)PtF 6+Xe → (10)Ru +KClO 3+KOH → (11)MoO 3+NaOH → (12)WO 3+NaOH → (13)WO 3·nH 2O → (14)(NH 4)2ZrF 6 → 4.Zr 和Hf 有何宝贵的特征?基于这些特性有哪些主要用途? 5.锌汞齐能将钒酸盐中的钒(V )还原至钒(II ),将铌酸盐中的铌(V )还原至铌(IV ),但 △ △ △ △

化学键与分子结构

第五章物质结构元素周期律 第三讲化学键与分子结构 【考纲要求】 1.理解有关化学键、离子键、共价键、配位键、*金属键等概念 2.掌握用电子式表示化学键的形成过程的方法,并能正确写出常见物质和微粒的电子 式,结构式。 3.掌握影响各类化学键强弱的因素,以及化学键的强弱对物质性质的影响。 教与学方案 笔记与反思【自学反馈】 一、概念辨析 1.化学键: (1)概念:。 (2)种类:、、。 2.离子键: (1)概念:。 (2)形成过程(以MgCl2为例):。 (3)影响离子键强弱的因素:。 (4)离子键的强弱对物质性质的影响:。 3.共价键: (1)概念:。 (2)形成过程(以CO2为例):。 (3)影响共价键强弱的因素:。 (4)共价键的强弱对物质性质的影响:。 (5)共价键极性强弱的分析方法:。 (6)共价键极性强弱对物质性质的影响:。 4.配位键: (1)概念:。 (2)形成过程(以NH4+为例):。 (3)形成配位键的条件:。 (4)配位键属于键,但在指出物质中化学键的类型时必须单独指出。 5.金属键:失去价电子的金属阳离子与在晶体内自由移动的价电子之间强烈的相互作用。 影响金属键强弱的因素:金属的原子半径和价电子的多少。一般情况下,金属的原子半径 越小,价电子越多,则金属键,金属的熔沸点就,硬度就。

三、八电子稳定结构问题:准确判断分子结构中各原子的最外层电子是否满足8电子稳定结构是学习的一个难点,也是高考的一个热点。如何判断才能既简单又无误呢?这里介绍一种简捷的判断方法。 (1)分子中含氢元素时,氢原子的最外层电子是不能满足8电子稳定结构。 (2)分子中无氢元素时,可根据化合价进行判断:某元素在该分子中的化合价的绝对值与其原子的最外层电子数之和等于8,则该元素原子的最外层满足8电子稳定结构; 否则就不满足8 四、分子的性质(溶解性、手性和含氧酸的酸性) 1、溶解性——相似相溶原理 2、手性——手性分子的判断方法是通过连在同一个碳原子上的四个原子或原子团必须互不相同。 3、含氧酸的酸性: (1)对于同一种元素的含氧酸来说,该元素的化合价越高,其含氧酸的酸性越强。 (2)如果把含氧酸的通式写成(HO)mROn的形式,成酸的元素R相同时,则n值越大,酸性也就越强。 二、自我演练: 1.用电子式表示下列物质中化学键的形成过程: Na2O: AlF3: Mg3N2: N2:、NH3: CS2:、BF3: CCl4:、PCl3: PCl5:、H3O+:。 2.写出下列物质的电子式: H2S:、NF3:、H2O2:、NaOH:、NaHS:、Na2O2:、FeS2:、CaC2:、NH4Cl:、KCN:、HCOOH:、—OH:、CH3COO-:、CH3-:、CH3+:。 .【例题解析】 [例1]判断并写出下列微粒符号: (1)含18个电子的阳离子_________________________________; (2)含18个电子的阴离子_________________________________; (3)含18个电子的化合物分子_____________________ ________。 (4) 含18个电子的单质分子. 解题思路:。 [例2] AB2离子化合物的阴、阳离子的电子层结构相同,每摩AB2分子中含有54摩电子,根据下列反应: ①H2+B2→C ②B2+X→Y+AB2+H2O ③Y+C→AB2+Z Z有漂白作用 (1)写出下列物质的化学式:AB2___________X_________Y_________

厦门大学无机化学知识第12章ds区元素.doc

第十二章ds区元素 12.1 铜族元素 (1) 12.2 锌族元素 (10) 12.1 铜族元素 12.1.1 铜族元素通性 铜族元素 1.铜族元素通性 铜族元素的氧化态有+1,+2,+3三种,这是由于铜族元素最外层ns电子和次外层(n-1)d电子能量相差不大。有人认为在本族元素中,元素第二电离能与第一电离能的差值越小,它的常见氧化值就越高。 对于Cu、Ag、Au,Δ(I2-I1)Au < Δ(I2-I1)Cu < Δ(I2-I1)Ag 所以常见氧化态物+3,+2,+1。 铜、银、金的标准电势图如下所示: 12.1.2 铜族元素金属单质 2.铜族元素金属单质 (1).物理性质 铜和金是所有金属中仅有的呈现特殊颜色的二种金属,铜族元素的熔点、沸点、硬度均比相应的碱金属高。这可能与d电子也参与形成金属键有关。由于铜族金属均是面心立方晶体(如下图),它们不仅堆积最密而且存在较多可以滑动的高密度原子层,因而比相应的

碱金属(多为体心立方晶体)密度高得多,且有很好的延展性,其中以金最佳。铜族元素的导电性和传热性在所有金属中都是最好的,银占首位,铜次之。 (2).化学性质 铜族元素的化学活性远较碱金属低,并按Cu--Ag--Au的顺序递减。 在潮湿的空气中放久后,铜表面会慢慢生成一层铜绿。铜绿可防止金属进一步腐蚀,其组成是可变的。银和金不会发生该反应。 空气中如含有H2S气体与银接触后,银的表面上很快生成一层Ag2S的黑色薄膜而使银失去银白色光泽。() 在电位序中,铜族元素都在氢以后,所以不能置换稀酸中的氢。但当有空气存在时,铜可缓慢溶解于这些稀酸中: 浓盐酸在加热时也能与铜反应,这是因为Cl-和Cu+形成了较稳定的配离子[CuCl4]3-,使Cu == Cu++e-的平衡向右移动: 铜易为HNO3、热浓硫酸等氧化性酸氧化而溶解 银与酸的反应与铜相似,但更困难一些;而金只能溶解在王水中:

化学键与分子结构

第六章化学键与分子结构 一、 教学重点: 1. 现代价键理论与杂化轨道理论的基本要点,并应用上述理论解释部分典型共价分子 的形成过程、结构特性; 2. 共价键的键参数及其与分子结构与性质的关系; 3. 分子极性与分子间作用力; 二、 内容提要 1. 离子键:原子通过电子得失形成阴、阳离子,阴、阳离子通过静电作用而形成的 化学键。 (1)、形成条件;典型金属与典型非金属,电负性差值大于 1.7,此时化学键离子性大于50%。 (2)、离子键的本质:静电作用力。 (3)、离子键的特征:无方向性与饱和性。 (4)、晶格能:298.15K、105Pa时,气态阴、阳离子结合形成1摩尔固态离子晶体时所放出的能量。晶格能数值愈大,则表示形成的离子晶体愈稳定,离子键愈强。 2、现代价键理论 (1)、现代价键理论的要点;第一、参与成键的原子其价电子层必须有未成对的单电子,且要求参与配对的电子自旋方向相反,两两偶合成对时才能形成稳定的共价键,同时某个成单电子一经与另一单电子配对就再也不能与第三个成单电子去配对成键了,此点体现了共价键的饱和性;第二、电子的配对过程实为单电子所在原子轨道的相互部分重叠,而原子轨道的重叠须满足对称匹配和最大重叠原则,原子轨道尽可能发生最大程度的重叠,成键原子核间电子云密度愈大,形成的共价键愈稳定,此点体现了共价键形成的方向性。 (2)、共价键的特性:方向性和饱和性。 (3)、共价键的类型 σ键:原子轨道沿原子核连线方向以“头碰头”的方式重叠而形成的键,共价单键均为该类键型。 π键:原子轨道以“肩并肩”的方式平行重叠而形成的共价键,共价双键和共价叁键中除一个σ键外其余均为π键。 π键的重叠程度比σ键的重叠程度小,π键上的电子对比σ键上的电子活泼,具有较大的流动性,因此含双键和叁键的化合物易发生加成等反应,化学性质较活泼。 (4)、键参数 键的极性 相同原子成键,X A-X B= 0 键无极性(X为电负性)

厦门大学无机化学试卷

班级 姓名 分数 一、选择题 ( 共18题 35分 ) 1. 2 分 InCl 2为逆磁性化合物,其中In 的化合价为…………………………………………( ) (A) +1 (B) +2 (C) +3 (D) +1和+3 2. 2 分 下列氢化物中,在室温下与水反应不产生氢气的是…………………………………( ) (A) LiAlH 4 (B) CaH 2 (C) SiH 4 (D) NH 3 3. 2 分 和水反应得不到H 2O 2的是……………………………………………………………( ) (A) K 2O 2 (B) Na 2O 2 (C) KO 2 (D) KO 3 4. 2 分 下列物质的水解产物中既有酸又有碱的是………………………………………… ( ) (A) Mg 3N 2 (B) SbCl 5 (C) POCl 3 (D) NCl 3 5. 2 分 有关H 3PO 4、H 3PO 3、H 3PO 2不正确的论述是…………………………………( ) (A) 氧化态分别是+5,+3,+1 (B) P 原子是四面体几何构型的中心 (C) 三种酸在水中的离解度相近 (D) 都是三元酸 6. 2 分 下列各组化合物中,都有颜色的一组化合物是…………………………………… ( ) (A) SiCl 4,SnCl 4,PbO (B) CCl 4,NO 2,HgI 2 (C) SiC ,B 2H 6,N 2O 4 (D) PbO 2,PbI 2,SnS 7. 2 分 下列化合物中最稳定的是…………………………………………………………… ( ) (A) Li 2O 2 (B) Na 2O 2 (C) K 2O 2 (D) Rb 2O 2 8. 2 分 1 mol 下列各物质溶于1 dm 3水中,生成的溶液 中H + 浓度最高的是……………( ) (A) SO 3 (B) P 4O 10 (C) HF (D) MgH 2 厦门大学“无机化学(二)”课程试卷 化学化工学院化学、材料系2004年级化学各专业 试卷类型:(A 卷)

大学无机化学第十三章试题及答案

第十四章碳族元素 总体目标: 1.掌握碳、硅单质、氢化物、卤化物和含氧化物的性质和制备 2.了解硅酸和硅酸盐的结构与特性 3. 了解锗、锡、铅单质、氧化物、氢氧化物的性质 各节目标: 第一节碳单质及其化合物 1.了解单质碳的结构、同素异形体和性质 2.掌握CO、CO2的结构、性质、制取和用途;碳酸的酸性;碳酸盐的水解性和热稳定性。 第二节硅单质及其化合物 1.掌握单质硅的结构、性质和制取 2.掌握SiO2的结构和性质 3.了解硅酸的酸性;硅酸盐的结构和性质;A型分子筛的结构和实际应用 4.掌握硅烷的制备、热稳定性、还原性和水解性 5.了解卤化硅的制备和性质 第三节锗、锡、铅 1.了解锗、锡、铅单质的性质;氧化物、氢氧化物的酸碱性 2.掌握Sn(Ⅱ)的还原性、水解性和Pb(Ⅳ)的氧化性、Pb(Ⅱ)盐的溶解性,从而掌握高价化合物氧化—还原的变化规律。 习题 一选择题 1.石墨晶体中层与层之间的结合力是( ) (吴成鉴《无机化学学习指导》) A.金属健 B.共价健 C.范德华力 D.离子键 2.碳原子之间能形成多重键是因为( ) (吴成鉴《无机化学学习指导》) A.碳原子的价电子数为4 B.碳原子的成键能力强 C.碳原子的半径小 D.碳原子有2p电子 3.下列碳酸盐与碳酸氢盐,热稳定顺序中正确的是( )

A.NaHCO 3Ca(HCO 3)2 B.Na 2CO 3>PbCO 3 C.(NH 4)2CO 3>K 2CO 3 D.Na 2SO 3>Na 2SO 4 12.下列化合物中,不水解的是( ) (吉林大学《无机化学例题与习题》) A.SiCl 4 https://www.doczj.com/doc/3216478451.html,l 4 C.BCl 3 D.PCl 5 13.1mol 下列物质生成正酸时需要水的mol 数最多的是( ) A.B 2O 3 B.P 4O 10 C.(SO 3)3 D. N 2O 5 14.下列物质中还原性最强的是( ) A.GeH 4 B.AsH 3 C.H 2Se D.HBr 16.常温下,不能稳定存在的是( ) (吉林大学《无机化学例题与习题》) A.-4GaCl B.SnCl 4 C.PbCl 4 D.GeCl 4

第章化学键与分子结构章节要点及习题

第3章化学键与分子结构 【章节要点】 价键基础 共价键是通过原子核之间共用电子平衡吸引力和排斥力而形成的。在H2中,这使得两个H原子距离为74pm 时能量最低。这个距离就被称为键长。这个距离的分子和孤立原子之间的能量差就称为键能。H2中的单键是一个σ键,关于键轴旋转对称。在简单的双原子分子例如O2,F2中,可以用含有单电子的原子轨道的重叠来描述键的形成。当双原子分子中两个原子不同时,电子对趋向于被其中一个原子所吸引,导致电子共享的不平均,由此产生了极性共价键。电子的不平均共享是分子中不同原子电负性不同的结果。原子之间电负性差值越大,键的极性越大。对于同一周期的原子,电负性一般随着原子序数的增大而增大;对于同一族的原子,电负性一般随着原子序数增大而减少。 离子键 电负性差别较大的元素形成的化合物通常比较适合形成离子型分子。离子型化合物一般由交替的正负离子组成,通过正负离子的静电引力结合在一起。吸引力的大小取决于离子所带的电荷及离子间的距离和一些其它因素。将晶体点阵打破变成气态离子所需的总能量称为晶格能。离子化合物中晶格能的变化趋势可以用离子电荷和距离来解释。 路易斯结构 路易斯结构给出了分子中价层电子的分布。成键的电子在单键(1对电子)、双键(2对电子)、三键(3对电子)中出现,分别在成键原子之间用1,2,3条横线描述。非成键电子被称为孤对电子,用圆点表示于元素符号旁边。路易斯结构可用以下五个步骤画出: 第一步数出价层电子数。 第二步用单键组成键的框架。 第三步在每一个外部的原子放上3对孤对电子,H除外。 第四步将剩余的价层电子分配给内部的原子。 第五步将所有原子的形式上的电荷减至最小。 被4对原子包围的原子是八隅体结构的。这种排布通常在第二周期的元素中比较常见。当电子排布有多种时,使所有原子所带形式电荷减小的结构更优。在一些情况下,一个分子可以画出两种或者更多的能量等价的路易斯结构,差别仅仅是电子对的位置不同。这种结构被称为共振结构。当然也存在能量不等的共振结构;在这种情况下,带有最少形式电荷的结构依然是最优的。 价层电子对互斥(VSEPR)理论 VSEPR理论认为分子采用电子对排斥力最小的一种构型。通过将电子对放置在尽可能远的地方可以实现。通常通过如下三个步骤预测分子的结构: 画出分子的路易斯结构。 数出中心原子成键电子对和孤对电子对的数目,用下表确定电子对对数最适合的几何构型。 如有必要,通过考察电子对之间的排斥力修改分子几何构型。排斥力主要取决于电子对是成键电子(BP)还是孤对电子(LP)。排斥力的顺序如下: LP—LP>BP—LP>BP—BP 当孤对电子对存在时,电子对的理想几何构型将会有轻微变形,因为孤对电子对比成键电子对占据更多的空间。

厦大无机化学考研经验

厦大无机化学考研经验 现在说说我的考研复习时间安排吧,我是从2011年4月份开始复习无机化学上册,整个四月份都只看无机化学上册,只看书,每天花半天时间(3小时)去图书馆。我看书比较注重效率,也感觉自己那段时间效率比较高,所以就抓紧时间看(考研复习都有疲劳期,所以趁状态好的时候多复习点)。每次看书的时候只带课本和笔,本人不习惯用笔记本,看书期间遇到的问题或是重点我喜欢直接标注在书本上,我那本无机化学课本在最后反正是找不到一页没有注解的空白地方。我还有个习惯就是喜欢将书本上的重要公式或是非常重要的定义写在那一页的顶端或是下端,这样有助于复习时加深印象,翻到那一页就知道主要讲了什么内容。整个四月份我将无机化学上册看了一遍,当然有些难以理解的地方就多花了时间。我找的考研资料、考题考点解析、知识框架图及历年真题及答案解析等内容都是在百度文库找的,价格便宜,用起来很方便。我看书也是主要是以章节为单位,争取看一章能将那一章的知识有个了解,争取看懂。 看完这本书就给自己放了一个五一长假,然后就开始复习物理化学了,物理化学也注重看书,最好是复习厦大孙世刚那两本书,很全面,跟考试结合很紧密。物理化学是一项艰苦的工程,不仅难懂,还很难记住,感觉就是看不懂,看了后面就忘了前面,做题几乎没把握。不过这时不要灰心,始终要坚信难是对于所有人的,只要自己努力了,结果肯定不会差。物理化学需要一章节一章节的复习,然后做课后习题,这样有助于理解,重复看书,重复做题,吃透每章节的内容,只有这样才会在看后续章节时不会不知所云。复习物理化学花的时间就多了,两本物理化学书我是从5月份看到了八月底,当然这期间也有一些耽误,比如复习期末考试,暑假休息半个月,总的算来花了三个月把书本拉通看了一遍。最重要的是在这期间无机化学不能丢下,虽然不像四月份那样每天看,但是需要时常翻翻书,看一看比较难理解的章节,如原子结构和元素周期律,化学键理论和配位化学那几章,顺带做做题。这样到九月开学时几乎就把无机化学上册搞定了,物理化学也有了个大概的了解。对于这期间花在专业课上的时间应该每天不少于三小时吧,而且是连续的三小时,这样有助于系统复习。 九月开学后就要安排全程复习了,无论是公共课还是专业课,具体时间安排因人而异,自己感觉难的科目可以多安排点时间,复习顺利的科目少花点时间,

厦门大学2004级无机化学二期中考试试题

厦门大学2004级无机化学二期中考试试题 厦门大学“无机化学(二)”课程试卷 化学化工学院化学、材料系2004年级化学各专业 试卷类型:(A卷) 班级姓名分数 一、选择题 ( 共18题 35分 ) 1. 2 分 InCl2为逆磁性化合物,其中In的化合价为…………………………………………() (A) +1 (B) +2 (C) +3 (D) +1和+3 2. 2 分 下列氢化物中,在室温下与水反应不产生氢气的是…………………………………() (A) LiAlH4 (B) CaH2 (C) SiH4 (D) NH3 3. 2 分 和水反应得不到H2O2的是……………………………………………………………() (A) K2O2 (B) Na2O2 (C) KO2 (D) KO3 4. 2 分 下列物质的水解产物中既有酸又有碱的是…………………………………………() (A) Mg3N2 (B) SbCl5 (C) POCl3 (D) NCl3 5. 2 分 有关H3PO4、H3PO3、H3PO2不正确的论述是…………………………………() (A) 氧化态分别是+5,+3,+1 (B) P原子是四面体几何构型的中心 (C) 三种酸在水中的离解度相近 (D) 都是三元酸 6. 2 分 下列各组化合物中,都有颜色的一组化合物是……………………………………() (A) SiCl4,SnCl4,PbO (B) CCl4,NO2,HgI2 (C) SiC,B2H6,N2O4 (D) PbO2,PbI2,SnS 7. 2 分 下列化合物中最稳定的是……………………………………………………………() (A) Li2O2 (B) Na2O2 (C) K2O2 (D) Rb2O2 8. 2 分 1 mol 下列各物质溶于1 dm3水中,生成的溶液中H+ 浓度最高的是……………() (A) SO3 (B) P4O10 (C) HF (D) MgH2 9. 2 分 对于H2O2和N2H4,下列叙述正确的是………………………………………………() (A) 都是二元弱酸 (B) 都是二元弱碱 (C) 都具有氧化性和还原性 (D) 都可与氧气作用 10. 2 分

化学键与分子结构

第6章化学键与分子结构 4课时 教学目标及基本要求 1. 熟悉共价键的价键理论的基本要点、共价键的特征、类型。能联系杂化轨道理论(s-p型)说明一些典型分子的空间构型。 2. 了解分子电偶极矩的概念及其应用于区分极性分子和非极性分子。熟悉分子间力的类型。了解氢键的形成。 教学重点 1. 价键理论要点 2. 共价键的特征及类型 3. 杂化轨道理论与分子空间构型 4. 分子间力与氢键 5. 配合物的价键理论 教学难点 1. 氢分子共价键的形成——共价键的本质 2. σ键和π键 3. 杂化轨道的形成 4. 内轨型、外轨型配合物 教学方式(手段)及教学过程中应注意的问题 1. 教学方式:以多媒体教学为主,讲述法、模型演示、动画模拟、课堂讨论相结合 2. 注意问题:本章有的内容难以理解,通过多媒体形象、生动的演示使同学都能逐步掌握本章知识。要将每一个知识点给同学尽量的讲详细。 主要教学内容 第 6 章化学键与分子结构 Chapter 6 Chemical bond & Molecular structure 6.1 离子键与离子的结构(Ionic bond and structure of ion) 6.1.1 离子键的形成与特性 德国科学家柯塞尔根据稀有气体原子的电子层结构特别稳定的事实,首先提出了离子键理论。用以说明电负性差别较大的元素间所形成的化学键。 电负性较小的活波金属和电负性较大的活波非金属元素的原子相互接近时,前者失去电子形成正离子,后者获得电子形成负离子。正负离子间通过静电引力而联系起来的化学键叫离子键。 例:NaCl 分子 11Na (X=1.01) 1s2 2s2 2p6 3s1 Na+ 1s2 2s2 2p6 17Cl (X=3.16) 1s2 2s2 2p6 3s2 3p5Cl- 1s2 2s2 2p6 3s2 3p6 离子键——正负离子间通过静电作用力而形成的化学键。 离子键的特征 1)离子键的本质是静电作用力,只有电负性相差较大的元素之间才能形成离子键。

大学无机化学所有公式整理.docx

所有公式: 1、注意单位,如焦耳,千焦。 2、加入溶液时注意体积变化引起的浓度的变化 3、能斯特方程注意正负号。 4、单质的标准绝对熵不等于零,?f G m θ(稳定态单质,T)=0 ?f G m θ(H +,aq,T)=0 Chap 1 1、热力学温度:T= t + T0 (T0=273.15K) 2、理想气体状态方程:pV=nRT 用于温度不太低,压力不太高的真实气体 在SI 制中,p 的单位是 Pa ,V 的单位是m 3,T 的单位是K ,n 的单位是mol ;R 是摩尔气体常数,R 的数值和单位与p,V,T 的单位有关,在SI 制中,R = 8.314 J·K -1·mol -1。 3、 4、分压 5、分体积定律 6、溶液的浓度 质量百分比浓度 B = mB/m = mB/(mB+mA) 以溶质(B)的质量在全部溶液的质量中占有 的百分比 质量摩尔浓度 bB = nB/mA 溶质(B)的物质的量与溶剂(A)的质量的比值物质的量分数(摩尔分数) = nB/(nB+nA) 溶质(B)的物质的量占全部溶液的物质的量的分数 物质的量浓度 cB = nB/V 溶质的物质的量除以溶液的总体积(与温度相关), 单位:mol m-3, mol dm-3, mol L-1 Chap 2 m V mRT RT Mp M M pV p RT ρρρ== ==??B B n RT p V = ()B B 1212n RT V p n RT n RT nRT RT V n n p p p p = =++ =++ =B B B B B B B n RT V nRT V V p p V n V V V n ??= ====

化学键与分子结构

第6章化学键与分子结构(讲授4学时) Chapter 6 Chemical bond & molecular structure 本章教学内容: 离子键与离子化合物。 共价键与分子结构。价键理论。杂化轨道与分子空间构型。 分子间力和氢键。分子的极性,电偶极矩。 本章教学要求: (1)了解共价键的价键理论的基本要点以及共价键的特征、共价键的类型。 (2)能联系杂化轨道理论(s-p型)说明一些典型分子的空间构型。 (3)了解分子电偶极矩的概念,能判断分子的极性。 (4)明确分子间力(以及氢键)的本质及特性。 本章教学重点: 共价键的形成,价键理论,共价键的特征、类型; a)H 2 b)杂化轨道理论及分子的空间构型 本章习题:P1609,10,11,13,14

6.1 离子键与离子的结构(Ionic bond and structure of ion) 6.1.1离子键的形成 NaCl分子 Na (X=1.01) 1s2 2s22p63s1 Na+1s2 2s22p6 11 Cl (X=3.16) 1s2 2s22p63s23p5 Cl-1s2 2s22p63s23p6 17 离子键——正负离子间通过静电作用力而形成的化学键。 6.1.2离子键的特征 ●离子键的本质是静电作用力,只有电负性相差较大的元素之间才能形成离 子键。 ●离子键无方向性,无饱和性。 ●离子键是极性键。 电子失去的顺序:np-ns-(n-1)d-(n-2)f 用n+0.4l做判据,其数值越大,越易失去电子。 6.1.3各种简单离子构型(负离子anion一般仅有外层8电子结构,正离子cation有外层多种结构) 6.2共价键与分子结构(covalence bond &molecular structure) 6.2.1价键理论(valence bond theory) (1)共价键形成的本质 1)氢分子共价键的形成 1927年,Heitler and London将量子力学成果应用于H 分子结构的研究, 2 使共价键的本质得到初步解决。他们的结果认为:当两个氢原子相互靠近,且它们的1s电子处于自旋状态反平行时,两个电子才能配对成键;当两个氢原子的

大学无机化学第六章试题

第六章化学键理论 本章总目标: 1:掌握离子键、共价键和金属键的基本特征以及它们的区别; 2:了解物质的性质与分子结构和键参数的关系; 3:重点掌握路易斯理论、价电子对互斥理论、杂化轨道理论以及分子轨道理论。 4:熟悉几种分子间作用力。 各小节目标: 第一节:离子键理论 1:掌握离子键的形成、性质和强度,学会从离子的电荷、电子构型和半径三个方面案例讨论离子的特征。 2:了解离子晶体的特征及几种简单离子晶体的晶体结构,初步学习从离子的电荷、电子构象和半径三个方面来分析离子晶体的空间构型。 第二节:共价键理论 1;掌握路易斯理论。 2:理解共价键的形成和本质。掌握价键理论的三个基本要点和共价键的类型。3:理解并掌握价层电子对互斥理论要点并学会用此理论来判断共价分子的结构,并会用杂化轨道理论和分子轨道理论来解释分子的构型。 第三节:金属键理论 了解金属键的能带理论和三种常见的金属晶格。 第四节:分子间作用力 1:了解分子极性的判断和分子间作用力(范德华力)以及氢键这种次级键的形成原因。 2;初步掌握离子极化作用及其强度影响因素以及此作用对化合物结构及性质的影响。 习题 一选择题 1.下列化合物含有极性共价键的是()(《无机化学例题与习题》吉大版) A.KClO3 B.Na2O2 C. Na2O D.KI 2.下列分子或离子中键能最大的是() A. O2 B.O2- C. O22+ D. O22-

3. 下列化合物共价性最强的是()(《无机化学例题与习题》吉大版) A.LiI B.CsI C. BeI2 D.MgI2 4.极化能力最强的离子应具有的特性是() A.离子电荷高,离子半径大 B.离子电荷高,离子半径小 C.离子电荷低,离子半径小 D.离子电荷低,离子半径大 5. 下列化合物中,键的极性最弱的是()(《无机化学例题与习题》吉大版) A.FeCl3 B.AlCl3 C. SiCl4 D.PCl5 6.对下列各组稳定性大小判断正确的是() A.O2+>O22- B. O2->O2 C. NO+>NO D. OF->OF 7. 下列化合物中,含有非极性共价键的离子化合物是()(《无机化学例题与习题》吉大版) A.H2O2 B.NaCO3 C. Na2O2 D.KO3 8.下列各对物质中,是等电子体的为() A.O22-和O3 B. C和B+ C. He和Li D. N2和CO 9. 中心原子采取sp2杂化的分子是()(《无机化学例题与习题》吉大版) A.NH3 B.BCl3 C. PCl3 D.H2O 10.下列分子中含有两个不同键长的是() A .CO2 B.SO3 C. SF4 D.XeF4 11. 下列分子或离子中,不含有孤电子对的是()(《无机化学例题与习题》吉大版) A. H2O B. H3O+ C. NH3 D. NH4+ 12.氨比甲烷易溶于水,其原因是() A.相对分子质量的差别 B.密度的差别 C. 氢键 D.熔点的差别 13.下列分子属于极性分子的是()(《无机化学例题与习题》吉大版) A. CCl4 B.CH3OCH3 C. BCl3 D. PCl5 14.下列哪一种物质只需克服色散力就能使之沸腾( ) A.HCl B.CH 3Cl https://www.doczj.com/doc/3216478451.html,l 4 D.NH 3 15.下列分子中,中心原子采取等性杂化的是()(《无机化学例题与习题》吉大版) A. NCl3 B.SF4 C. CH Cl3 D.H2O 16.下列哪一种物质既有离子键又有共价键( )

厦门大学无机化学第12章ds区元素

第十二章ds区元素 12.1 铜族元素.................................................................................................. 错误!未定义书签。 12.2 锌族元素.................................................................................................. 错误!未定义书签。 12.1 铜族元素 12.1.1 铜族元素通性 铜族元素 1.铜族元素通性 铜族元素的氧化态有+1,+2,+3三种,这是由于铜族元素最外层ns电子和次外层(n-1)d电子能量相差不大。有人认为在本族元素中,元素第二电离能与第一电离能的差值越小,它的常见氧化值就越高。 对于Cu、Ag、Au,Δ(I2-I1)Au < Δ(I2-I1)Cu < Δ(I2-I1)Ag 所以常见氧化态物+3,+2,+1。 铜、银、金的标准电势图如下所示: 12.1.2 铜族元素金属单质 2.铜族元素金属单质 (1).物理性质 铜和金是所有金属中仅有的呈现特殊颜色的二种金属,铜族元素的熔点、沸点、硬度均比相应的碱金属高。这可能与d电子也参与形成金属键有关。由于铜族金属均是面心立方晶体(如下图),它们不仅堆积最密而且存在较多可以滑动的高密度原子层,因而比相应的碱金属(多为体心立方晶体)密度高得多,且有很好的延展性,其中以金最佳。铜族元素的导电性和传热性在所有金属中都是最好的,银占首位,铜次之。 (2).化学性质 铜族元素的化学活性远较碱金属低,并按Cu--Ag--Au的顺序递减。 在潮湿的空气中放久后,铜表面会慢慢生成一层铜绿。铜绿可防止金属进一步腐蚀,其组成是可变的。银和金不会发生该反应。 空气中如含有H2S气体与银接触后,银的表面上很快生成一层Ag2S的黑色薄膜而使银失去银白色光泽。() 在电位序中,铜族元素都在氢以后,所以不能置换稀酸中的氢。但当有空气存在时,铜可缓慢溶解于这些稀酸中:

大学无机化学第十章试题

第十章配位化合物 本章总目标: 1:掌握配合物的基本概念和配位键的本质 2:掌握配合物的价键理论的主要论点,并能用此解释一些实例 3:配离子稳定常数的意义和应用 4:配合物形成时性质的变化。 各小节目标: 第一节:配位化合物的基本概念 1:掌握中心原子、配体、配位原子、配位键、配位数、螯合物等概念, ○1配位单元:由中心原子(或离子)和几个配位分子(或离子)以配位键向结合而形成的复杂分子或离子。 ○2配位化合物:含有配位单元的化合物。 ○3配位原子:配体中给出孤电子对与中心直接形成配位键的原子。 ○4配位数:配位单元中与中心直接成键的配位原子的个数。 2:学会命名部分配合物,重点掌握命名配体的先后顺序:(1)先无机配体后有机配体(2)先阴离子配体,后分子类配体(3)同类配体中,先后顺序按配位原子的元素符号在英文字母表中的次序(4)配位原子相同时,配体中原子个数少的在前(5)配体中原子个数相同,则按和配位原子直接相连的其它原子的元素符号的英文字母表次序; 3:了解配合物的结构异构和立体异构现象 第二节:配位化合物的价键理论 1:熟悉直线形、三角形、正方形、四面体、三角双锥、正八面体构型的中心杂化类型。 2:会分辨内轨型和外轨型配合物。可以通过测定物质的磁矩来计算单电子数 μ=。 3:通过学习羰基配合物、氰配合物以及烯烃配合物的d pπ -配键来熟悉价键理论中的能量问题。

第三节:配合物的晶体场理论 1:掌握配合物的分裂能、稳定化能概念 2:掌握配合物的晶体场理论。 3;了解影响分裂能大小的因素 ○1)晶体场的对称性0p t ?>?>? ○ 2中心离子的电荷数,中心离子的电荷高,与配体作用强,?大。 ○ 3中心原子所在的周期数,对于相同的配体,作为中心的过渡元素所在的周期数大,?相对大些。(4)配体的影响,配体中配位原子的电负性越小,给电子能力强,配体的配位能力强,分裂能大。224232I Br SCN Cl F OH ONO C O H O NCS NH en NO CN CO -----------<<<<<<-<<<<<<<≈ 4:重点掌握(1)配合物颜色的原因之一——d-d 跃迁以及颜色与分裂能大小的关系;(2)高自旋与低自旋以及与磁矩的大小的关系。 第五节:配位化合物的稳定性 1:熟悉影响配位化合物稳定性的因素(1)中心与配体的关系(2)螯合效应 (3)中心的影响(4)配体的影响(5)反位效应(6)18电子规则。 2:了解配位平衡及影响的因素。 习题 一 选择题 1.Fe (III )形成的配位数为6的外轨配合物中,Fe 3+接受孤电子对的空轨是( ) A.d 2sp 3 B.sp 3d 2 C.p 3d 3 D.sd 5 2.五水硫酸铜可溶于浓HCl ,关于所得溶液的下列说法中,正确的是( ) A.所得溶液成蓝色 B.将溶液煮沸时释放出Cl 2,留下一种Cu (I )的配合物 C.这种溶液与过量的NaOH 溶液反应,不生成沉淀 D.此溶液与金属铜一起加热,可被还原为一种Cu (I )的氯化物 3.在[Co (C 2O 4)2(en )]-中,中心离子Co 3+的配位数为( )(《无机化学例题与习题》吉大版)

厦门大学无机化学第15章 f区元素

第十五章f区元素 15.1 镧系锕系元素概述 (1) 15.2 镧系收缩及后果 (3) 15.3 镧系元素化合物 (5) 15.1 镧系锕系元素概述 15.1.1 名称、符号和电子层构性 1.名称和符号 周期表中有两个系列的内过渡元素,即第六周期的镧系和第七周期的锕系。镧系包括从镧(原子序数57)到镥(原子序数为71)的15种元素;锕系包括从锕(原子序数89)到铹(原子序数103)的15种元素。 2.电子层构型 镧系、锕系电子层构型比较复杂,第三层4f、5f轨道上。 表15-1 镧系元素原子的电子层结构

从表15-1可知,除镧原子外,其余镧系元素原子的基态电子层结构中都有f电子。镧虽然没有f电子,但它与其余镧系元素在化学性质上十分相似。镧系元素最外两个电子层对4f轨道有较强的屏蔽作用,尽管4f能级中电子数不同,它们的化学性质受4f电子数的影响很小,所以它们的化学性质很相似。 【问题】为什么La最外层电子构型不是4f16s2,而是4f05d16s2; Gd最外层电子构型不是4f86s2,而是4f75d16s2? 根据洪特规则,电子处于半满、全空时较为稳定。 15.1.2 电子层结构与氧化态 表15-2 锕系元素原子的电子层结构

3.氧化态 镧系元素前三级电离势之和是比较低的,比某些过渡元素要低。如: 而且无论在酸性还是碱性介质中,值的比较小,因此镧系金属在水溶液中容易形成+3价离子。+3是镧系元素特征氧化态。 镧系中有些元素还存在除+3价以外的稳定氧化态。Ce、Pr、Tb、Dy常呈现+4氧化态,而Sm、Eu、Tm、Yb则呈现+2价氧化态。(为什么?) 这是因为它们的离子电子结构保持或接近半充满或饱满状态。 15.2 镧系收缩及后果 1.镧系收缩现象 镧系元素的原子(离子)半径,随着原子序数的增大而缩小,这种现象称为镧系收缩。

大学无机化学第二章(原子结构)试题及答案

第五章 原子结构和元素周期表 本章总目标: 1:了解核外电子运动的特殊性,会看波函数和电子云的图形 2:能够运用轨道填充顺序图,按照核外电子排布原理,写出若干元素的电子构型。 3:掌握各类元素电子构型的特征 4:了解电离势,电负性等概念的意义和它们与原子结构的关系。 各小节目标: 第一节:近代原子结构理论的确立 学会讨论氢原子的玻尔行星模型213.6E eV n = 。 第二节:微观粒子运动的特殊性 1:掌握微观粒子具有波粒二象性(h h P mv λ= =)。 2:学习运用不确定原理(2h x P m π???≥ )。 第三节:核外电子运动状态的描述 1:初步理解量子力学对核外电子运动状态的描述方法——处于定态的核外电子在核外空间的概率密度分布(即电子云)。 2:掌握描述核外电子的运动状态——能层、能级、轨道和自旋以及4个量子数。 3:掌握核外电子可能状态数的推算。 第四节:核外电子的排布 1:了解影响轨道能量的因素及多电子原子的能级图。 2;掌握核外电子排布的三个原则: ○ 1能量最低原则——多电子原子在基态时,核外电子尽可能分布到能量最低的院子轨道。 ○ 2Pauli 原则——在同一原子中没有四个量子数完全相同的电子,或者说是在同一个原子中没有运动状态完全相同的电子。 ○3Hund 原则——电子分布到能量简并的原子轨道时,优先以自旋相同的方式

分别占据不同的轨道。 3:学会利用电子排布的三原则进行 第五节:元素周期表 认识元素的周期、元素的族和元素的分区,会看元素周期表。 第六节:元素基本性质的周期性 掌握元素基本性质的四个概念及周期性变化 1:原子半径——○1从左向右,随着核电荷的增加,原子核对外层电子的吸引力也增加,使原子半径逐渐减小;○2随着核外电子数的增加,电子间的相互斥力也增强,使得原子半径增加。但是,由于增加的电子不足以完全屏蔽增加的核电荷,因此从左向右有效核电荷逐渐增加,原子半径逐渐减小。 2:电离能——从左向右随着核电荷数的增多和原子半径的减小,原子核对外层电子的引力增大,电离能呈递增趋势。 3:电子亲和能——在同一周期中,从左至右电子亲和能基本呈增加趋势,同主族,从上到下电子亲和能呈减小的趋势。 4:电负性——在同一周期中,从左至右随着元素的非金属性逐渐增强而电负性增强,在同一主族中从上至下随着元素的金属性依次增强而电负性递减。 习题 一选择题 1.3d电子的径向函数分布图有()(《无机化学例题与习题》吉大版) A.1个峰 B.2个峰 C. 3个峰 D. 4个峰 2.波函数一定,则原子核外电子在空间的运动状态就确定,但仍不能确定的是() A.电子的能量 B.电子在空间各处出现的几率密度 C.电子距原子核的平均距离 D.电子的运动轨迹 3.在下列轨道上的电子,在xy平面上的电子云密度为零的是()(《无机化学例题与习题》吉大版) A .3s B .3p x C . 3p z D .3d z2 4.下列各组量子数中,合理的一组是() A .n=3,l=1,m l=+1,m s= +1/2 B .n=4,l=5,m l= -1,m s= +1/2 C .n=3,l=3,m l=+1,m s= -1/2

相关主题
文本预览
相关文档 最新文档