当前位置:文档之家› 纳米材料的湿法合成

纳米材料的湿法合成

纳米材料的湿法合成
纳米材料的湿法合成

论文中英文摘要

作者姓名:孙旭平

论文题目:纳米材料的湿化学合成及新颖结构的自组装构建

作者简介:孙旭平,男,1972年08月出生,2000年09月师从于中国科学院长春应用化学研究所汪尔康研究员,于2006年03月获博士学位。

中文摘要

围绕论文题目“纳米材料的湿化学合成及新颖结构的自组装构建”,我们开展了一系列研究工作。通过湿化学途径,在贵金属纳米粒子及其二维纳米结构和导电聚合物纳米带的合成方面进行了深入研究。同时,利用界面自组装及溶液自组装技术,构建了一些新颖结构。本论文研究工作的主要内容和创新点表现在以下几个方面:

(1)首次提出了一步加热法制备多胺化合物保护的贵金属纳米粒子。我们利用多胺化合物(包

括聚电解质和树枝状化合物)作为还原剂和保护剂,直接加热贵金属盐和多胺化合物的混合水溶液,在不加入其它保护剂和还原剂的情况下,一步制备得到了稳定的贵金属金和银的纳米粒子。我们在实验中发现,树枝状化合物聚丙烯亚胺能对反应生成的金纳米粒子的大小及成核和生长动力学进行有效控制。我们还发现,室温下直接混合浓的阳离子聚电解质分支型聚乙烯亚胺和浓的HAuCl4水溶液可得到高浓度的、稳定的胶体金。这种一步合成法操作简单且方便易行,是一种制备多胺化合物保护的贵金属纳米粒子的通用方法;同时,本方法合成的纳米粒子表面带正电荷,可用作加工纳米粒子功能化薄膜的构建单元。

(2)首次提出了一种无表面活性剂的、无模板的、大规模制备导电聚合物聚邻苯二胺纳米带的

新方法。我们通过在室温下直接混合邻苯二胺和HAuCl4水溶液,在没有表面活性剂或“硬模板”存在的条件下,获得了长度为数百微米、宽度为数百纳米、厚度为数十纳米的聚邻苯二胺。纳米带的自发形成可归因于反应中生成的金纳米粒子催化的邻苯二胺的一维定向聚合。本方法方便快速,无需加入表面活性剂或使用“硬模板”,且可用于大规模制备。

此外,我们通过在室温下直接混合AgNO3和邻苯二胺水溶液,也获得了大量的一维纳米结构,并发现其形貌可通过调节实验参数而改变。我们还发现,当溶液pH降低时,这些一维结构将分解成水溶性的低聚体,而如果再次升高pH,这些低聚体又将自组装形成一

维纳米结构。各种数据表明,这种一维纳米结构是由邻苯二胺被AgNO3氧化后所生成的低聚体在溶液中自组装而形成的。

(3)发展了一系列可大量制备沿(111)晶面优先生长的单晶金二维结构(包括纳米片及微米盘)

的湿化学合成方法。在室温下直接混合HAuCl4和邻苯二胺水溶液,我们得到了大量的、呈六角形的、纳米厚度的单晶金片,其尺寸达1.5μm,邻苯二胺和HAuCl4间的摩尔比是纳米片形成的关键,这种纳米片不仅能应用于光学领域,还可用于加工具有独特机械性能的新型结构材料。我们通过直接加热浓的HAuCl4和线型聚乙烯亚胺混合水溶液,也获得了大量的金纳米单晶片,其尺寸可达40μm,反应物浓度是获得纳米片的关键因素,这种具有大的(111)晶面的单晶金片有望用做扫描隧道显微镜(STM)的基底。此外,通过加热草酸-HAuCl4混合水溶液,我们还得到了大量的、尺寸达4μm的、呈六角形的金二维结构,但其厚度大于100 nm,为微米盘,其大小和厚度可通过草酸的用量得到控制。

(4)发展了一种基于溶液中的配位组装的、室温下方便合成有机-无机配位聚合物杂化材料的

单分散亚微米胶体球的新方法。在室温下直接混合H2PtCl6和对苯二胺水溶液,通过对苯二胺和PtCl62-在溶液中的配位自组装,我们得到了亚微米尺寸的、单分散的、配位聚合物球形胶体球。实验表明,粒子大小和多分散度可由反应物间的摩尔比和浓度进行控制,获得单分散胶体球的最佳实验条件是1:1摩尔比和适中的浓度。本研究结果具有比较重要的意义:(1) 它提供了一个温和的、室温条件下获得单分散胶体粒子的合成方法,从而避免了获得单分散的无机材料胶体粒子所必须的高温反应条件;(2) 这种胶体粒子是一种新的杂化材料,它结合了两种组分的优点而具有多种属性,因而可用在许多领域;(3) 这种胶体粒子在强还原剂如NaBH4 存在的情况下,由于其中的 Pt阳离子组分被还原而发生分解,因此可用做易分解的胶体粒子模板加工中空球。此外,我们通过室温下直接混合邻苯二胺的N-甲基吡咯烷酮溶液和AgNO3水溶液,得到了亚微米的球形银胶体粒子(平均粒径达850 nm)。实验结果还表明,升高温度有利于更大尺寸的银粒子的生成,溶剂对纯的银粒子沉淀物的获得起着比较关键的作用。这些亚微米粒子的形成经历了两个阶段:(1) 超饱和溶液中纳米主粒子的成核;(2) 形成的主粒子聚集成更大的均匀的粒子。

(5)我们发展了一种在表面巯基功能化的电极表面有效固定Ru(bpy)32+的新方法。本方法同时

运用了溶液自组装和固体表面自组装两种技术,即:先将Ru(bpy)32+和柠檬酸根阴离子保护的金纳米粒子的水溶液按照一定比例混合,得到了Ru(bpy)32+-金纳米粒子聚集体,然后把少量聚集体的悬浮液直接滴在表面巯基功能化的电极表面,从而实现Ru(bpy)32+在电极

表面的有效固定。该方法简单易行,制备的电极具有很好的稳定性和电化学发光性能,因而在固态电化学发光检测方面具有很好的应用前景;此外,该方法还可用于在固体表面构建Au纳米粒子多层膜。

(6)发展了一种通过加热3-噻吩丙二酸(3-thiophenemalonic acid, TA)和H2PtCl6混合水溶液直

接制备小的Pt纳米粒子的新方法,并通过对该胶体溶液用Ru(bpy)32+处理,得到了Ru(bpy)32+-Pt纳米粒子聚集体。通过对在裸电极表面的聚集体进行循环电势扫描,使得聚集体中的TA分子发生电化学聚合而在电极表面形成了稳定的聚合物膜;由于该膜有效地避免了聚集体从电极表面脱落,从而我们得到了非常稳定的、具有极好电化学发光性能的膜。本工作不但提供一种方便制备Pt纳米粒子的新途径,而且还发展了一种在任何表面直接加工电化学发光检测器的新方法,在固态电化学发光检测方面具有重要应用价值。

(7)通过在室温下直接混合H2PtCl6和Ru(bpy)3Cl2水溶液,我们获得了具有新颖形貌的、含有

Ru(bpy)32+的微结构。实验结果表明,金属价态、金属种类及反应物摩尔比和浓度对微结构的形貌有重要影响,形成的微结构都具有很好的电化学发光性能。这些微结构给我们提供了一种新的功能材料,将在毛细管电泳或毛细管电泳微芯片的固态电化学发光检测方面有着很好的应用前景。

关键词:纳米材料,湿化学,自组装,电化学发光

Wet-Chemical Routes to the Preparation of Namomaterials and Self-Assembly-Based Fabrication of Novel Structures

Sun Xuping

ABSTRACT

Both the wet-chemical preparation of nanomaterials and self-assembly-based fabrication of novel structures have been paid considerable attention. We carried out several studies on the preparation of noble metal nanoparticles and its two-dimensional nanostructures and conducting polymers nanobelts via wet-chemical routes. On the other hand, we fabricated some novel structures through self-assembly on planar solid substrates or in solutions. Especially, the application of some structures in the field of solid-state electrochemiluminescence detection is also explored.

We have developed a heat-treatment-based strategy for the one-step preparation of polyamine-protected noble metal nanoparticle. With the use of third-generation poly(propyleneimine) (PPI G3) dendrimer to simultaneously act both as the reducing agent and protective agent, stable noble metal gold nanoparticles have spontaneously formed by heating a solution containing HAuCl4 and PPI G3. As a result, an additional step of introducing a reducing agent as well as a protective agent is no longer needed. It is found that the size, the nucleation and growth kinetics of the gold nanoparticles thus formed can be tuned by changing the initial molar ratio of PPI G3 to gold. Similarly, highly stable Ag nanoclusters with narrow size distribution have been prepared by heating a AgNO3/PPI G3 aqueous solution without the additional step of introducing other reducing agents and protect agents. It is found that as-obtained particle is in coexistence of Ag and Ag2O and increasing temperature results in both the decrease in number of small particles and the increase in size of large particles. In addition, such thermal process has been successfully used to prepare amine-functionalized polyelectrolyte-protected gold nanoparticles by directly heating an aqueous solution containing HAuCl4 and polyelectrolytes. Four polyelectrolytes including N-[3-(trimethoxysilyl)propyl]polyethylenimine (Si-PEI), branched polyethylenmine

(BPEI), linear polyethylenimine (LPEI) and poly(allylamine hydrochloride) (PAH) were used in our study and well-stabilized gold nanoparticles with relatively narrow size distribution were obtained. Because gold nanoparticles thus formed can be combined with the properties of the polyelectrolytes used, they hold promise for use in the biomedical and bioanalytical field and on the other hand, as building blocks for the creation of nanoparticles-containing thin films. This strategy will be general to other polyelectrolytes with the same chemical structure as these four polyelectrolytes used and to the preparation of other nanoparticles such as Ag nanoparticles. Furthermore, we have found that highly concentrated, well-stable gold colloids can be prepared by direct mix of concentrated HAuCl4 and BPEI aqueous solutions at room temperature.

We have developed for the first time a novel but simple surfactantless, templateless method for preparing conducting polymer poly(o-phenylenediamine) nanobelts on a large scale. The mix of HAuCl4 and o-phenylenediamine aqueous solutions at room temperature results in the formation of a large quantity of precipitate. Lower magnification scanning electron microscopy (SEM) image indicates that the precipitate consists of a large quantity of uniform one-dimensional structures. Higher magnification SEM image further reveals these structures are transparent nanobelts with several hundred micrometers in length, several hundred nanometers in width, and several ten nanometers in height. Also observed in these SEM images are a number of nanoparticles. The X-ray diffraction (XRD) analysis of the resulting precipitate reveals the formation of amorphous poly(o-phenylenediamine) polymers with larger crystalline size as well as crystalline gold. Elemental analysis of the resulting precipitate using secondary electrons by SEM indicates the belts are poly(o-phenylenediamine) polymers but the particles are gold particles. The possible formation of the nanobelts can be explained as follows: The reduction of HAuCl4by o-phenylenediamine leads to the formation of gold nanoparticles with the occurrence of o-phenylenediamine oligomers first, then gold nanoparticles produced serve as active catalysts to catalyze the oriented oxidative polymerization of other o-phenylenediamine monomers by HAuCl4 along the oligomers produced, resulting in the formation of poly(o-phenylenediamine) nanobelts. Furthermore, we have found that mixing of AgNO3 and o-phenylenediamine in aqueous medium results in the formation of uniform one-dimensional structures. However, the formation of such 1D structure involves the following two stages: (1) The oxidation of o-phenylenediamine by AgNO3 leads to the formation of individual

o-phenylenediamine oligomers. (2) The resulting individual oligomers self-assembly to form uniform larger 1D structures. Interestingly, decreasing medium pH can break these 1D structures apart to form individual oligomers, or vice versa. It is also found that both the concentration and molar ratio of reactants have considerable influences on the morphologies of the structures thus formed.

We have developed several wet-chemical approaches for the large-scale preparation of two-dimensional, single-crystalline gold structures including nanoplates and microdisks. The mix of an appropriate volume of an aqueous solution of freshly prepared o-phenylenediamine and HAuCl4 at room temperature with 1:1 molar ratio of o-phenylenediamine to gold gradually leads to a large quantity of precipitate, which is collected by centrifugation, washed several times with THF and water, and then suspended in water. The lower magnification SEM image indicates that the precipitate consists of a large amount of particles, while the higher magnification SEM image clearly reveals that the particles are micrometer-scale plates (about 1.5 μm in size), mainly hexagonal in shape. The distance between two planes of one plate standing against the glass substrate indicates that these plates are nanoplates. The corresponding energy-dispersive X-ray spectrum (EDS) shows these nanoplates are pure metallic gold. Two surface plasmon absorption bands at about 680 and 925 nm which arise from the longitudinal plasmon resonance of gold particles are observed for these gold nanoplates, providing another piece of evidence for the formation of anisotropic gold particles. It suggests that the quantity of o-phenylenediamine in the solution is crucial to yielding gold nanoplates and we may suggest that o-phenylenediamine molecules serve as a soft template and kinetically control the growth rates of various faces of gold particles by selectively adsorbing on to the crystallographic planes, thus resulting in the formation of large single-crystalline gold nanoplates. The importance of the platelet-like gold particles is not restricted to optics; exceptionally interesting materials with unique mechanical properties can be obtained with such colloids. A polyamine process has also been successfully used for the high-yield preparation of single-crystalline gold nanoplates with several 10μm in size, mainly hexagonal in shape, carried out by heating a concentrated aqueous solution of LPEI and HAuCl4 at 100℃. The following experimental facts (1) there are no gold byproducts with other shapes except the nanoplates existing in the resulting products and (2) adding NaBH4 to the colorless supernatant after

the termination of reaction gives no gold particles due to the depletion of HAuCl4 in the mixture by LPEI indicate that this heat-treatment-based polyamine process is a high-yield approach for the preparation of large gold nanoplates. It is found that the concentration of reactants is crucial to the formation of nanoplates. As-prepared gold nanoplates with a large Au(111) face may hold promise for scanning tunneling microscopy (STM) substrates. Furthermore, heating an aqueous oxalic acid/HAuCl4solution has been proven to be an effective and facile approach for the large-scale production of microsized, single-crystalline, hexagonal gold microplates with a thickness above 100 nm. Both the size and the thickness of these plates can be controlled by the molar ratio of oxalic acid to gold. It is also found that the concentration of reactants strongly influences the formation of the gold plates.

We have demonstrated a novel coordination-based strategy to the fabrication of submicrometer-scale, monodisperse, spherical colloids of organic-inorganic hybrid materials. The mix of p-phenylenediamine and H2PtCl6aqueous solutions at room temperature results in the formation of a large amount of precipitate. Low magnification SEM image of as-prepared precipitate indicates that the precipitate consists of a large quantity of monodisperse, submicrometer-scale particles about 420 nm in diameter. Higher magnification SEM image reveals that these particles are spherical in shape and well-separated from each other, and a local magnification of a single colloidal sphere by transmission electron microscopy (TEM) indicates that the resulting particles have electron-microscopically perfectly smooth surface. The chemical composition of the resulting colloids was determined by energy-dispersed spectrum (EDS) and the occurrence of the peaks of Pt, Cl, C, and N indicates that the colloids are products of p-phenylenediamine and H2PtCl6. A possible formation process is briefly presented as following: When p-phenylenediamine and PtCl62-are mixed together, the two nitrogen atoms on the para positions of one p-phenylenediamine aromatic ring can coordinate to two different Pt(IV) cations, resulting in p-phenylenediamine-bridged structure, and the Pt species contained in as-formed structure can further capture other p-phenylenediamine molecules by coordination interactions along different directions. This coordination-induced assembly process can proceed repeatedly until the depletion of reactants in the solution, resulting in the formation of large coordination polymers, finally. It is found that the particle size and polydispersity can be controlled by the molar ratio and

concentration of reactants, however, the optimum experimental parameters for the production of monodisperse colloids are 1:1 molar ratio and moderate concentration of the two reactants. Our observations are significant for the following reasons. (1) It provides a mild, room temperature route to fine colloids, avoiding the use of high temperature, which is crucial to the formation of fine colloids of inorganic materials. (2) Such colloids are new hybrid materials with versatile properties provoked by combining the merits of two sources and may find applications in many fields. (3) Such colloids are easily broken up by a strong reducing reagent, such as NaBH4, because of the reduction of the Pt cations contained therein, and therefore, they hold promise as easily decomposable colloidal templates for the fabrication of hollow spheres for a variety of applications. We have also demonstrated the rapid preparation of uniform, large, spherical Ag spheres with relatively low polydispersity through a simple wet-chemical route. The formation of Ag particles with about 750 nm in diameter occurs in a single process, carried out by direct mix of AgNO3 aqueous solution and o-phenylenediamine N-methyl-2-pyrrolidone (NMPD) solution at room temperature. The formation of monodisperse Ag colloids in our previous study can be explained as follows: AgNO3 is reduced by o-phenylenediamine to form metallic Ag atoms. With elapsed time, new Ag atoms are generated in this system and nucleation occurs as the concentration of Ag atoms reaches critical supersaturation, resulting in the formation of nuclei. The nuclei grow to nanoscale primary particles by further addition of Ag atoms, and then the primary particles aggregate to form large Ag spheres with relatively narrow size distribution. It is found that that increasing temperature results in increasing particle size. We have found that the mix of AgNO3 and o-phenylenediamine aqueous solutions, under otherwise identical conditions, yields precipitate consisting of a large quantity of large spherical Ag particles and belt-shaped structures corresponding to the oxidative products of o-phenylenediamine by AgNO3. NMPD is a powerful solvent with low toxicity and broad solubility, completely soluble in water at all temperatures and soluble in most organic solvents. We therefore choose NMPD in our present study as an effective cosolvent to dissolve the oxidative products of o-phenylenediamine in a timely manner, preventing them from precipitating with Ag particles and leading to the formation of pure Ag spheres.

We have developed a novel method based on both solution- and planar solid substrate-based assembly techniques for effective immobilization of Ru(bpy)32+ on sulfhydryl-derivated electrode

surfaces for solid-state electrochemiluminescene detection application. The whole immobilization process involves the following two steps: (1) The addition of Ru(bpy)32+ cations into citrate-capped gold nanoparticles (AuNPs) solution results in the formation of a Ru-AuNPs precipitate due to electrostatic interactions-driven assembly of the positively charged Ru(bpy)32+cations and the negatively charged citrate ions coating on the AuNPs; (2) The suspension of Ru-AuNPs was placed on the sulfhydryl-derivated ITO electrode surface. The energy-dispersed spectrum (EDS) of the resulting precipitate indicates the precipitate consists of Ru(bpy)32+ and AuNPs. The absence of the peak of S element in the EDS may be attributed to the following two reasons: (1) The content of S element itself is too low to be detected. (2) The sulfhydryl groups are located below the Ru-AuNPs film, and the substrate is nearly completely covered by the Ru-AuNPs film. It is found that the modification of substrate with sulfhydryl group and the resultant strong Au-S interactions between sulfhydryl group and AuNPs are crucial to the effective immobilization of such Ru-AuNPs on the surface and there is no stable film formed on bare ITO surface. The Ru-AuNPs-modified ITO electrode is quite stable, exhibits excellent electrochemiluminescene behavior, and hence holds great promise for solid-state electrochemiluminescene detection in capillary electrophoresis (CE) or a CE microchip. It provides a new methodology for fabrication of stable Ru(bpy)32+-containing structures on a solid electrode surface for solid-state electrochemiluminescene detection and, on the other hand, also provides an interesting method of immobilization of nanoparticles on the surfaces for applications.

We have developed a simple thermal process for the preparation of small Pt nanoparticles, carried out by heating a H2PtCl6/3-thiophenemalonic acid (TA) aqueous solution without the addition of other reducing agents and protective agents. The formation of such Pt nanoparticles can be attributed to the direct redox between TA and PtCl62-. It is found that such Pt nanoparticles were quite stable for several months without any observable aggregation, indicating that TA serves as a very effective protective agent for the formation of Pt nanoparticles, which can be attributed to the fact that the sulfur atom in TA has a very strong nucleophilicity with lone-pair electrons and such a lone-pair electron can form a type of donor-acceptor complex with the Pt atom on the particle surface, yielding TA-protected Pt nanoparticles. The following treatment of such colloidal Pt solution with Ru(bpy)32+ causes the assembly of Pt nanoparticles into aggregates. Given the acidic

reaction condition, the Pt particle surface is mainly covered by protonated carboxylic acid groups and thus the electrostatic interactions between positively charged Ru(bpy)32+ and Pt nanoparticles are only partially responsible for the formation of the aggregates. On the other hand, both TA and Ru(bpy)32+are rich in π-type bonds and the strong intermolecular π-π interactions between them also contribute to the formation of the aggregates via self-assembly. The most attractive point is that directly placing such aggregates on any bare solid electrode surfaces can produce very stable films exhibiting excellent electrochemiluminescence behaviors. The formation of the stable film of the aggregates on a bare electrode surface can be attributed to the fact that the TA in the aggregates is electrochemically polymerized during the cycling scans to form stable polymer film on electrode surface and the polymer film can effectively protect the aggregates from falling from the electrode surface. Our finding is significant for the following two reasons: (1) It provides a general methodology for the preparation of noble metal nanoparticles for applications; (2) Such assemblies will provide us new kind of materials for solid-state electrochemiluminescence detection in capillary electrophoresis (CE) or a CE microchip.

We have reported on the first preparation of novel, robust Ru(bpy)32+-containing supramolecular microstructures via a solution-based self-assembly strategy, carried out by directly mixing H2PtCl6 and Ru(bpy)3Cl2 aqueous solutions at room temperature. It is found that the microstructures thus formed are robust enough to stand a violent sonication process and their formation is very fast. Given the positive charge of Ru(bpy)32+and the negative charge of PtCl62-, we may suggest that electrostatic attractions between these two complexes drive the formation of micrometer-scale supramolecular microstructures. The observation that the UV-vis absorption spectra of Ru(bpy)32+ aqueous solution is similar to that of the microstructures suspension in water further indicates that only pure electrostatic interactions are responsible for the formation of the microstructures. The electrochemical behavior of the Ru(bpy)32+components contained in the solid film of the microstructures formed on the electrode surface is also studied and found to exhibit a diffusion-controlled voltammetric feature. We have found that both the molar ratio and concentration of reactants have a heavy influence on the morphologies of such microstructures. Most importantly, such microstructures exhibit excellent electrochemiluminescence behaviors and therefore hold great promise as new luminescent materials for solid-state electrochemiluminescence

detection in capillary electrophoresis (CE) or CE microchip.

Keywords: nanomaterials, wet-chemical, self-assembly, electrochemiluminescence

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

一纳米氧化镁为模板一步法制备多级孔炭材料

第一部分文献综述 1.1 多孔炭的研究背景与意义 伴随着全球经济的快速发展和科技水平的进步,煤、石油和天然气等化石燃料消耗逐年增加,日渐枯竭,并且化石燃料的利用造成严重的环境污染,如温室效应、酸雨、大气颗粒物污染、臭氧层破坏和生态环境破坏等。人类正面临着资源短缺、环境污染、生态破坏等迫切需要解决的问题,全球经济和会的可持续发展也面临着严峻的考验。人们迫切需要开发利用新能源和可再生清洁能源来解决日趋短缺的能源问题和日益严重的环境污染。 化学储能装置具有使用方便,性能可靠,便于携带,容量、电流和电压可在相当大的范围内任意组合和对环境无污染等许多优点,在新能源技术的开发和利用中占有重要地位。储氢、储锂和超级电容器等储能装置的电极材料的研究成为材料研究中的热点。在所有的储能材料中,多孔碳材料由于具有大的比表面积,均一的孔径分布,孔结构可调等优点,是迄今为止最理想的储能材料。除此之外,多孔碳材料由于具有均匀的孔径分布,吸收储存气体和液体性能也非常优秀,常被应用于环境保护,制药和化工等领域,作为有毒气体和液体的净化吸收剂。 在近十几年间,有关多孔碳材料方面的报告和论文大批量在国际会议和国际学术刊物上发表,表明多孔碳材料已经成为当今科学界的研究热点。经过科研人员多年不断的试验研究,大批量孔径尺寸分布均匀且可以调控、结构组成可以变化、排列样式和孔道形态多种多样的多孔碳材料可以通过各种各样的合成方法被制备出来。尽管人们已经取得了许多成果,但是多孔碳材料仍然存在许多不足,需要我们去探索和解决,多孔碳材料的性能与实际应用有一定的差距,也有待进一步提高。未来仍然需要我们不断努力去开发成本低,制备过程

模板合成法制备纳米材料的研究进展

收稿日期:2006-11-28 江苏陶瓷 JiangsuCeramics 第40卷第3期2007年6月 Vol.40,No.3June,2007 0 前言 纳米微粒因其特有的表面效应、量子尺寸效应、 小尺寸效应以及宏观量子隧道效应等导致其产生了许多独特的光、 电、磁、热及催化等特性,在许多高新科技领域如陶瓷、化工、电子、光学、生物、医药等方面有广阔的应用前景和重要价值。作为纳米材料研究的一个重要方向,探索条件温和、形态和粒径及其分布可控、产率高的制备方法是这方面研究的首要任务。 目前已经发展了很多制备方法[1],如:蒸发冷凝法、物理粉碎法、机械球磨法等物理方法和气相沉积法、溶胶-凝胶法、沉淀法、水(溶剂)热法和模板法等化学方法,其中模板法因具有实验装置简单、操作容易、形态可控、适用面广等优点,近年来引起了人们的极大兴趣。 模板法的类型大致可分为硬模板和软模板两大类。硬模板包括多孔氧化铝、二氧化硅、碳纳米管、分子筛、以及经过特殊处理的多孔高分子薄膜等。软模板则包括表面活性剂、聚合物、生物分子及其它有机物质等。利用模板合成技术人们已经制得了各种物质包括金属、 氧化物、硫化合物、无机盐以及复合材料的球形粒子、一维纳米棒、纳米线、纳米管以及二维有序阵列等各种形状的纳米结构材料。本文将简要介绍近年来国内外利用模板法制备纳米结构材料的一些进展[2]。 1 硬模板法制备纳米材料 这种方法主要是采用预制的刚性模板,如:多孔 阳极氧化铝膜、二氧化硅模板法、微孔、中孔分子筛(如MCM-41、SBA-15等)、 碳纳米管以及其它模板。1.1多孔阳极氧化铝法 多孔氧化铝膜是近年来人们通过金属铝的阳极 电解氧化得到的一种人造多孔材料,这种膜含有孔径大小一致、 排列有序、分布均匀的柱状孔,孔与孔之间相互独立,而且孔的直径在几纳米至几百纳米之间,并可以通过调节电解条件来控制[3]。利用多孔氧化铝膜作模板可制备多种化合物的纳米结构材料,如通过溶胶-凝胶涂层技术可以合成二氧化硅纳米管,通过电沉积法可以制备Bi2Te3纳米线[4]。这些多孔的氧化铝膜还可以被用作模板来制备各种材料的纳米管或纳米棒的有序阵列,如:TiO2、In2O3、Ga2O3纳米管阵列,BaTiO3、PbTiO3纳米管阵列,ZnO、MnO2、 WO3、Co3O4、V2O5纳米棒阵列以及Bi1-xSbx纳米线有 序阵列等[1]。 1.2二氧化硅模板法 分子筛MCM-41二氧化硅和通过溶胶-凝胶过 程形成的二氧化硅都可用作纳米结构材料形成的模板,其中MCM-41为介孔氧化硅模板,它具有纳米尺寸的均匀孔,孔内可形成有序排布的纳米材料,属于外模板,而溶胶-凝胶法形成的二氧化硅胶粒则属于内模板,在其上形成纳米结构材料,最后二氧化硅用氢氟酸溶解除去。 2002年Froba等报道了在中孔的分子筛MCM-41二氧化硅内部形成有序排布的Ⅱ/Ⅵ磁性半导体 量化线Cd1-xMnxS。2003年Zhao等报道以In(NO3)3为原料,以高度有序中孔结构的表面活性剂SiO2为模板剂和还原剂,采用一步纳米浇铸法合成了高度有序的单晶氧化铟纳米线阵列。2002年Dahne等以三聚氰胺甲醛为第一层模板,利用逐层(LbL)方法制备了PAH/PSS交替多层膜覆盖的三聚氰胺甲醛粒子,在PAH/PSS交替的多层膜上进一步通过溶胶-凝胶方法覆盖上二氧化硅作为第二层模板,再利用LbL方法制备PAH/PSS交替的多层膜,然后用盐酸溶解 模板合成法制备纳米材料的研究进展 黄 艳 (陕西科技大学材料科学与工程学院,咸阳710021) 摘 要 介绍了近年来国内外利用氧化铝、二氧化硅、碳纳米管、表面活性剂、聚合物、生物分子等作模板制备多种物质的纳米结构材料的一些进展。关键词 模板法;纳米材料;合成 1

制备纳米材料的物理方法和化学方法

制备纳米材料的物理方法和化学方法 (********) 纳米科学技术是20世纪80年代末产生的一项正在迅猛发展的新技术。所谓纳米技术是指用若干分子或原子构成的单元—纳米微粒,制造材料或微型器件的科学技术。 纳米材料的制备方法甚多,目前制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集形成微粒,并控制微粒的生长,使其维持在纳米尺寸。 1物理制备方法 早期的物理制备方法是将较粗的物质粉碎,如低温粉碎法、超声波粉碎法、冲击波粉碎法、蒸气快速冷却法、蒸气快速油面法等等。近年来发展了一些新的物理方法,这些方法我们统称为物理凝聚法,物理凝聚法主要分为 (1)真空蒸发靛聚法 将原料用电弧高频或等离子体等加热,使之气化或形成等离子体,然后骤冷,使之凝结成纳米微粒。其粒径可通过改变通入惰性气体的种类、压力、蒸发速率等加以控制,粒径可达1—100nm 。具体过程是将待蒸发的材料放人容器中的柑锅中,先抽到410Pa 或更高的真空度,然后注人少量的惰性气体或性2N 、3NH 等载气,使之形成一定的真空条件,此时加热,使原料蒸发成蒸气而凝聚在温度较低的钟罩壁上,形成纳米微粒。 (2)等离子体蒸发凝聚法 把一种或多种固体颗粒注人惰性气体的等离子体中,使之通过等离子体之间时完全蒸发,通过骤冷装置使蒸气奴聚制得纳米微粒。通常用于制备含有高熔点金属合金的纳米微粒,如Fe-A1 , Nb- Si 等。此法常以等离子体作为连续反应器制备纳米微粒。 综上所述,物理方法通常采用光、电等技术使材料在真空或惰性气氛中蒸发,然后使原子或分子形成纳米颗粒,它还包括球磨、喷雾等以力学过程为主的制备

纳米材料的制备及合成

纳米材料的合成与制备 (1) 摘要 (1) 关键词 (1) The synthesis and preparation of nanomaterials (1) Abstract (1) Keywords (1) 引言 (1) 1纳米材料的化学制备 (2) 1.1纳米粉体的湿化学法制备 (2) 1.2纳米粉体的化学气相法制备 (2) 1.2.1气体冷凝法 (3) 1.2.2溅射法 (3) 1.2.3真空蒸镀法 (4) 1.2.4等离子体方法 (4) 1.2.5激光诱导化学气相沉积法(LICVD) (4) 1.2.6爆炸丝方法 (5) 1.2.7燃烧合成法 (5) 1.3纳米薄膜的化学法制备 (5) 1.4纳米单相及复相材料的制备 (6) 2纳米材料的物理法制备 (7) 2.1纳米粉体(固体)的惰性气体冷凝法制备 (7) 2.2纳米粉体的高能机械球磨法制备 (7)

2.3纳米晶体非晶晶化方法制备 (8) 2.4深度塑性变形法制备纳米晶体 (9) 2.5纳米薄膜的低能团簇束沉积方法(LEBCD)制备 (9) 2.6纳米薄膜物理气相沉积技术 (9) 3纳米材料的应用展望 (10) 4 总结 (11) 参考文献 (12)

纳米材料的合成与制备 摘要本文综述了近年来在纳米材料合成与制备领域的一些最新研究进展,包括纳米粉体、块体及薄膜材料的物理与化学方法制备。从纳米材料合成和制备的角度出发,较系统的阐述了纳米材料合成与制备的最新研究进展,包括气相法,液相法及固相法合成与制备纳米材料;并介绍了纳米材料在高科技领域中的应用展望。 关键词纳米材料,合成,制备 The synthesis and preparation of nanomaterials Abstract This paper summarized the recent years in the field of nanometer material synthesis and preparation of some of the latest research progress, including nano powder, bulk and thin film materials preparation physical and chemical methods. From the perspective of nano material synthesis and preparation, systematically expounds the synthesis and the latest progress in the preparation of nanometer materials, including gas phase, liquid phase method and solid phase synthesis and preparation of nano materials; And introduces the application of nanomaterials in the field of high-tech prospects. Keywords nano materials, synthesis, preparation 引言 纳米材料是晶粒尺寸小于100nm的单晶体或多晶体,由于晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,因而使纳米材料有许多不同于一般粗晶材料的性能,如强度硬度增大、低密度、低弹性模量、高电阻低热导率等。

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

纳米材料的湿法合成

论文中英文摘要 作者姓名:孙旭平 论文题目:纳米材料的湿化学合成及新颖结构的自组装构建 作者简介:孙旭平,男,1972年08月出生,2000年09月师从于中国科学院长春应用化学研究所汪尔康研究员,于2006年03月获博士学位。 中文摘要 围绕论文题目“纳米材料的湿化学合成及新颖结构的自组装构建”,我们开展了一系列研究工作。通过湿化学途径,在贵金属纳米粒子及其二维纳米结构和导电聚合物纳米带的合成方面进行了深入研究。同时,利用界面自组装及溶液自组装技术,构建了一些新颖结构。本论文研究工作的主要内容和创新点表现在以下几个方面: (1)首次提出了一步加热法制备多胺化合物保护的贵金属纳米粒子。我们利用多胺化合物(包 括聚电解质和树枝状化合物)作为还原剂和保护剂,直接加热贵金属盐和多胺化合物的混合水溶液,在不加入其它保护剂和还原剂的情况下,一步制备得到了稳定的贵金属金和银的纳米粒子。我们在实验中发现,树枝状化合物聚丙烯亚胺能对反应生成的金纳米粒子的大小及成核和生长动力学进行有效控制。我们还发现,室温下直接混合浓的阳离子聚电解质分支型聚乙烯亚胺和浓的HAuCl4水溶液可得到高浓度的、稳定的胶体金。这种一步合成法操作简单且方便易行,是一种制备多胺化合物保护的贵金属纳米粒子的通用方法;同时,本方法合成的纳米粒子表面带正电荷,可用作加工纳米粒子功能化薄膜的构建单元。 (2)首次提出了一种无表面活性剂的、无模板的、大规模制备导电聚合物聚邻苯二胺纳米带的 新方法。我们通过在室温下直接混合邻苯二胺和HAuCl4水溶液,在没有表面活性剂或“硬模板”存在的条件下,获得了长度为数百微米、宽度为数百纳米、厚度为数十纳米的聚邻苯二胺。纳米带的自发形成可归因于反应中生成的金纳米粒子催化的邻苯二胺的一维定向聚合。本方法方便快速,无需加入表面活性剂或使用“硬模板”,且可用于大规模制备。 此外,我们通过在室温下直接混合AgNO3和邻苯二胺水溶液,也获得了大量的一维纳米结构,并发现其形貌可通过调节实验参数而改变。我们还发现,当溶液pH降低时,这些一维结构将分解成水溶性的低聚体,而如果再次升高pH,这些低聚体又将自组装形成一

半导体纳米材料的制备方法

摘要:讨论了当前国内外主要的几种半导体纳米材料的制备工艺技术,包括物理法和化学法两大类下的几种,机械球磨法、磁控溅射法、静电纺丝法、溶胶凝胶法、微乳液法、模板法等,并分析了以上几种纳米材料制备技术的优缺点关键词:半导体纳米粒子性质;半导体纳米材料;溶胶一凝胶法;机械球磨法;磁控溅射法;静电纺丝法;微乳液法;模板法;金属有机物化学气相淀积引言 半导体材料(semiconductormaterial)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)。相对于导体材料而言,半导体中的电子动能较低,有较长的德布罗意波长,对空间限域比较敏感。半导体材料空间中某一方向的尺寸限制与电子的德布罗意波长可比拟时,电子的运动被量子化地限制在离散的本征态,从而失去一个空间自由度或者说减少了一维,通常适用体材料的电子的粒子行为在此材料中不再适用。这种自然界不存在,通过能带工程人工制造的新型功能材料叫做半导体纳米材料。现已知道,半导体纳米粒子结构上的特点(原子畴尺寸小于100nm,大比例原子处于晶界环境,各畴之间存在相互作用等)是导致半导体纳米材料具有特殊性质的根本原因。半导体纳米材料独特的质使其将在未来的各种功能器件中发挥重要作用,半导体纳米材料的制备是目前研究的热点之一。本文讨论了半导体纳米材料的性质,综述了几种化学法制备半导体纳米材料的原理和特点。

2.半导体纳米粒子的基本性质 2.1表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 随着纳米材料粒径的减小,表面原子数迅速增加。例如当粒径为10nm 时,表面原子数为完整晶粒原子总数的20%;而粒径为1nm时,其表面原子百分数增大到99%;此时组成该纳米晶粒的所有约30个原子几乎全部分布在表面。由于表面原子周围缺少相邻的原子:有许多悬空键,具有不饱和性,易与其他原子相结合而稳定下来,故表现出很高的化学活性。随着粒径的减小,纳米材料的表面积、表面能及表面结合能都迅速增大。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。 因此想要获得发光效率高的纳米材料,采用适当的方法合成表面完好的半导体材料很重要。 2.2量子尺寸效应 量子尺寸效应--是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。当半导体材料从体相减小到某一临界尺寸(如与电子的德布罗意波长、电子的非弹性散射平均自由程和体相激子的玻尔半径相等)以后,其中的电子、空穴和激子等载流子的运动将受到强量子封

纳米材料的制备方法

纳米材料的制备方法 一、前言 纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。 应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。 纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。 二、纳米材料的制备方法 (一)、机械法 机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部

浅谈模板法制备纳米材料

日常生产工作中必须严格按照规程规定、操作流程和使用方法正确使用安全工器具,以确保安全生产。据现场调查得知安全工器具的不正确使用主要有以下几种情况: 1.衔接式绝缘棒使用节数不够,伸缩式绝缘棒拉伸不够充足。 2.雨天不使用防雨罩,或防雨罩松动、歪斜、破损,起不到防雨作用。 3.验电时手握在验电器护环以上,使用前不在有电设备上确认验电器是否良好,不同电压等级的验电器交叉使用。 4.绝缘手套使用前不检查气密性,甚至随意抓拿坚硬及有尖刺的物品。 5.接地线的接地端不按要求装设,任意搭、挂和缠绕。 6.安全带不按规定使用、系的松垮随意,起不到安全防护作用。 7.安全帽内胆大小调节不当、不系帽带或系的不够紧,工作中容易歪斜、掉落。 8.手钳等工具使用前不检查绝缘部位是否完好,使用时手握在裸露的金属部位,容易造成作业人员的触电事故。 总之,安全工器具是每个电力职工的切身保镖、忠实的安全员和生命的守护神,只要大家熟练地掌握了各种安全工器具的作用、性能和结构原理,掌握了正确的使用方法和注意事项,并严格按照规程规定操作、使用和维护,就能够确保人身、设备和电网的安全。 2010年第3期 (总第138期)China Hi-Tech Enterprises NO.3.2010(CumulativetyNO.138) 中国高新技术企业 摘要:纳米模板具有独特的纳米数量级的多孔结构,其孔洞孔径大小一致,排列有序,分布均匀。以纳米模板合成零维纳米材料、一维纳米材料(纳米线,纳米管)具有制备效率高,可靠性好等优点,已成为纳米复制技术的关键之一。文章重点综述了近年来模板制备,模板合成中常用的模板类型及应用进展。 关键词:纳米材料;模板法;制备工艺;化合聚合;溶胶-凝胶沉积;化学气相沉积 中图分类号:0614文献标识码:A文章编号:1009-2374(2010)03-0178-02 自20世纪70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料,至今已有20多年的历史,但真正成为材料科学和凝聚态物理研究的前沿热点是在80年代中期以后。纳米材料的研究大致可划分为三个阶段:第一阶段(1990年以前)主要是在实验室探索用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评价表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,这一阶段纳米复合材料的合成及物性的探索一度成为纳米材料研究的主导方向。第三阶段(从1994年到现在)纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注,正在成为纳米材料研究的新的热点。本文所要介绍的模板法制备纳米材料即为纳米组装体系的一种。 一、模板合成中常用的模板 (一)高分子模板 高分子模板通常是通过采用厚度为6~20μm的聚碳酸脂、聚脂和其它高分子材料经过核裂变碎片轰击使其出现损伤的痕迹,再用化学腐蚀方法使这些痕迹变成孔洞。膜中孔径可以达到微米级,甚至达到纳米级(最小达到10nm),孔率可达到109/cm2,孔分布是随机的、不均匀且无规律,并且很多孔洞与膜面倾斜和相互交叉。 由于高分子模板自身这些特征,使得用这些模板组装的纳米结构不能形成有序的阵列体系。同时由于存在很多的孔之间斜交现象,当人们理论模拟模板合成的纳米微粒的光学特性时,就会出现理论预计和现实情况不相符合的情形,例如,理论预示独立的金属微粒在某个特殊的波段吸收最强,然而,模板合成的这种金属纳米微粒间的物理接触可使这个最大吸收带移动200nm或更多。 (二)阳极氧化铝模板 阳极氧化铝模板(Anodic Aluminum Oxide,AAO)的制备,一般选用高纯铝片(99.9%以上),在硫酸、草酸、磷酸水溶液中经过阳极氧化后得到的。其纳米孔道内径统一,而且呈六方排列,管道密度可达1011/cm2,孔径可在几纳米到几百纳米之间可调。像六方液晶一样,AAO也能提供呈六方排布的孔道,因此用它可合成呈六方对称排列的纳米结构体系。 二、常用的模板合成方法 模板合成方法适用的范围很广,根据模板种类的不同,在合成时必须注意以下方面:(1)化学前驱溶液对孔壁是否浸润,亲水或疏水性质是合成组装能否成功的关键;(2)应控制在孔洞内沉积速度的快慢,沉积速度过快会造成孔洞通道口堵塞,致使组装失败;(3)控制反应条件,避免被组装介质与模板发生化学反应,在组装过程中保持模板的稳定性是十分重要的。下 浅谈模板法制备纳米材料 李宁1,刘晓峰1,孔庆平1,张文彦2 (1.中国兵器工业集团第521研究所,陕西西安710065;2.西北有色金属研究院纳米材料研究中心,陕西西安710016) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 178 --

纳米材料制备方法

纳米微粒制备方法研究进展 刘伟 (湘潭大学材料科学与工程学院,13材料二班,2013701025) 摘要:纳米微粒一般是指粒径在1nm到100nm之间,处在原子簇和宏观物体交接区域内的粒子,或聚集数从十到几百范围的物质。纳米材料具有表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等特点,因而有许多与传统的晶体和非晶体不同的独特性质,也与组成它们的分子或原子差异很大,在材料学、物理学、化学、催化、环境保护、生物医学等领域具有十分广阔的应用前景。本文综述目前纳米微粒的主要的制备方法, 比较和评述了每种方法的特点,以期这一新材料能得以更为深入地研究和更广泛地应用。 关键词:纳米微粒;制备;方法 1.引言 纳米微粒的制备方法从物料的状态来分,可归纳为固相法、液相法、气相法3大类;从物料是否发生化学反应而分为物理法、化学法及近年迅速发展的模板合成法、仿生法等;随着科技的不断发展及对不同物理、化学特性超微粒子的需求,又派生出许多新的技术,下面就着重介绍固相法、液相法和气相法。 2.固相法 固相法是一种传统的粉化工艺,具有成本低、产量高、制备工艺简单的优点。固相法分为固相机械粉碎法和固相反应法。固相机械粉碎法借用诸如搅拌磨、球磨机、气流磨、塔式粉碎机等多种粉碎机,利用介质和物料之间的相互研磨和冲击的原理,使物料粉碎,常用来制备微米级粒径的粉体颗粒。此法存在能耗大、颗粒粒径分布不均匀、易混入杂质、颗粒外貌不规则等缺点,因而较少用以制备纳米微粒。固相反应法是将固体反应物研细后直接混合,在研磨等机械作用下发生化学反应,然后通过后处理得到需要的纳米微粒。该方法一般要加入适量表面活性剂,所以有时也称湿固相反应。该方法具有工艺简单、产率高、颗粒粒子稳定化好、易操作等优点,尤其是可减少或避免液相中易团聚的现象。[4] 3.液相法 液相法是目前实验室和工业生产中较为广泛采用的方法。通常是让溶液中的不同分子或离子进行反应,产生固体产物。产物可以是单组分的沉淀,也可以是多组分的共沉淀。其涉及的反应也是多种多样的,常见的有:复分散反应、水解反应、还原反应、络合反应、聚合反应等。适当控制反应物的浓度、反应温度和搅拌速度,就能使固体产物的颗粒尺寸达到纳米级。液相法具有设备简单、原料易得、产物纯度高、化学组成可准确控制等优点。下面主要介绍其中的沉淀法和微乳液法。 3.1 沉淀法 沉淀法是液相法制备金属氧化物纳米微粒最早采用的方法。沉淀法基本过程是:可溶性化合物经沉淀或水解作用形成不溶性氢氧化物、水合氧化物或盐类而析出,经过滤、洗涤、煅烧得到纳米微粒粉末。沉淀法又分为均相沉淀法和共沉淀法。沉淀法工艺简单、成本低、反应时间短、反应温度低,易于实现工业化生产。但是,沉淀物通常为胶状物,水洗、过滤较困难;所制备的纳米微粒易发生团聚,难于制备粒径小的纳米微粒。沉淀剂容易作为杂质混入产物之中。此外,还由于大量金属不容易发生沉淀反应,因而这种方法适用面较窄。[3]

模板法及其在纳米材料制备中的应用

模板法及其在纳米材料制备中的应用 *** (************,******) 摘要:纳米材料的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应使其展现出许多特有的性质,在电子、环境保护、生物医药等领域具有广阔的应用前景。本文主要综述了软、硬模板法制备纳米材料的研究进展,重点介绍几种常见软模板法制备无机纳米材料的基本原理和主要特点,并在此基础上提出了模板法制备纳米材料需要解决的问题和应用前景。 关键词:模板法;软模板;硬模板;纳米材料 1 引言 纳米材料由于其本身具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等,展现出许多特有的物理性质、化学性质,在催化、医药、滤光、水体处理、光吸收、磁介质及新材料等方面具有广阔的应用前景而备受关注[1]。在纳米材料的制备研究中,研究人员一直致力于对其组成、结构、形貌、尺寸、取向等方面进行控制,以使得制备出的材料具备各种预期的或特殊的物理化学性质。基于此,近年来模板法制备纳米材料引起了广泛的重视,该方法基于模板的空间限域作用实现对合成纳米材料的大小、形貌、结构等的控制。由于模板法合成纳米材料相比于其他方法有如下显著的优点:(1)模板法合成纳米材料具有相当的灵活性、(2)实验装置简单,操作条件温和、(3)能够精确控制纳米材料的尺寸、形貌和结构、(4)能够防止纳米材料团聚现象的发生,从而引起了广泛的关注[2]。 2 模板分类 模板法根据其模板自身的特点和限域能力的不同又可分为硬模板和软模板两种。二者的共性是都能提供一个有限大小的反应空间,区别在于前者提供的是静态的孔道,物质只能从开口处进入孔道内部;而后者提供的是处于动态平衡的空腔,物质可以透过腔壁扩散进出[3]。 3 硬模板法制备纳米材料 硬模板是指以共价键维系特异形状的模板。主要指一些由共价键维系的刚性模板。如具有不同空间结构的高分子聚合物、阳极氧化铝膜、多孔硅、金属模板天然高分子材料、分子筛、胶态晶体、碳纳米管和限域沉积位的量子阱等。通过前驱体的填充、包裹等将模板的结构、形貌复制到产物中去,然后通过酸碱溶解、高温分解等去除模板,合成零维的纳米颗粒原子团簇,一维的纳米线、纳米管,二维的纳米薄膜乃至三维的纳米复合结构等一系列纳米材料。 3.1阳极氧化铝模板法制备纳米材料 20世纪90年代以来,随着自组装纳米结构体系研究的兴起,多孔阳极氧化铝膜(AAO)这种带有高度有序的纳米级阵列孔道的纳米材料受到人们的重视。人们将AAO作为模板来制备纳米材料和纳米阵列复合结构,并在磁记录、电子学、

纳米材料的合成及其应用

纳米材料的合成及其应用 摘要:本文介绍了几种纳米材料的合成制备的方法,主要是固相法、液相法和气相法,并且简单的介绍了其应用领域。 关键词:纳米材料、固相法、液相法、气相法 引言: 纳米级结构材料简称为纳米材料,是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性。纳米材料出现的重要科学意义在于它引领人们认识自然的新层次,是知识创新的亮点。在纳米领域发现新现象,提出新概念,认识新规律,建立新理论,为构建纳米材料科学体系新框架奠定基础[1]。材料的结构决定材料的性质。 纳米材料产生的特殊效应,具有常规材料所不具备的性能,使得它在各个方面的潜在应用极为广泛,并且非常普遍[2~4]。 一、纳米材料的制备方法 1. 固相法 传统的固相合成法反应温度较高,能耗太,而且难以得到高纯度、各组分完全均匀、物相单一的产物,因而不宜用来制各纳米氧化物。 传统的固相法是将金属盐和金属氢氧化物按一定的比例充分混合,发生复分解反应生成前驱物,多次洗涤后充分研磨进行煅烧,然后再研磨得到纳米粒子。此法设备和工艺简单,反应条件容易控制,产率高,成本低,环境污染少,但产品粒度分布不均,易团聚。刘长久等[5]采用固相反应法制备了粒径为30nm的NiO纳米粉体,并对其电化学性能进行了研究。Feng Li等[6]在环境温度下用固相反应成功地合成了纳米氧化物SiO2、 CeO2、SnO2,并初步探讨了环境温度下纳米材料的形成机理。贾殿赠等[7]对此法进行了改进,在固相配位化学反应的基础上,将室温固相配位化学反应引入金属氧化物纳米粒子的合成中,提出一种室温固相化学反应合成纳米材料的新方法,即用室温固相化学反应首先制得前驱物,进而前驱物经热分解得纳米金属氧化物。此法不仅是无溶剂反应,而且许多反应可在室温或低温条件下发生。因此从原料的使用、合成条件及合成工艺等方面考虑,固相配位化学反应法在合成新颖纳米材料方面具有其潜在的优点。目前采用此新方法已制得纳米CuO[8]、ZnO、NiO等。

纳米材料的制备及应用.

本科毕业论文(设计) 题目:纳米材料的制备及应用 学院:物理与电子科学学院 班级: XX级XX班 姓名: XXX 指导教师: XXX 职称: 完成日期: 20XX 年 X 月 XX 日

纳米材料的制备及应用 摘要:近几年来,由于纳米材料有众多特殊性质,人们越来越关注纳米材料。科技的迅猛发展使纳米材料的制备变得更加成熟。本论文讲述纳米材料的制备,以及纳米技术在将来的应用。 关键词:纳米材料物理方法化学方法应用前景

目录 引言 (1) 1.纳米材料的物理制备方法 (1) 1.1物理粉碎法 (1) 1.2球磨法 (2) 1.3.蒸发—冷凝法 (2) 1.3.1.激光加热蒸发法 (2) 1.3.2.真空蒸发—冷凝法 (4) 1.3.3.电子束照射法 (4) 1.3.4.等离子体法 (5) 1.3.5.高频感应加热法 (5) 1.4.溅射法 (6) 2.纳米材料的化学制备方法 (7) 2.1化学沉淀法 (8) 2.2化学气相沉积法 (8) 2.3化学气相冷凝法 (10) 2.4溶胶--凝胶法 (10) 2.5水热法 (11) 3.纳米材料的其他制备方法 (12) 3.1分子束外延法 (12) 3.2静电纺丝法 (13) 4.纳米材料的应用前景 (14) 5.总结 (14) 参考文献 (15) 致谢 (16)

引言 纳米材料是指任一维空间尺度处于1—100nm之间的材料。它有着不同寻常的性质,如小尺寸效应可引起物理性质的突变,从而具有独特的性能;量子尺寸效应和表面与界面效应使其具有了一般大颗粒物不具备的性质,如对红外线、紫外线有很强的反射作用,应用到纺织品中有抗紫外线,隔热保温作用。纳米材料的这些特性使其在化工、物理、生物、医学方面都有非常重要的价值]1[。多年以来,通过科学家们的潜心研究,使纳米材料在其制备及其应用中得到了很大的发展。纳米材料将逐渐进入人们的日常生活,并将成为未来新工业革命的必备材料。 1.纳米材料的物理制备方法 1.1物理粉碎法 物理粉碎法就是用机械粉碎和电火花爆炸等方法得到纳米微粒]2[。此方法操作简单,成本较低,但得到的纳米微粒纯度不高,分布也不均匀。 图1. 机械粉碎法仪器图

MOFs作为牺牲模板制备纳米多孔碳材料的方法及其应用

2015年第60卷第20期:1906~1914 https://www.doczj.com/doc/3b16404341.html, https://www.doczj.com/doc/3b16404341.html, 引用格式: 姚显芳,李映伟. MOFs作为牺牲模板制备纳米多孔碳材料的方法及其应用. 科学通报, 2015, 60: 1906–1914 Yao X F, Li Y W. MOFs as sacrificial templates for preparation of nanoporous carbon materials and their applications (in Chinese). Chin Sci Bull, 2015, 60: 1906–1914, doi: 10.1360/N972015-00438 《中国科学》杂志社 SCIENCE CHINA PRESS 评述 MOFs作为牺牲模板制备纳米多孔碳材料的方法 及其应用 姚显芳, 李映伟* 华南理工大学化学与化工学院, 广州 510640 *联系人, E-mail: liyw@https://www.doczj.com/doc/3b16404341.html, 2015-04-22收稿, 2015-05-28接受, 2015-06-25网络版发表 国家自然科学基金(21322606)资助 摘要近年来, 多孔材料因具有较高的比表面积、较低的相对密度以及较好的吸附性能等 吸引了化学、物理以及材料等领域科研人员的研究兴趣, 已被广泛应用于气体储存、吸附 催化和电化学等方面. 金属有机骨架(MOFs)材料作为近年来迅猛发展的新兴多孔材料, 由于具有有序、规整的结构, 较高的比表面积以及结构可调等特性, 使其较传统多孔材料 具有更诱人的应用前景. 然而, 由于MOFs具有相对较差的稳定性, 其实际应用和发展受到 了很大的限制. 为了进一步推进MOFs材料的应用进程, 可利用MOFs材料受热易分解的 缺点, 将其高温煅烧碳化制备稳定的纳米多孔碳材料. 本文综述了MOFs作为牺牲模板 煅烧制备纳米多孔碳材料的方法及其应用, 并且展望了其在能源、环境以及催化方面的 应用前景. 关键词 多孔材料 金属有机骨架 煅烧 纳米碳材料 过去几十年里, 多孔材料发展成为化学、物理以 及材料科学等学科领域的研究热点之一. 这些材料 已被广泛应用于气体储存、吸附催化和电化学等方 面[1~5]. 然而, 由于传统多孔材料自身的不足和缺点, 所以越来越难满足当前工业迅速发展的需要. 例如, 应用最广泛的多孔材料——碳材料, 虽然具有较高 的比表面积和吸附能力, 但不具备有序的结构; 沸石 分子筛作为研究最多的无机多孔材料, 拥有有序的 孔道结构, 但其一般是由Al, Si和氧族元素组成, 致 使孔道尺寸和种类多样性受限. 因此, 研发更具有应 用价值的多孔材料成为重要且迫切的研究课题. 金属有机骨架(metal-organic frameworks, MOFs) 材料是一种越来越受到研究者的关注, 发展迅猛的 新型多孔材料. 这种有机-无机杂化多孔材料, 是由 含氧、氮的多齿有机配体与金属原子或金属原子簇以 配位共价键相连接, 自组装形成的具有周期性网络 结构的类沸石材料[6,7]. 图1所示为MOFs材料的组成 和结构示意图, 其结构可看成是由中心金属通过有 机配体连接组装而成.与传统的多孔材料相比, MOFs具有较明显的优势, 例如: 种类多、功能性强、 高的比表面积和孔隙率以及结构可调等特点. 目前, MOFs已被广泛应用于气体吸附、分离[8~11], 多相催 化反应[12]和光电磁性[13,14], 药物缓释[15~17]和传感 器[18~21]等方面. 然而, 由于MOFs是通过配位键与无 机金属中心杂化形成的立体网络结构晶体, 虽然与 沸石的孔结构相近, 但骨架具有柔韧性. 因此与其他 多孔材料相比, MOFs材料的稳定性普遍较差[6,7], 故 该材料的实际应用一直受到限制. 为了进一步推进 MOFs材料的应用进程, 研究者主要从2个方面进行 改进: (1) 以MOFs为牺牲模板制备稳定性更高的纳 米材料[22~31]; (2) 对MOFs进行官能团修饰从而有效 地提高材料的化学稳定性[32~35]. 本文将重点介绍以

相关主题
文本预览
相关文档 最新文档