当前位置:文档之家› 2015年高考文科数学复习:选修4-5不等式选讲(解析版)

2015年高考文科数学复习:选修4-5不等式选讲(解析版)

2015年高考文科数学复习:选修4-5不等式选讲(解析版)
2015年高考文科数学复习:选修4-5不等式选讲(解析版)

选修4-5 不等式选讲

[考纲要求] (1)理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:

①|ax+b|≤|a|+|b|.

②|a-b|≤|a -c|+|c-b|.

③会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x -a|+|x-b|≥c.

(2)了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明。 ①柯西不等式的向量形式:βαβα?≥?

(此不等式通常称为平面三角不等式。)

(3)会用参数配方法讨论柯西不等式的一般情形:

(4)会用向量递归方法讨论排序不等式。

(5)了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题。

(6)会用数学归纳法证明贝努利不等式

(x>-1,x≠0,n 为大于1的正整数),了解当n 为大于1的实数时贝努利不等式也成立。

(7)会用上述不等式证明一些简单问题,能够利用平均值不等式,柯西不等式求一些特定函数的极值。

(8)了解证明不等式的基本方法:比较法,综合法,分析法,反证法,放缩法。

[知识点梳理]

1.两个实数大小关系的基本事实

a >

b ?________;a =b ?________;a

2.不等式的基本性质

(1)对称性:如果a >b ,那么________;如果________,那么a >b .即a >b ?________.

(2)传递性:如果a >b ,b >c ,那么________.

(3)可加性:如果a >b ,那么____________.

(4)可乘性:如果a >b ,c >0,那么________;如果a >b ,c <0,那么________.

(5)乘方:如果a >b >0,那么a n ________b n (n ∈N ,n >1).

(6)开方:如果a >b >0,那么n a ________n b (n ∈N ,n >1).

3.绝对值三角不等式

(1)性质1:|a +b |≤________.

(2)性质2:|a |-|b |≤________.

性质3:________≤|a -b |≤________.

4.绝对值不等式的解法

(1)含绝对值的不等式|x |a 的解集

不等式 a >0 a =0

a <0 |x |

|x |>a

(2)|ax +b |≤c (c >0)和|ax +b |≥c (c >0)型不等式的解法

①|ax +b |≤c ?______________;

②|ax +b |≥c ?______________.

(3)|x -a |+|x -b |≥c 和|x -a |+|x -b |≤c 型不等式的解法

①利用绝对值不等式的几何意义求解,体现了数形结合的思想;

②利用“零点分段法”求解,体现了分类讨论的思想;

③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.

5.基本不等式

(1)定理:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.

(2)定理(基本不等式):如果a ,b >0,那么a +b 2________ab ,当且仅当________时,等号成立.也可以表述为:两个________的算术平均________________它们的几何平均.

(3)利用基本不等式求最值

对两个正实数x ,y ,

①如果它们的和S 是定值,则当且仅当________时,它们的积P 取得最________值;

②如果它们的积P 是定值,则当且仅当________时,它们的和S 取得最________值.

6.三个正数的算术—几何平均不等式

(1)定理 如果a ,b ,c 均为正数,那么a +b +c 3________3abc ,当且仅当________时,等号成立. 即三个正数的算术平均____________它们的几何平均.

(2)基本不等式的推广

对于n 个正数a 1,a 2,…,a n ,它们的算术平均__________它们的几何平均,即a 1+a 2+…+a n n ________n a 1a 2…a n , 当且仅当________________时,等号成立.

7.柯西不等式

(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.

(2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,

当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.

(3)柯西不等式的向量形式:设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立.

8.证明不等式的方法

(1)比较法

①求差比较法

知道a >b ?a -b >0,a b ,只要证明________即可,这种方法称为求差比较法. ②求商比较法

由a >b >0?a b

>1且a >0,b >0,因此当a >0,b >0时要证明a >b ,只要证明________即可,这种方法称为求商比较法.

(2)分析法

从待证不等式出发,逐步寻求使它成立的____________,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等).这种证法称为分析法,即“执果索因”的证明方法.

(3)综合法

从已知条件出发,利用不等式的有关性质或定理,经过推理论证,推导出所要证明的不等式成立,即“由因寻果”的方法,这种证明不等式的方法称为综合法.

(4)反证法的证明步骤

第一步:作出与所证不等式________的假设;

第二步:从条件和假设出发,应用正确的推理方法,推出矛盾的结论,否定假设,从而证明原不等式成立.

(5)放缩法

所谓放缩法,即要把所证不等式的一边适当地________________,以利于化简,并使它与不等式的另一边的不等关系更为明显,从而得到欲证不等式成立.

(6)数学归纳法

设{P n }是一个与自然数相关的命题集合,如果:(1)证明起始命题P 1(或P 0)成立;(2)在假设P k 成立的前提下,推出P k +1也成立,那么可以断定{P n }对一切自然数成立.

[考点题型剖析]

题型一 含绝对值的不等式的解法

【典型例题】

例1-1解不等式|x +1|+|x -1|≥3.

思维启迪 本题不等式为|x -a |+|x -b |≥c 型不等式,解此类不等式有三种方法:几何法、分区间(分类)讨论法和图象法.

规范解答

解 方法一 如图所示,设数轴上与-1,1对应的点分别为A ,B ,那么A ,B 两点的距离和为2,因此区间[-1,1]

上的数都不是不等式的解.设在A 点左侧有一点A 1,到A ,B 两点的距离和为3,A 1对应数轴上的x .

[4分]

∴-1-x +1-x =3,得x =-32

. 同理设B 点右侧有一点B 1到A ,B 两点距离之和为3,B 1对应数轴上的x ,∴x -1+x -(-1)=3.∴x =32

. 从数轴上可看到,点A 1,B 1之间的点到A ,B 的距离之和都大于3;点A 1的左边或点B 1的右边的任何点到A ,B 的距离之和都大于3.[8分]

所以原不等式的解集是????-∞,-32∪???

?32,+∞.[10分] 方法二 当x ≤-1时,原不等式可化为

-(x +1)-(x -1)≥3,解得:x ≤-32

.[3分] 当-1

x +1-(x -1)≥3,即2≥3.不成立,无解.[6分]

当x ≥1时,原不等式可以化为

x +1+x -1≥3.所以x ≥32

.[9分] 综上,可知原不等式的解集为????

??x |x ≤-32或x ≥32.[10分] 方法三 将原不等式转化为|x +1|+|x -1|-3≥0.

构造函数y =|x +1|+|x -1|-3,

即y =????? -2x -3,x ≤-1;-1,-1

2x -3,x ≥1.[3分]

作出函数的图象,如图所示:

函数的零点是-32,32

. 从图象可知,当x ≤-32或x ≥32

时,y ≥0,[8分] 即|x +1|+|x -1|-3≥0.

所以原不等式的解集为????-∞,-32∪???

?32,+∞.[10分] 温馨提醒 这三种方法是解|x +a |+|x +b |≥c 型不等式常用的方法,方法一中关键是找到特殊点,方法二中的分类讨论要遵循“不重不漏”的原则,方法三则要准确画出函数图象,并准确找出零点.

例1-2(2012·课标全国)已知函数f (x )=|x +a |+|x -2|.

(1)当a =-3时,求不等式f (x )≥3的解集;

(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.

解 (1)当a =-3时,f (x )=????? -2x +5,x ≤2,1,2

2x -5,x ≥3.

当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1;

当2

当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4.

所以f (x )≥3的解集为{x |x ≤1或x ≥4}.

(2)f (x )≤|x -4|?|x -4|-|x -2|≥|x +a |.

当x ∈[1,2]时,|x -4|-|x -2|≥|x +a |

?4-x -(2-x )≥|x +a |?-2-a ≤x ≤2-a .

由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0.

故满足条件的a 的取值范围为[-3,0].

思维升华 解绝对值不等式的基本方法:

(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;

(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;

(3)利用绝对值的几何意义,数形结合求解.

例1-3 (2013·课标全国Ⅰ)已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3.

(1)当a =-2时,求不等式f (x )

(2)设a >-1,且当x ∈???

?-a 2,12时,f (x )≤g (x ),求a 的取值范围. 审题破题 (1)可以通过分段讨论去绝对值;(2)在x ∈???

?-a 2,12时去绝对值,利用函数最值求a 的范围. 解 (1)当a =-2时,不等式f (x )

设函数y =|2x -1|+|2x -2|-x -3,

则y =????? -5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1,

其图象如图所示,由图象可知,当且仅当x ∈(0,2)时,y <0,所以原不等式的解集是

{x |0

(2)∵a >-1,则-a 2<12

, ∴f (x )=|2x -1|+|2x +a

|

当x ∈???

?-a 2,12时,f (x )=a +1, 即a +1≤x +3在x ∈???

?-a 2,12上恒成立. ∴a +1≤-a 2+3,即a ≤43

, ∴a 的取值范围为?

???-1,43.

【变式训练】

1. (2013·重庆)若关于实数x 的不等式|x -5|+|x +3|

答案 (-∞,8]

解析 ∵|x -5|+|x +3|=|5-x |+|x +3|

≥|5-x +x +3|=8,

∴(|x -5|+|x +3|)min =8,

要使|x -5|+|x +3|

2. (2013·江西)在实数范围内,不等式||x -2|-1|≤1的解集为________.

答案 [0,4]

解析 由||x -2|-1|≤1得-1≤|x -2|-1≤1,

解?

????

|x -2|≥0|x -2|≤2得0≤x ≤4. ∴不等式的解集为[0,4].

3. (2012·山东)若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =

________.

答案 2

解析 ∵|kx -4|≤2,∴-2≤kx -4≤2,∴2≤kx ≤6.

∵不等式的解集为{x |1≤x ≤3},∴k =2.

4[2014·江西卷] x ,y ∈R ,若|x |+|y |+|x -1|+|y -1|≤2,则x +y 的取值范围为________.

答案 [0,2]

5.不等式|x +1||x +2|

≥1的实数解为__________. 答案 ????

??x |x ≤-32且x ≠-2. 解析 ∵|x +1||x +2|

≥1,∴|x +1|≥|x +2|. ∴x 2+2x +1≥x 2+4x +4,∴2x +3≤0.

∴x ≤-32

且x ≠-2.

6.已知函数f (x )=|x +1|+|x -2|-m .

(1)当m =5时,求f (x )>0的解集;

(2)若关于x 的不等式f (x )≥2的解集是R ,求m 的取值范围.

解 (1)由题设知|x +1|+|x -2|>5,

不等式的解集是以下三个不等式组解集的并集:

????? x ≥2,x +1+x -2>5或????? -1≤x <2,x +1-x +2>5或?

???? x <-1,-x -1-x +2>5, 解得函数f (x )的定义域为(-∞,-2)∪(3,+∞).

(2)不等式f (x )≥2即|x +1|+|x -2|>m +2,

∵x ∈R 时,恒有|x +1|+|x -2|≥|(x +1)-(x -2)|=3,

不等式|x +1|+|x -2|≥m +2解集是R ,

∴m +2≤3,m 的取值范围是(-∞,1].

7.已知函数f (x )=|x -a |.

(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;

(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.

解 方法一 (1)由f (x )≤3得|x -a |≤3,解得a -3≤x ≤a +3.

又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},

所以?

????

a -3=-1,a +3=5,解得a =2. (2)当a =2时,f (x )=|x -2|,设g (x )=f (x )+f (x +5), 于是g (x )=|x -2|+|x +3|=????? -2x -1,x <-3,5,-3≤x ≤2,

2x +1,x >2.

所以当x <-3时,g (x )>5;

当-3≤x ≤2时,g (x )=5;

当x >2时,g (x )>5.

综上可得,g (x )的最小值为5.

从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].

方法二 (1)同方法一.

(2)当a =2时,f (x )=|x -2|.

设g (x )=f (x )+f (x +5).

由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立),得g (x )的最小值为5.

从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].

8.(2013·辽宁)已知函数f (x )=|x -a |,其中a >1.

(1)当a =2时,求不等式f (x )≥4-|x -4|的解集;

(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值.

解 (1)当a =2时,

f (x )+|x -4|=?????

-2x +6,x ≤2,2,2<x <4,

2x -6,x ≥4. 当x ≤2时,由f (x )≥4-|x -4|得-2x +6≥4,解得x ≤1; 当2<x <4时,f (x )≥4-|x -4|无解; 当x ≥4时,由f (x )≥4-|x -4|得2x -6≥4,解得x ≥5; 所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}. (2)记h (x )=f (2x +a )-2f (x ), 则h (x )=?????

-2a ,x ≤0,4x -2a ,0<x <a ,

2a ,x ≥a . 由|h (x )|≤2,解得a -12≤x ≤a +12

. 又已知|h (x )|≤2的解集为{x |1≤x ≤2},

所以??? a -

12=1,a +12=2,于是a =3.

9.[2011课标]选修4-5:不等式选讲 设函数()3f x x a x =-+,其中0a >。

(Ⅰ)当1a =时,求不等式()32f x x ≥+的解集;

(Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤- ,求a 的值。

(24)解:(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥。由此可得 3x ≥或1x ≤-。

故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-。

( Ⅱ) 由()0f x ≤ 得30x a x -+≤

此不等式化为不等式组30x a x a x ≥??-+≤? 或30

x a a x x ≤??-+≤?即 4x a a x ≥???≤?? 或2x a a a ≤???≤-?? 因为0a >,所以不等式组的解集为{}|2a x x ≤-由题设可得2

a -= 1-,故2a = 10.[2014课标Ⅱ] 选修4-5:不等式选讲

设函数f (x )=???

?x +1a +|x -a |(a >0). (1)证明:f (x )≥2;

(2)若f (3)<5,求a 的取值范围.

24.解:(1)证明:由a >0 ,有f (x )=????x +1a +|x -a |≥????x +1a -(x -a )=1a

+a ≥2, 所以f (x )≥2.

(2)f (3)=???

?3+1a +|3-a |. 当a >3时,f (3)=a +1a ,由f (3)<5得3

. 当0

??1+52,5+212.

题型二 不等式的证明方法

【典型例题】

例2-1 已知a ,b ,c ∈(0,+∞),且a +b +c =1,

求证:(1)(1a -1)·(1b -1)·(1c

-1)≥8; (2)a +b +c ≤ 3.

证明 (1)∵a ,b ,c ∈(0,+∞),

∴a +b ≥2ab ,b +c ≥2bc ,c +a ≥2ca ,

(1a -1)·(1b -1)·(1c

-1) =b +ca +ca +b abc

≥2bc ·2ac ·2ab abc

=8. (2)∵a ,b ,c ∈(0,+∞),

∴a +b ≥2ab ,b +c ≥2bc ,c +a ≥2ca , 2(a +b +c )≥2ab +2bc +2ca ,

两边同加a +b +c 得

3(a +b +c )≥a +b +c +2ab +2bc +2ca

=(a +b +c )2.

又a +b +c =1,∴(a +b +c )2≤3, ∴a +b +c ≤ 3.

例2-2(2013·课标全国Ⅱ)设a 、b 、c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2

a

≥1. 证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得

a 2+

b 2+

c 2≥ab +bc +ca .

由题设得(a +b +c )2=1, 即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1, 即ab +bc +ca ≤13. (2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2

a +a ≥2c , 故a 2

b +b 2

c +c 2a

+(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2

a

≥a +b +c . 所以a 2b +b 2c +c 2

a

≥1.

思维升华 用综合法证明不等式是“由因导果”,分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野.

【变式训练】

1.设a ,b ,c >0,且ab +bc +ca =1.

求证:(1)a +b +c ≥3;

(2) a bc + b ac + c ab

≥3(a +b +c ).

证明 (1)要证a +b +c ≥3,

由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.

即证:a 2+b 2+c 2+2(ab +bc +ca )≥3,

而ab +bc +ca =1,

故需证明:a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ).

即证:a 2+b 2+c 2≥ab +bc +ca .

而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 2

2

=a 2+b 2+c 2 (当且仅当a =b =c 时等号成立)证得. ∴原不等式成立. (2) a bc + b ac + c ab =a +b +c abc

. 在(1)中已证a +b +c ≥ 3.

因此要证原不等式成立,只需证明1abc ≥a +b +c . 即证a bc +b ac +c ab ≤1,

即证a bc +b ac +c ab ≤ab +bc +ca .

而a bc =ab ·ac ≤ab +ac 2

, b ac ≤ab +bc 2,c ab ≤bc +ac 2

. ∴a bc +b ac +c ab ≤ab +bc +ca (a =b =c =33

时等号成立). ∴原不等式成立.

2.[2014·江苏卷] [选修4-5:不等式选讲] 已知x >0,y >0,证明:(1+x +y 2)(1+x 2+y )≥9xy .

证明:因为x >0,y >0,

所以1+x +y 2≥33xy 2>0,

1+x 2+y ≥33x 2y >0,

故(1+x +y 2)(1+x 2+y )≥33xy 2·33x 2y =9xy .

3.[2014·全国新课标卷Ⅰ] 选修4-5:不等式选讲

若a >0,b >0,且1a +1b =ab . (1)求a 3+b 3的最小值;

(2)是否存在a ,b ,使得2a +3b =6?请说明理由.

解:(1)由ab =1a +1b ≥2ab

,得ab ≥2,当且仅当a =b =2时等号成立. 故a 3+b 3≥2 a 3b 3≥42,

当且仅当a =b =2时等号成立.

所以a 3+b 3的最小值为4 2.

(2)由(1)知,2a +3b ≥2 6ab ≥4 3.

由于4 3>6,从而不存在a ,b ,使2a +3b =6.

题型三 柯西不等式的应用

【典型例题】

例3-1 已知3x 2+2y 2≤6,求证:2x +y ≤11.

思维升华 使用柯西不等式时,关键是将已知条件通过配凑,转化为符合柯西不等式条件的式子,二维形式的柯西不等式(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.

证明 由于2x +y =23(3x )+12

(2y ), 由柯西不等式(a 1b 1+a 2b 2)2≤(a 21+a 22)(b 21+b 22)得

(2x +y )2≤[(23)2+(12

)2](3x 2+2y 2) ≤(43+12)×6=116

×6=11, ∴|2x +y |≤11,∴2x +y ≤11.

例3-2 (2012·福建)已知函数f (x )=m -|x -2|,m ∈R ,且f (x +2)≥0的解集为[-1,1].

(1)求m 的值;

(2)若a ,b ,c ∈R +,且1a +12b +13c

=m ,求证:a +2b +3c ≥9. 审题破题 (1)从解不等式f (x +2)≥0出发,将解集和[-1,1]对照求m ;(2)利用柯西不等式证明.

(1)解 因为f (x +2)=m -|x |,

f (x +2)≥0等价于|x |≤m .

由|x |≤m 有解,得m ≥0,且其解集为{x |-m ≤x ≤m }.

又f (x +2)≥0的解集为[-1,1],故m =1.

(2)证明 由(1)知1a +12b +13c

=1, 又a ,b ,c ∈R +,由柯西不等式得

a +2

b +3

c =(a +2b +3c )????1a +12b +13c

≥?

???a ·1a +2b ·12b +3c ·13c 2=9. 反思归纳 不等式证明的基本方法是比较法、综合法、分析法、反证法、放缩法和数学归纳法,其中以比较法和综合法最为基础,使用综合法证明不等式的关键就是通过适当的变换后使用重要不等式,证明过程注意从重要不等式的形式入手达到证明的目的.

【变式训练】

1.若3x +4y =2,试求x 2+y 2的最小值.

解 由柯西不等式(32+42)·(x 2+y 2)≥(3x +4y )2,①

得25(x 2+y 2)≥4,所以x 2+y 2≥425

. 不等式①中当且仅当x 3=y 4

时等号成立,x 2+y 2取得最小值, 由方程组????? 3x +4y =2,x 3=y 4,解得??? x =625,y =825

. 因此当x =625,y =825时,x 2+y 2取得最小值,最小值为425

.

2.(2013·陕西)已知a ,b ,m ,n 均为正数,且a +b =1,mn =2,则(am +bn )(bm +an )的最小值为________. 答案 2

解析 由柯西不等式(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时“=”成立,得

(am +bn )(bm +an )≥(am ·an +bm bn )2=mn (a +b )2=2.

3. [2014·陕西卷] A.(不等式选做题)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2的最小值为________. 答案 A.5 [解析]由柯西不等式可知(a 2+b 2)(m 2+n 2)≥(ma +nb )2,即5(m 2+n 2)≥25,当且仅当an =bm 时,等号

成立,所以m2+n2≥ 5.

人教版高中数学必修五教案1

第一章解三角形 1.1正弦定理和余弦定理 1.1.1正弦定理 知识结构梳理 几何法证明 正弦定理的证明 向量法证明 已知两角和任意一边 正弦定理正弦定理 正弦定理的两种应用 已知两边和其中一角的对角 解三角形 知识点1 正弦定理及其证明 1正弦定理: 2.正弦定理的证明: (1)向量法证明 (2)平面几何法证明 3.正弦定理的变形 知识点2 正弦定理的应用 1.利用正弦定理可以解决以下两类有关三角形的问题: (1)已知两角和任意一边,求其他两边和另一角; (2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角。 2.应用正弦定理要注意以下三点: (1) (2) (3) 知识点3 解三角形

1.1.2余弦定理 知识点1 余弦定理 1. 余弦定理的概念 2. 余弦定理的推论 3. 余弦定理能解决的一些问题: 4. 理解应用余弦定理应注意以下四点: (1) (2) (3) (4) 知识点2 余弦定理的的证明 证法1: 证法2: 知识点3 余弦定理的简单应用 利用余弦定理可以解决以下两类解三角的问题: (1)已知三边求三角; (2)已知两边和它们的夹角,可以求第三边,进而求出其他角。 例1(山东高考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,tanC=73. (1) 求C cos ; (2) 若 =2 5 ,且a+b=9,求c.

1.2应用举例 知识点1 有关名词、术语 (1)仰角和俯角: (2)方位角: 知识点2 解三角形应用题的一般思路 (1)读懂题意,理解问题的实际背景,明确已知和所求,准确理解应用题中的有关术语、名称,如仰角、俯角、视角、方位角等,理清量与量之间的关系; (2)根据题意画出示意图,将实际问题抽象成解三角形模型; (3)合理选择正弦定理和余弦定理求解; (4)将三角形的解还原为实际问题,注意实际问题中的单位、结果要求近似等。 1.3实习作业 实习作业的方法步骤 (1)首先要准备皮尺、测角仪器,然后选定测量的现场(或模拟现场),再收集测量数据,最后解决问题,完成实习报告。要注意测量的数据应尽量做到准确,为此可多测量几次,取平均值。要有创新意识,创造性地设计实施方案,用不同的方法收集数据,整理信息。 (2)实习作业中的选取问题,一般有:○1距离问题,如从一个可到达点到一个不可到达点之间的距离,或两个不可到达点之间的距离;②高度问题,如求有关底部不可到达的建筑物的高度问题。一般的解决方法就是运用正弦定理、余弦定理解三角形。

2019高考试题文科数学汇编:不等式

2019高考试题文科数学汇编:不等式 1.【2018高考山东文6】设变量,x y 满足约束条件22,24,41,x y x y x y +≥?? +≤??-≥-? 那么目标函数3z x y =-的取 值范围是 (A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3 [6,]2 - 【答案】A 2.【2018高考安徽文8】假设x ,y 满足约束条件 02323x x y x y ≥?? +≥??+≤? ,那么y x z -=的最 小值是 〔A 〕-3 〔B 〕0 〔C 〕 3 2 〔D 〕3 【答案】A 3.【2018高考新课标文5】正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,假设点〔x ,y 〕在△ABC 内部,那么z=-x+y 的取值范围是 〔A 〕(1-3,2) 〔B 〕(0,2) 〔C 〕(3-1,2) 〔D 〕(0,1+3) 【答案】A 4.【2018高考重庆文2】不等式 1 02 x x -<+ 的解集是为 〔A 〕(1,)+∞ 〔B 〕 (,2)-∞- 〔C 〕〔-2,1〕〔D 〕(,2)-∞-∪(1,)+∞ 【答案】C 5.【2018高考浙江文9】假设正数x ,y 满足x+3y=5xy ,那么3x+4y 的最小值是 A. 245 B. 285 C.5 D.6 【答案】C 6.【2018高考四川文8】假设变量,x y 满足约束条件3, 212,21200 x y x y x y x y -≥-??+≤?? +≤??≥?≥??,那么34z x y =+的最 大值是〔 〕 A 、12 B 、26 C 、28 D 、33 【答案】C 7.【2018高考天津文科2】设变量x,y 满足约束条件?? ? ??≤-≥+-≥-+01042022x y x y x ,那么目标函数z=3x-2y 的最小值为

文科艺术生高考数学复习试题

精心整理 文科艺术生高考复习数学试题内容:集合与简易逻辑、函数、复数、统计与概率、立体几何(平行)、程序框图 1.已知全集R U =,集合{}{}3|,5,4,3,2,1≥∈==x R x B A ,右图中阴影部分所表示的集合为() A.{}1 B.{}2,1 C.{}32,1, D.{}21,0, 2.命题“∈?x R,0123=+-x x ”的否定是() A .∈?x R,0123≠+-x x B .不存在∈x R,0123≠+-x x C .∈?x R,0123=+-x x D .∈?x R,0123≠+-x x 3.已知函数()1,0,, 0.x x x f x a x -≤?=?>?若()()11f f =-,则实数a 的值等于() A .1 B .2 C .3 D .4 4.已知ni i m -=+11,其中n m ,是实数,i 是虚数单位,则=+ni m () A .i 21+ B .i 21- C .i +2 D .i -2 5.已知,a b R ∈,命题“若1a b +=,则2212 a b +≥”的否命题是() A .若2211,2a b a b +≠+<则B .若2211,2 a b a b +=+<则 C .若221,12a b a b +<+≠则D .若221,12 a b a b +≥+=则 6.某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是() (A )10(B )11(C )12(D )16 7.“x x 22-<0”是“40<

高中数学必修5基本不等式知识点总结

高中数学必修5基本不等式知识点总结 一.算术平均数与几何平均数 1.算术平均数 设a 、b 是两个正数,则 2 a b +称为正数a 、b 的算术平均数 2.几何平均数 a 、 b 的几何平均数 二基本不等式 1.基本不等式: 若0a >,0b >,则a b +≥,即 2 a b +≥2.基本不等式适用的条件 一正:两个数都是正数 二定:若x y s +=(和为定值),则当x y =时,积xy 取得最大值2 4 s 若xy p =(积为定值),则当x y =时,和x y +取得最小值 三相等:必须有等号成立的条件 注:当题目中没有明显的定值时,要会凑定值 3.常用的基本不等式 (1)()22 2,a b ab a b R +≥∈ (2)()22 ,2 a b ab a b R +≤∈ (3)()20,02a b ab a b +??≤>> ??? (4)()222,22a b a b a b R ++??≥∈ ??? . 三.跟踪训练 1.下列各函数中,最小值为2的是 ( ) A .1y x x =+ B .1sin sin y x x =+,(0,)2x π∈ C .2 y = D .1y x =+ 2.当02x π <<时,函数21cos 28sin ()sin 2x x f x x ++=的最小值是( )。

A. 1 B. 2 C. 4 D. 3.x >0,当x 取什么值,x +1x 的值最小?最小值是多少? 4.用20cm长的铁丝折成一个面积最大的矩形,应该怎样折? 5.一段长为30m的篱笆围成一个一边靠墙的矩形花园,墙长18m,这个矩形的长,宽各为多少时,花园的面积最大?最大面积是多少? 6.设0,0x y >>且21x y +=,求11x y +的最小值是多少? 7.设矩形ABCD(AB>AD)的周长是24,把?ABC沿AC向?ADC折叠,AB折过去后交CD与点P,设AB=x ,求?ADP的面积最大值及相应x 的值

高中数学必修五基本不等式题型(精编)

高中数学必修五基本不等式题型(精编) 变 2.下列结论正确的是 ( ) A .若a b >,则ac bc > B .若a b >,则22a b > C .若a c b c +<+,0c <,则a b > D >a b > 3. 若m =(2a -1)(a +2),n =(a +2)(a -3),则m ,n 的大小关系正确的是 例2、解下列不等式 (1)2230x x --≥ (2)2280x x -++> (3) 405x x ->- (4)405 x x -≥- (5)112x ≥ (6)已知R a ∈,解关于x 的不等式()()01<--x x a .

变、若不等式02<--b ax x 的解集为{} 32<

例5、 1. 积为定值 (1)函数1y x x =+ (x >0)的最小值是 . (2)设2a >,12 p a a =+-的最大值是 . (3)函数1y x x =+ (x <0)的最小值是 . (4) 变、 (1 )2y = 的最小值是 . (2) . 2. 和为定值 (1) ,y=x(4-x) 的最大值是 . (2), 的最大值是 . 例6、“1”的妙用 1. 2.已知正数,x y 满足21x y +=,则 y x 11+的最小值为______

2018年高考数学总复习 基本不等式及其应用

第二节基本不等式及其应用 考纲解读 1. 了解基本不等式错误!未找到引用源。的证明过程. 2. 会用基本不等式解决简单的最大(小)值问题. 3. 利用基本不等式证明不等式. 命题趋势探究 基本不等式是不等式中的重要内容,也是历年高考重点考查的知识点之一,其应用范围涉及高中数学的很多章节,且常考常新,但考查内容却无外乎大小判断、求最值和求最值范围等问题. 预测2019年本专题在高考中主要考查基本不等式求最值、大小判断,求取值范围问题. 本专题知识的考查综合性较强,解答题一般为较难题目,每年分值为58分. 知识点精讲 1. 几个重要的不等式 (1)错误!未找到引用源。 (2)基本不等式:如果错误!未找到引用源。,则错误!未找到引用源。(当且仅当“错误!未找到引用源。”时取“”). 特例:错误!未找到引用源。同号. (3)其他变形: ①错误!未找到引用源。(沟通两和错误!未找到引用源。与两平方和错误!未找到引用源。的不等关系式) ②错误!未找到引用源。(沟通两积错误!未找到引用源。与两平方和错误!未找到引用源。的不等关系式) ③错误!未找到引用源。(沟通两积错误!未找到引用源。与两和错误!未找到引用源。的不等关系式) ④重要不等式串:错误!未找到引用源。即 调和平均值几何平均值算数平均值平方平均值(注意等号成立的条件). 2. 均值定理 已知错误!未找到引用源。. (1)如果错误!未找到引用源。(定值),则错误!未找到引用源。(当且仅当“错误!未找到引用源。”时取“=”).即“和为定值,积有最大值”. (2)如果错误!未找到引用源。(定值),则错误!未找到引用源。(当且仅当“错误!未找到引用源。”时取“=”).即积为定值,和有最小值”. 题型归纳及思路提示 题型91 基本不等式及其应用 思路提示 熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证. 例7.5“错误!未找到引用源。”是“错误!未找到引用源。”的() A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件

2020年高考文科数学《不等式》题型归纳与训练

A. a a>b>0,由不等式性质知:->->0,所以< >- 7 2 ∵x-x=4a-(-2a)=6a=15,∴a=15 62 2020年高考文科数学《不等式》题型归纳与训练 【题型归纳】 题型一一元二次不等式解法及其应用 例1若a>b>0,cB.D.< c d c d d c d c 【答案】D 【解析】由c0,又 d c a b a b d c d c 例2关于x的不等式x2-2ax-8a2<0(a>0)的解集为(x,x),且x-x=15,则a=() 1221 A.515 B.C.D.24 15 2 【答案】A 【解析】∵由x2-2ax-8a2<0(a>0),得(x-4a)(x+2a)<0,即-2a0的解集是___________. 【答案】(-3,2)?(3,+∞) 【解析】不等式可化为(x+3)(x-2)(x-3)>0采用穿针引线法解不等式即可. 例4已知函数f(x)=x2+mx-1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是. 【答案】(-2 2 ,0) 【解析】由题意可得f(x)<0对于x∈[m,m+1]上恒成立,

?f(m+1)=2m2+3m<0 ,则函数y=4x-2+1的最大值. x<,∴5-4x>0,∴y=4x-2+=- 5-4x+?+3≤-2+3=1 1 【解析】因为y=x(8-2x)= 1 . 【答案】9,+∞) ?f(m)=2m2-1<02 即?,解得-0,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2x+(8-2x)=8为定值,故只需将y=x(8-2x)凑上一个系数即可. 例3函数y= x2+7x+10 x+1 (x>-1)的值域为。 [ 【解析】 当x>-1,即x+1>0时,y≥2(x+1)? 4 +5=9(当且仅当x=1时取“=”号). x+1 2

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

高中数学必修五基本不等式学案

高中数学必修五基本不等式:ab≤a+b 2(学案) 学习目标:1.了解基本不等式的证明过程.2.能利用基本不等式证明简单的不等式及比较代数式的大小(重点、难点).3.熟练掌握利用基本不等式求函数的最值问题(重点). [自主预习·探新知] 1.重要不等式 如果a,b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”). 思考:如果a>0,b>0,用a,b分别代替不等式a2+b2≥2ab中的a,b,可得到怎样的不等式? [提示]a+b≥2ab. 2.基本不等式:ab≤a+b 2 (1)基本不等式成立的条件:a,b均为正实数; (2)等号成立的条件:当且仅当a=b时取等号. 思考:不等式a2+b2≥2ab与ab≤a+b 2成立的条件相同吗?如果不同各是 什么? [提示]不同,a2+b2≥2ab成立的条件是a,b∈R;ab≤a+b 2成立的条件 是a,b均为正实数. 3.算术平均数与几何平均数 (1)设a>0,b>0,则a,b的算术平均数为a+b 2,几何平均数为 (2)基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 思考:a+b 2≥ab与? ? ? ? ? a+b 2 2 ≥ab是等价的吗? [提示]不等价,前者条件是a>0,b>0,后者是a,b∈R. 4.用基本不等式求最值的结论 (1)设x,y为正实数,若x+y=s(和s为定值),则当x=y=s 2时,积xy有最

小值为2xy . (2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y =p 时,和x +y 有最大值为(x +y )2 4. 5.基本不等式求最值的条件 (1)x ,y 必须是正数. (2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值. (3)等号成立的条件是否满足. 思考:利用基本不等式求最值时应注意哪几个条件?若求和(积)的最值时,一般要确定哪个量为定值? [提示] 三个条件是:一正,二定,三相等.求和的最小值,要确定积为定值;求积的最大值,要确定和为定值. [基础自测] 1.思考辨析 (1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立.( ) (2)对任意的a ,b ∈R ,若a 与b 的和为定值,则ab 有最大值.( ) (3)若xy =4,则x +y 的最小值为4.( ) (4)函数f (x )=x 2 +2 x 2+1 的最小值为22-1.( ) [答案] (1)× (2)√ (3)× (4)√ 2.设x ,y 满足x +y =40,且x ,y 都是正数,则xy 的最大值为________. 400 [因为x ,y 都是正数, 且x +y =40,所以xy ≤? ???? x +y 22 =400,当且仅当x =y =20时取等号.] 3.把总长为16 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2. 16 [设一边长为x m ,则另一边长可表示为(8-x )m ,则面积S =x (8-x )≤? ???? x +8-x 22 =16,当且仅当x =4时取等号,故当矩形的长与宽相等,都为4 m 时面积取到最大值16 m 2.]

2016年高考文科数学真题分类汇编:不等式

2016年高考数学文试题分类汇编 不等式 一、选择题 1、(2016年山东高考)若变量x ,y 满足2,239,0,x y x y x +≤??-≤??≥? 则x 2+y 2的最大值是 (A )4(B )9(C )10(D )12 【答案】C 2、(2016年浙江高考)若平面区域30,230,230x y x y x y +-≥??--≤??-+≥? 夹在两条斜率为1的平行直线之间,则这 两条平行直线间的距离的最小值是( ) 【答案】B 3、(2016年浙江高考)已知a ,b >0,且a ≠1,b ≠1,若4log >1b ,则( ) A.(1)(1)0a b --< B. (1)()0a a b --> C. (1)()0b b a --< D. (1)()0b b a --> 【答案】D 二、填空题 1、(2016年北京高考)函数()(2)1 x f x x x = ≥-的最大值为_________. 【答案】2 2、(2016江苏省高考) 已知实数x ,y 满足240220330x y x y x y -+≥??+-≥??--≤? ,则x 2+y 2的取值范围是 ▲ . 【答案】4[,13]5 3、(2016年上海高考)设x ∈R ,则不等式31x -<的解集为_______. 【答案】)4,2(

4、(2016上海高考)若,x y 满足0,0,1,x y y x ≥??≥??≥+? 则2x y -的最大值为_______. 【答案】2- 5、(2016全国I 卷高考)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元。该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 【答案】216000 6、(2016全国II 卷高考)若x ,y 满足约束条件103030x y x y x -+≥??+-≥??-≤? ,则2z x y =-的最小值为 __________ 【答案】5- 7、(2016全国III 卷高考)若,x y 满足约束条件210,210,1,x y x y x -+≥??--≤??≤? 则235z x y =+-的最大 值为_____________. 【答案】10- 11、(2016江苏省高考)函数y 的定义域是 ▲ . 【答案】[]3,1- 三、解答题 1、(2016年天津高考)某化肥厂生产甲、乙两种混合肥料,需要A,B,C 三种主要原料.生产1 车皮甲种肥料和生产1车皮乙中肥料所需三种原料的吨数如下表所示:

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

人教A版高中数学必修五讲义及题型归纳:基本不等式

基本不等式 1.均值定理:如果a , b +∈R (+R 表示正实数),那么 2 a b +,当且仅当a b =时,有等号成立. 此结论又称均值不等式或基本不等式. 2 2a b +2 a b +需要前提条件,a b +∈R . 2 a b +叫做a ,b a ,b 3.可以认为基本元素为ab ,a b +,22a b +;其中任意一个为定值,都可以求其它两个的最值. 考点1:常规基本不等式问题 例1.(1)已知0x >,则1 82x x +的最小值为( ) A .2 B .3 C .4 D .5 【解答】解:0x >Q ,1842x x ∴+=… 当且仅当1 82x x =即14x =时取等号, 故选:C . (2)已知3 05 x <<,则(35)x x -取最大值时x 的值为( ) A . 310 B .910 C . 95 D . 12 【解答】解:305 x << Q , 则2115359 (35)5(35)()5 5220 x x x x x x +--=?-?= ?, 当且仅当535x x =-即3 10 x =时取最大值 故选:A . (3)已知函数9 4(1)1 y x x x =-+>-+,当x a =时,y 取得最小值b ,则23a b +等于( ) A .9 B .7 C .5 D .3 【解答】解:1x >-Q ,10x ∴+>,

99 41511 y x x x x ∴=-+ =++-++ 5… 1=, 当且仅当9 11 x x += +,即2x =时取等号, y ∴取得最小值1b =,此时2x a ==, 237a b ∴+=. 故选:B . (4)已知0a >,0b >,且22a b +=,则ab 的最大值为( ) A . 12 B C .1 D 【解答】解:0a >Q ,0b >,且22a b +=, 则21 121(2)()2 222 a b ab a b +=??=g ? , 当且仅当2a b =且22a b +=即12a =,1b =时取得最大值1 2 . 故选:A . 考点2:基本不等式易错点 例2.(1)已知1x y +=,0y >,0x ≠,则1||2||1 x x y ++的最小值是( ) A . 1 2 B . 14 C . 34 D . 54 【解答】解:由1x y +=,0y >得10y x =->, 解得1x <且0x ≠, ①当01x <<时,1||12||121 x x x y x y +=+++, 122242x x x x x x x x +-=+=+ --, 12115()2442424 x x x x -= +++?=-…, 当且仅当 242x x x x -= -即23x =时取等号; ②当0x <时, 1||1()2||121 x x x y x y +=-+++,

2014届高考数学知识点总复习教案一元二次不等式及其解法

第2讲 一元二次不等式及其解法 A 级 基础演练 (时间:30分钟 满分:55分) 一、选择题(每小题5分,共20分) 1.(2012·南通二模)已知f (x )=????? x 2 ,x ≥0, -x 2+3x ,x <0, 则不等式f (x )2,因此x <0. 综上,x <4.故f (x )

3.设a >0,不等式-c 0,∴-b +c a 0的解集是 ( ). A .(0,1)∪(2,+∞) B .(-2,1)∪(2,+∞) C .(2,+∞) D .(-2,2) 解析 原不等式等价于??? x 2-2>0,log 2x >0或??? x 2 -2<0, log 2x <0. ∴x >2或00的解集为? ???? -13,12,则不 等式-cx 2+2x -a >0的解集为________. 解析 由ax 2+2x +c >0的解集为? ???? -13,12知a <0,且-13,12为方程ax 2+2x +c =0的两个根,由根与系数的关系得-13+12=-2a ,-13×12=c a ,解得a =-12,c =2,∴-cx 2+2x -a >0,即2x 2-2x -12<0,其解集为(-2,3). 答案 (-2,3) 6.在实数集上定义运算?:x ?y =x (1-y ),若不等式(x -a )?(x +a )<1对任意实数x 恒成立,则实数a 的取值范围是________.

高考文科数学不等式选讲考点精细选

不等式选讲考点精细选 一、知识点整合: 1.含有绝对值的不等式的解法 (1)|f(x)|>a(a>0)?f(x)>a或f(x)<-a; (2)|f(x)|<a(a>0)?-a

2010年高考试题-文科-数学(全国卷1)

绝密★启用前 2010年普通高等学校招生全国统一考试 文科数学(必修+选修I) 本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。第I 卷1至2页。第Ⅱ卷3 至4页。考试结束后,将本试卷和答题卡一并交回。 第I 卷 注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。 3.第I 卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 参考公式: 如果事件A 、B 互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 33 4 V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,)k k n k n n P k C p p k n -=-=… 一、选择题 (1)cos300?= (A)12 (C)12 (2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则() U N M ?=e A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,5 (3)若变量,x y 满足约束条件1, 0,20,y x y x y ≤?? +≥??--≤? 则2z x y =-的最大值为 (A)4 (B)3 (C)2 (D)1

高中数学必修五《基本不等式》优秀教学设计

课题:基本不等式 一、教材分析: 本节课选自《普通高中课程标准实验教科书·数学5·必修》(人教A版)中第三章第四节。本节课主要研究基本不等式的几何背景、代数证明和实际生活中的应用。 基本不等式在现实生活中运用比较广泛。本节课通过从生活与几何背景中得到基本不等式、证明不等式与回归生活解决实际问题的思路,体现新课标“数学有用”的理念。同时,运用基本不等式求最值也是数列研究的基本问题。通过对本节的研究,培养学生数形结合的思想方法。 二、学情分析: 在本节课之前学生已经学习了不等关系与不等式和一元二次不等式及其解法,对不等关系的一般性质和不等式的求解证明有了一定的理解,为基本不等式的学习提供了基础。 授课班级为高一(1)班,我班学生整体基础知识一般、部分学生思维较活跃,能够较好的掌握教材上的内容,但处理、分析问题的能力还有待提高。 三、设计思想: 本课为新授课,积极践行新课程“数学有用”理念,倡导积极主动、勇于探索的学习精神和合作探究式的学习方式;注重提高数学思维能力,在教与学的和谐统一中体现数学思想和文化价值;注重信息技术与数学课程的整合。

四、教学目标: 1、知识与技能: (1) 师生共同探究基本不等式; (2) 了解基本不等式的代数、几何背景及基本不等式的证明; (3) 会简单运用基本不等式。 2、过程与方法: 通过基本不等式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力;遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出基本不等式,培养学生数形结合的思维能力。 3、情感、态度与价值观: (1)培养学生举一反三的逻辑推理能力,并通过不等式的几何解释,丰富学生数形结合的想象力; (2) 通过具体的现实问题提出、分析与解决,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功的快乐。 五、教学重点: (1)用数形结合的思想理解并探索基本不等式的证明; (2)运用基本不等式解决实际问题。 教学难点:基本不等式的运用。 重、难点解决的方法策略: 本课在设计上采用了由特殊到一般、从具体图形到抽象代数的教

2018年全国2卷省份高考模拟文科数学分类---选考不等式

2018年全国2卷省份高考模拟文科数学分类---选考不等式 1.(2018陕西汉中模拟)已知,不等式的解集是. (Ⅰ)求a 的值; (II )若存在实数解,求实数的取值范围. 解:(Ⅰ)由, 得,即. 当时,. ………2分 因为不等式的解集是 所以 解得 当时,. …………4分 因为不等式的解集是 所以无解. 所以………5分 (II )因为 所以要使存在实数解,只需. ……8分 解得或. 所以实数的取值范围是. ……10分 2.(2018呼和浩特模拟)已知函数()1f x x =-.

(Ⅰ)解不等式()()246f x f x ++≥; (Ⅱ)若,a b R ∈,1a <,1b <,证明:()()1f ab f a b >-+. (Ⅰ)不等式()()246f x f x ++≥即为2136x x -++≥ 当3x ≤-时,1236x x ---≥解得3x ≤- 当132 x -<< ,1236x x -++≥解得32x -<≤- 当12x ≥时,2136x x -++≥解得43x ≥ 综上,(]4,2,3x ??∈-∞-+∞???? ; (Ⅱ)等价于证明1ab a b ->- 因为,1a b < ,所以1,1a b -<<,1ab <,11ab ab -=- 若a b =,命题成立; 下面不妨设a b >,则原命题等价于证明1ab a b ->- 事实上,由()()()1110ab a b b a ---=+-> 可得1ab a b ->- 综上,1ab a b ->- 3.(2018东北育才中学模拟)定义在R 上的函数x k x x f 22+-=.?∈N k .存在实数0x 使()20m ,2 1>n 且求证()()10=+n f m f ,求证31619≥+n m . .解: 存在实数0x 使()20m ,2 1>n ,

必修五不等式知识点总结

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间

三、均值不等式 1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2 112a b a b ++(当a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方. 五、其他常见不等式形式总结:

相关主题
文本预览
相关文档 最新文档