当前位置:文档之家› 解析社会性和物理性风险识别的神经机制

解析社会性和物理性风险识别的神经机制

Parsing Neural Mechanisms of Social and Physical

Risk Identi?cations

Jungang Qin 1and Shihui Han 1,2*

1

Department of Psychology and Functional Imaging Center,Academy for Advanced Interdisciplinary

Studies,Peking University,Beijing,100871,Peoples Republic of China

2

State Key Laboratory of Cognitive Neuroscience and Learning,Beijing Normal Univresity,Beijing,

Peoples Republic of

China

Abstract:Psychometric studies of risk perception have categorized personal risks into social and physi-cal domains.To investigate whether and how the human brain differentiates social and physical risks,we scanned human adults using functional magnetic resonance imaging when they identi?ed potential risks involved in social and physical behaviors.We found that the identi?cation of risky behaviors in both domains induced increased activations in the anterior medial prefrontal cortex (MPFC,BA9/10)/ventral anterior cingulate (ACC)and posterior cingulate (PCC)relative to identi?cation of safe behav-iors.However,social risks induced stronger anterior MPFC activation whereas physical risks were associated with stronger ventral ACC activity.In addition,anterior MPFC activity was negatively cor-related with the rating scores of the degree of social risk whereas PCC activity was positively corre-lated with the rating scores of the degree of physical risk.Relative to an autobiographical control task,the social risk identi?cation task induced stronger sustained activity in the left supplementary motor area/dorsal ACC and increased transient activity in bilateral posterior insula.The physical risk identi?-cation task,however,resulted in stronger sustained activity in the right cuneus/precuneus and increased transient activation in bilateral amygdala.Our results indicate the existence of distinct neural mechanisms underlying social and physical risk identi?cations and provide neural bases for the psy-chometric categorization of risks into different domains.Hum Brain Mapp 30:1338–1351,2009.V C

2008

W iley-L iss,I nc.

Key words:risk perception;fMRI;social/physical risk;medial prefrontal cortex;anterior cingulate

cortex

INTRODUCTION

Assigning risky-or safe-valence to human behaviors

helps people to decide whether to act toward or withdraw from certain situations and thus is crucial for making deci-sions in everyday life.Risk can be objectively de?ned as probabilities and consequences of adverse events [Douglas,1992;Luce and Weber,1986],but it is seen as inherently subjective [Slovic,1992].Psychometric studies of risk per-ception showed that risk perception and risk-taking behav-iors are highly domain-speci?c [Blais and Weber,2001;Weber et al.,2002].For example,perceptions of risks and intention to take risks are different between business and

Contract grant sponsor:National Natural Science Foundation of China;Contract grant numbers:30630025.

*Correspondence to:Shihui Han,Ph.D.,Department of Psychol-ogy,Peking University,5Yiheyuan Road,Beijing 100871,People’s Republic of China.E-mail:shan@https://www.doczj.com/doc/3415615570.html,

Received for publication 22November 2007;Accepted 5April 2008

DOI:10.1002/hbm.20604

Published online 20June 2008in Wiley InterScience (https://www.doczj.com/doc/3415615570.html,).

V

C 2008W iley-L iss,I nc.

r

H uman B rain M apping 30:1338–1351(2009)

r

personal decisions[MacCrimmon and Wehrung,1990]. According to the difference in psychological risk dimen-sions such as dread and familiarity[Slovic et al.,1986], personal risks can be further decomposed into subcatego-ries such as those related to health/safety,recreational, social,and ethics decisions[Weber et al.,2002].Speci?-cally,risk perception ratings are higher for health/safety risks than for social risks whereas ratings of risk-taking behaviors show a reverse pattern[Weber et al.,2002].The proposal that risk-taking behaviors are domain-speci?c was further supported by the fact that the risk-taking tend-ency of most respondents(85%)was different among the ?elds such as work,health,and personal?nance[Soane and Chmiel,2005]and individuals with high intendancy of taking risks in the recreational domain can be risk averse in the?nancial domain[Hanoch et al.,2006]. Recently,neuroeconomics studies have identi?ed neural substrates underlying risk assessment/estimation in risk decision making.Researchers found that the anterior cin-gulate(ACC)and parietal cortex were involved in the selection phase of the wheel of fortune task[Ernst et al., 2004].Bilateral insula and medial prefrontal cortex(MPFC, including ACC)also showed increased activity during the assessment and action selection stages of the Rock Paper Scissors computer game[Paulus et al.,2005].The activity in the orbitofrontal cortex,ACC,and dorsolateral prefron-tal cortex was associated with risk estimation in a simple gambling task[van Leijenhorst et al.,2006].However, because risk decision making may recruit other processes beyond pure risk perception(e.g.,building up expectan-cies,motivation,learning)[Vorhod et al.,2007],the neural mechanisms speci?cally underlying risk perception cannot be derived unambiguously from the results of previous brain imaging studies.A recent functional magnetic reso-nance imaging(fMRI)study investigated the neural sub-strates of risk perception by comparing neural activities associated with a risk rating task and a letter detection task[Vorhod et al.,2007].The authors found that risk rat-ings differentially activated the MPFC,left inferior frontal gyrus,cerebellum,and left amgydala relative to the letter detection task,suggesting speci?c roles of these neural structures in risk perception.However,as the stimuli used in Vorhod et al.[2007]mainly concerned risks related to people’s physical health or safety,it remains unknown whether and how the human brains differentiate risks in different domains during risk perception.

The current study investigated whether perception of risks in the social and physical domains that were identi-?ed in psychometric studies[Blais and Weber,2006;Weber et al.,2002]are mediated by distinct neural substrates. Social and physical risks are distinguished in whether interpersonal interactions are involved and whether physi-cal injury or health problems are produced.Social risks arise from interpersonal interactions in social contexts and could induce negative social emotions such as feelings of embarrassment and guilt by alteration of the relationships with others.Physical risks come from the situations that may give rise to physical discomfort such as pain or ill-ness/disease and may take place in situations without interpersonal interactions.Participants were scanned using fMRI when they were presented with short sentences depicting everyday life situations that may or may not produce social or physical risks and were asked to assign risky-or safe-valence to each situation(a risk identi?cation task).An autobiographical task,in which participants were asked to identify whether they had been engaged in the situations described by the stimuli,was used to control the semantic processing,cognitive categorization,episodic memory,and motor response that were involved in the risk identi?cation task.The present study adopted a design that mixed event-related and block designs so that we could dissociate the neural activities related to the trial-speci?c processes(transient)and those related to the ongoing task demands(sustained)which are involved in social and physical risk identi?cations[Donaldson,2004]. Recent fMRI studies showed evidence that the anterior MPFC(BA9/10)was highly involved in evaluation of social valence of stimuli[Cunningham et al.,2003;Jacob-sen et al.,2006].In addition,it was found that the more dif?cult to differentiate between two social valences such as beautiful versus non-beautiful,the greater increase was observed in the anterior MPFC[Jacobsen et al.,2006].As psychometric studies of risk perception suggest smaller difference in rating scores between risky and safe social behaviors relative to that between risky and safe physical behaviors[Weber et al.,2002],the identi?cation of social risks may require enhanced evaluation process and possi-ble result in stronger involvement of MPFC.Given that people rated physical risks with higher scores in compari-son with social risks[Weber et al.,2002],enhanced emo-tion processing would be expected during the identi?ca-tion of physical risks and thus induce increased activation in the underpinning neural structures such as the ventral ACC[Chadee et al.,2007;Dalgleish,2004;Sjo¨berg,1998]. These were tested using an event-related analysis by com-paring neural activities elicited by risky trials with those linked to safe trials in the risk identi?cation tasks.Because previous studies also suggested that risk perception and risk-taking behaviors are correlated with personality fea-tures such as sensation seeking[Horvath and Zuckerman, 1993;O’Jile et al.,2004;Rosenbloom,2003],we assessed whether the neural activities associated with identi?cation of social and physical risks correlated with individual’s risk propensity,which were measured using the Brief Sen-sation Seeking Scale(BSSS)[Hoyle et al.,2002]and the Minnesota Multiphasic Personality Inventory-based Sensa-tion Seeking Scale(MSSS)[Viken et al.,2005].

Because social risks arise from interpersonal interactions, monitoring the appearance of social risks requires the con-sideration of social norms and relations,which possibly involves the process of others’mental states[Hughes and Leekan,2004;Malle,2005].We tested this by examining whether,relative to the physical risk identi?cation task, the social risk identi?cation task generated increased

r N eural M echanisms of R isk I denti?cation r

activation in neural structures underlying mental attribu-tion,such as the posterior MPFC(BA9/32)[Frith and Frith,2003].In addition,as emotional reactions may work in concert with cognitive processes to guide risk percep-tion and risk decision[Bechara and Damasio,2005;Slovic et al.,2002;see Loewenstein et al.,2001for a review],we assessed whether monitoring the appearance of both social and physical risks may activate emotion-related brain structures by comparing both social and physical risk identi?cation tasks with the autobiographical control task.

MATERIALS AND METHODS

Participants

Fourteen undergraduate and graduate students(six males,eight females;20–31years of age,mean23.462.87, values are given as mean6SD throughout)participated in this study as paid volunteers.All participants were right-handed,had normal or corrected-to-normal vision,and had no neurological or psychiatric https://www.doczj.com/doc/3415615570.html,rmed con-

sent was obtained from all the participants prior to scan-ning.This study was approved by a local ethic committee.

Stimuli,T asks,and Experimental Design

The stimuli were presented through an LCD projector onto a rear-projection screen mounted above the partici-pants’heads.The screen was viewed with an angled mir-ror positioned on the head-coil.The stimuli were short Chinese sentences(each had no more than10Chinese characters,each sentence subtended a visual angle of1.918 30.518to6.55830.518(width3height)at a viewing dis-tance of90cm),which described either a potentially risky or a safe situation that may occur in everyday life.There were54sentences describing risky social situations and54 sentences describing safe social situations.Risky social sit-uations refer to the conditions that would bring potentially negative outcomes(e.g.,negative social emotion or nega-tive evaluation)to a person involved in interpersonal inter-actions,such as‘‘argue with a boss in public’’or‘‘laugh at someone’s mistakes.’’Safe social situations were de?ned as conditions that would not induce potentially negative results to a person involved in interpersonal interactions, such as‘‘carefully?nish a project assigned by a boss’’or ‘‘to be on time for an appointment’’(see Table I for more examples).There were54sentences describing potentially risky physical situations and54sentences describing safe physical situations.Risky physical situations refer to the conditions that would bring harmful consequences(e.g., physical injury or health problems)to a person involved in non-interpersonal interactions,such as‘‘drink alcohol excessively’’or‘‘test a new racing car as a driver.’’Safe physical situations were the conditions that would not induce potential physical injury or health problems,such as‘‘play piano’’or‘‘receive regular medical checkups.’’Some of the social and physical risky items were derived from the materials used in Weber et al.[2002].

To test the validity of the stimuli used in the current fMRI study,an independent group of22participants were asked to read each sentence and to rate the risky level of each situation using a?ve-point Likert scale(05safe,15 mildly risky,25moderately risky,35highly risky,45 extremely risky).Paired t test showed that rating scores were slightly lower for social than physical items(risky sit-uations:2.0860.62vs.2.7060.51,t(21)57.84,P<0.001; safe situations:0.2160.17vs.0.3360.25,t(21)54.12,P< 0.001).The coef?cient alpha values were calculated to assess the internal consistency of the items within each stimulus categories.The coef?cient alpha was0.97and0.81, respectively for the risky and safe social items,and0.94and 0.88,respectively for the risky and safe physical items.

The design of this study is illustrated in Figure1.During the scanning procedure,participants were presented with each sentence and asked to perform either a risk identi?ca-tion task(‘‘Does this have risk?’’)or an autobiographical control task(‘‘Did you do this?’’)in different sessions.Par-ticipants pressed one of the two buttons to indicate risky/ safe in the risk identi?cation task or yes/no in the control task using the right index or middle?nger.There were six functional scans,each of which consisted of nine sessions. Each session started with the presentation of an instruction for2,000ms,which de?ned the task(i.e.,risk identi?cation or control tasks).If participants were asked to perform the risk identi?cation task,either social or physical situations were presented in each session.Both social and physical sit-uations were presented in one session if participants were asked to perform the control task.In each session,risky sit-uations were presented on three trials and safe situations were presented on other three trials.Each trial consisted of a sentence presented for2,500ms followed by an

TABLE I.Examples of the situations employed

in this study

Risky Safe

Social behavior

laugh at someone’s mistakes,

interrupt others’conversation,

approaching your boss to ask

for a raise,dress messily for

an interview carefully,haggle

over every penny,answer the

phone during a meeting,

argue with a boss in public,

visit someone without

appointment

return others’stuff on time,

take care of parents,keep

quiet when others are

sleeping,?nish a project

assigned by a boss,to be on

time for an appointment,

abide by the rules during

examination,treat everyone

fairly,pay rent on time

Physical behavior

swim in the ocean,test a new

racing car as a driver,walk

across a desert alone,drive a

motorcycle without a helmet,

smoke heavily,drink alcohol

excessively,get cosmetic

operations,use illicit drugs

eat fresh food,play piano,

eat and drink in moderation,

wear sunglasses in summer,

receive regular medical

checkups,watch TV

programs,walk in a park,

feed pets

r Q in and H an r

interstimulus interval that varied randomly among 1,500,2,500,and 3,500ms.Each session lasted for 32s.Two adja-cent sessions were intervened with a ?xation of 8,000ms.The order of risk identi?cation and control tasks were coun-terbalanced using the Latin-square design.

After the scanning procedure,each participant was asked to rate the risk degree of each situation on a seven-point Likert scale (05safe,65extremely risky)and to ?ll out two sensation seeking scales which were seven-point revised version of the Brief Sensation Seeking Scale and seven-point revised version of the Minnesota Multiphasic Personality Inventory-based Sensation Seeking Scale.

fMRI Data Acquisition

Scanning was performed on a 3-T Siemens Trio system using a standard head coil at Beijing MRI Center for Brain Research.Thirty-two transversal slices of functional images that covered the whole brain were acquired using a gradi-ent-echo echo-planar pulse sequence (64364332matrix with 3.433.434.4mm 3spatial resolution,TR 52,000

ms,TE 530ms,FOV 5220mm,?ip angle 5908).Ana-tomical images were obtained using a standard 3D T1-weighted sequence (25632563176matrix with 0.93830.93831.3mm 3spatial resolution,TR 51,600ms,TE 53.93ms).Subjects’heads were immobilized during the scanning sessions using pieces of foam.

Data Analysis

Behavioral data were analyzed using a repeated measure analysis of variance (ANOVA)with Task (social vs.physi-cal risk identi?cation)and Stimulus Valence (risky vs.safe)as independent variables.Two-tailed paired t tests were conducted to compare reaction times to social and physical situations in the autobiographical control task and the subjective risk rating scores of the situations used in the current study.

SPM2(Wellcome Department of Cognitive Neurology,London,UK)was used for imaging data processing and analysis.The time-series for the voxels within each slice were realigned temporally to the acquisition of the

middle

Figure 1.

Illustration of the experimental design.(a )Illustration of the risk identi?cation task and the autobiographical control task;(b )Illus-tration of three sessions in one scan.Each session started with the presentation of instructions to de?ne the task (i.e.,risk iden-ti?cation or autobiographical control).Each session consisted of six trials.Risk and safe items were presented in a random order in each session.r

N eural M echanisms of R isk I denti?cation

r

slice.The functional images were realigned to the?rst scan to correct for the head movement between scans and the anatomical image was coregistered with the mean functional image produced during the process of realign-ment.All images were normalized to a23232mm3 Montreal Neurological Institute(MNI)template in Talair-ach space[Talairach and Tournoux,1998]using bilinear interpolation.Functional images were spatially smoothed using a Gaussian?lter with a full-width at half maximum (FWHM)parameter set to8mm.

General linear model(GLM,y5b x1e,where the response y is equal to a linear sum of weighted variables (b x)plus an error or residual value(e))was used to con-struct two multiple time series regression design matrixes. One matrix weighted parameter estimates(b x)only for event-related component of the design and a common error term(e)(event-related design matrix).Another ma-trix included weighted parameter estimates(b x)for both the event-related and block-based components of the design and a common error term(e)(mixed design ma-trix).The head motion parameters were included for cap-turing residual movement-related artifacts(the three rigid-body translations and rotations determined from the realignment stage).The time derivatives were also included in the event-related design matrix for accounting for extra variance in case the onsets are off by a little.All components were modeled using a canonical hemody-namic response function(HRF).All data were globally normalized with proportional scaling of the image means. High-pass?ltering was used with a cutoff of128s. Effects at each voxel were estimated and regionally spe-ci?c effects were compared using linear contrasts in indi-vidual participants using a?xed effect https://www.doczj.com/doc/3415615570.html,ing the event-related design matrix,items rated as risky were con-trasted with those rated as safe to identify the regions acti-vated by risky situations during the social and physical risk identi?cation tasks.In addition,to identify sustained activities of each task,positive or negative contrasts were applied to the parameter estimates for each block-based component and zero weights were applied to all parameter estimates of the event-related component;to identify tran-sient activities for all tasks,positive or negative contrasts were applied to the event-related parameter estimates with zero weights being applied to the block-based parameter estimates.These contrasts were constructed within the aforementioned mixed design matrix.The resulting set of voxel values for each contrast constituted a statistical para-metric map of the t statistic(SPM{t})which was subse-quently transformed to the unit normal distribution (SPM{Z}).Statistical inferences were based on the theory of random Gaussian?elds.Random effect analyses were then conducted based on statistical parameter maps from each individual participant to allow population inference.Areas of signi?cant activation were identi?ed at the cluster level for values exceeding a P-value of0.05(corrected for multi-ple comparisons).The SPM coordinates for standard brain from MNI template were converted to Talairach coordi-nates[Talairach and Tournoux,1998]using a nonlinear transform method(https://www.doczj.com/doc/3415615570.html,/Imag-ing/mnispace.html).

To con?rm the possible different activities associated with identi?cation of risky social and physical situations, we calculated the percent signal change in the regions of interests(ROIs)de?ned as spheres around the peak voxel of speci?c activated brain areas identi?ed in contrast to risky versus safe items in the random effect analysis, which was then subjected to ANOVAs with Task(social vs.physical risk identi?cation)and Stimulus Valence(risky vs.safe)as independent variables.To examine functional roles of the activations associated with identi?cation of risky situations,correlation analyses were conducted between the rating scores of social and physical risks,the rating scores of sensation seeking,and the signal intensity of parameter estimates(contrast value)of ROIs de?ned as spheres around the peak voxel of speci?c activated brain areas identi?ed in each random effect analysis.The sizes of the ROIs were determined by the cluster sizes of the activations shown in the random effect analysis(with10-and3-mm diameter for anterior MPFC/ACC and the pos-terior cingulate cortex(PCC),respectively).The percent signal change and contrast value were all calculated using MarsBaR0.38(https://www.doczj.com/doc/3415615570.html,).

RESULTS

Behavioral Data

During the scanning procedure,participants classi?ed 93.4%64.86%of54social risky situations as risky,90.2% 66.10%of54social safe situations as safe,92.46%65.74% of54physical risky situations as risky,and94.31%63.81% of54physical safe situations as safe.ANOVAs of reaction times(RTs)showed a signi?cant main effect of Task (F(1,13)511.34,P<0.005),suggesting faster responses to the physical identi?cation task(risky items:1554.23665.21 ms;safe items:1522.52659.93ms)than social identi?cation task(risky items:1580.42653.96ms;safe items:1588.746 65.55ms).Neither the main effect of Stimulus Valence nor its interaction with Task was signi?cant(P>0.05).RTs associated with social and physical items in the autobio-graphical control task did not differ between each other (16146233ms vs.15756318ms,t(13)51.23,P>0.05). The rating scores of risk degrees obtained after the scan-ning procedure were lower for social than for physical risky situations(3.8160.76vs.4.5060.66,t(13)55.39,P<0.001) but did not differ between social and physical safe situations (0.5460.32vs.0.4960.38,t(13)50.85,P>0.05).

Neural Activities Related to Identi?cation of

Social and Physical Risks

To identify the neural activities mediating the identi-?cation of social and physical risks,we conducted event-related analysis by contrasting risky and safe items

r Q in and H an r

identi?ed by the participants inside the scanner during the social and physical risk identi?cation tasks,respectively.Relative to the safe social items,risky social items induced increased activations in anterior MPFC/ACC,PCC,the left middle temporal gyrus,and the left angular gyrus (Fig.2a,Table II).Risky physical items induced increased activities in PCC and the anterior ACC/MPFC than the safe physi-cal items (Fig.2b).

The above whole-brain statistical parametric mapping analysis showed different patterns of anterior MPFC/ACC

activations,i.e.,the social risks induced stronger activation in the anterior MPFC whereas the physical risks generated stronger activation in the ventral ACC.To con?rm this dif-ference,we conducted ROI analysis by calculating percent signal changes in these brain areas.We found that the per-cent signal changes in spheres with 7-mm diameter cen-tered at the peak voxel in the anterior MPFC were greater for risky items than for safe items,resulting in a signi?cant main effect of Stimulus Valence (F (1,13)546.96,P <0.001).In addition,the difference between risky and

safe

Figure 2.

(a )Increased activation associated with identi?cation of social risky relative to safe items;(b )Increased activation associated with identi?cation of physical risky relative to safe items;(c )Per-cent signal changes in the ROIs (anterior MPFC and ventral ACC)differentiating identi?cation of risky social (or physical)items relative to safe social (or physical)items.Bars indicate standard error of the mean.MTG 5Middle T emporal Gyrus;AG 5Angular Gyrus.[Color ?gure can be viewed in the online issue,which is available at https://www.doczj.com/doc/3415615570.html,.]TABLE II.Brain activities associated with identi?cation of risky items

Brain region

BA X Y Z Z -value Voxel no Risky Social >Safe Social

Medial Prefrontal Cortex(L)/Anterior Cingulate(L)BA9/10(L)2145427 4.411814265623 4.39Posterior Cingulate(L)/Cingulate Gyrus(L)BA31/23(L)2425519 3.836732824930 3.56Middle Temporal Gyrus(L)BA21(L)2557212 4.90649Angular Gyrus(L)BA39(L)24626133 3.80356Risky physical >Safe physical

Cingulate Gyrus(L)/Posterior Cingulate

BA31(L)21423333 3.928852625417 3.86Anterior Cingulate(L)/Medial Prefrontal Cortex(L)

BA32/10/9(L)

26433 3.72814

28

58

27

3.70

BA,Brodmann area;L,left hemisphere;Voxels survived an uncorrected P value of 0.005,cluster size >30,P <0.05corrected.

r

N eural M echanisms of R isk I denti?cation

r

items was larger for social risks than for physical risks, which was con?rmed by a reliable interaction of Task3 Stimulus Valence(F(1,13)55.53,P<0.05,Fig.2c).Simi-larly,the ROI analysis of the ventral ACC activity showed

a signi?cant main effect of Stimulus Valence(F(1,13)5

69.20,P<0.001)because the risky items resulted in greater activity in the ventral ACC than the safe items. There was also a reliable interaction of Task3Stimulus Valence(F(1,13)54.94,P<0.05),which,however,arose from the fact that the increased ACC activity associated with risky relative to safe items was greater for physical than social risks.

Correlation Between Subjective Reports and

Neural Activities

To further investigate the functional role of the activities in the anterior MPFC/ACC and PCC that associated with processing of risky items,we calculated the correlation between subjective risk ratings and neural activities related to identi?cation of the risky items(de?ned by the contrast values between risky and safe items).We found that the anterior MPFC activity associated with risky social items was negatively correlated with the subjective risk rating scores(r520.548,P50.042;Fig.3a).However,the rating scores of physical risks showed positive correlation with the PCC activity(r50.541,P50.046;Fig.3b).

We also examined the correlation between participants’risk propensity indexed by the scores of sensation seeking and the neural activities related to identi?cation of the risky items.We found that the MSSS scores were posi-tively correlated with the PCC activities associated with risky social items(r50.555,P50.039;Fig.3c).The BSSS scores were positively correlated with the ventral ACC ac-tivity related to risky physical items(r50.532,P50.050; Fig.3d).The correlation between BSSS scores and the PCC activity linked to risky physical items was marginally sig-ni?cant(r50.524,P50.054;Fig.3e).

The number of risky events each subject endorsed auto-biographically was10.7964.49and7.5762.87for social and physical risks(out of27risky items in each condition), respectively.We calculated the correlation between brain activations associated with risky items and the number of risky behaviors that subjects endorsed,which,however, failed to show signi?cant results(e.g.,anterior MPFC acti-vation related to social risks vs.personal endorses,r5 0.477,P50.084;ACC activation related to physical risks vs.personal endorses,r520.435,P50.120).

Neural Activities Related to Ongoing T ask Demands and T rial-Speci?c Processes

To parse the neural activities related to social and physi-cal risk identi?cation tasks,we?rst examined the sus-tained neural activities associated with ongoing task demands of social and physical risk identi?cations. Because of no signi?cant difference between RTs associ-ated with social and physical items in the autobiographical control task,we combined all the trials in the autobio-graphical control task as a baseline.Relative to the control task,the social risk identi?cation task induced increased activations in the left anterior insula/inferior frontal gyrus, left supplementary motor area(SMA)/dorsal ACC,left precentral/postcentral gyrus,the right hemisphere of the cerebellum,bilateral middle occipital gyrus,and bilateral thalamus(Fig.4a,Table III).However,the physical risk identi?cation task generated stronger activation only in the cuneus/precuneus(Fig.4b).To further examine the differ-ential sustained activities between the risk identi?cation tasks,we calculated a contrast between social and physical risk identi?cation tasks.This identi?ed stronger activations in posterior MPFC and the left middle temporal gyrus linked to social than physical risk identi?cations(Fig.4c). The reverse contrast,however,did not show any increased activation.

We calculated the transient neural activities related to the onset of each items in social and physical risk identi?-cation tasks.This identi?ed increased activations in bilat-eral posterior insula in association with the items used in the social risk identi?cation task relative to those used in the control task(Fig.4d,Table IV).However,the contrast between the items used in the physical risk identi?cation task and those in the control task showed stronger activa-tion in bilateral amygdala/parahippocampal gyrus(Fig. 4e).The comparison between the items used in the social and physical risk identi?cation tasks failed to show any signi?cant activation.

DISCUSSION

This study investigated whether distinct neural sub-strates are involved in the identi?cation of risks in social and physical domains sorted by the psychometric research [Weber et al.,2002].We observed distinct neural activa-tions associated with identi?cation of risky social and physical items.The results of correlation analysis further support the differential functional roles of the neural struc-tures involved in identi?cations of social and physical risks.Furthermore,we found evidence for distinct patterns of both sustained and transient neural activities involved in the social and physical risk identi?cation tasks.

Neural Substrates Underlying Identi?cation of

Social and Physical Risks

The neural activity related to the risky and safe items were compared during the risk identi?cation tasks to uncover the neural substrates underpinning the identi?ca-tion of social and physical risks.We found that,relative to the items identi?ed as being safe,the items identi?ed as being risky in both social and physical domains were asso-ciated with increased activations in the anterior MPFC/ ACC.The anterior MPFC activations are in agreement

r Q in and H an r

Figure3.

(a)Correlation between activation level(parameter estimates) observed within anterior MPFC related to risky social items and the subjective rating scores of social risks;(b)Correlation between activation level observed within PCC linked to risky physical items and the subjective rating scores of physical risks;

(c)Correlation between activation level observed within PCC associated with risky social items and the MSSS scores;(d)Cor-relation between activation level observed within ACC related to risky physical items and the BSSS scores;(e)Correlation between activation level observed within PCC associated with risky physical items and the BSSS scores.Each participant’s mean rating score and parameter estimates value is indicated by a sin-gle square.The lines represent the linear best?t;r refers to the correlation coef?cient.Coordinates of each peak voxel are shown in the?gures.

r N eural M echanisms of R isk I denti?cation r

Figure4.

Sustained and transient neural activities associated with social and physical risk identi?cation tasks.(a)Sustained activities linked to social risk identi?cation vs.autobiographical control tasks;(b) Sustained activities associated with physical risk identi?cation vs. autobiographical control tasks;(c)Sustained activities linked to social vs.physical risk identi?cation tasks;(d)T ransient activities associated with social risk identi?cation vs.autobiographical con-trol tasks;(e)T ransient activities linked to physical risk identi?ca-tion vs.autobiographical control tasks.SMA5Supplementary Motor Area;Th5Thalamus;Cu5Cuneus;Pcu5Precuneus; CgG5Cingulate Gyrus;Ins5Insula;Amg5Amgydala.[Color ?gure can be viewed in the online issue,which is available at https://www.doczj.com/doc/3415615570.html,.]

TABLE III.Sustained activities associated with risk identi?cation

Brain region BA X Y Z Z-value Voxel no Social risk identi?cation>Autobiographical control

Insula(L)/Inferior Frontal Gyrus(L)BA13/47(L)2482134 3.931021 Supplementary Motor Area(L)/Anterior Cingulate(L)BA6/32/24(L)2621638 3.99728

2101843 3.86

Middle Occipital Gyrus(L)BA18(L)2362851 3.93591 Thalamus282211 5.07477

821921 4.12

Precentral Gyrus(L)/Postcentral Gyrus(L)BA6/3(L)24021756 3.76450 Cerebellum(R)26252221 4.12404 Middle Occipital Gyrus(R)/Lingual Gyrus(R)BA17/19(R)242722 3.37336 Physical risk identi?cation>Autobiographical control

Cuneus(R)/Precuneus(R)BA18/19/31(R)1427626 4.06

Social risk identi?cation>Physical risk identi?cation

Medial Prefrontal Cortex BA8/9/3283132 4.20497

2101841 3.67

Middle Temporal Gyrus(L)BA21/22(L)25523322 3.83384 BA,Brodmann area;R,right hemisphere;L,left hemisphere;Voxels survived an uncorrected P value of0.005,cluster size>30,P< 0.05corrected.

r Q in and H an r

with previous observations that this brain area is involved in social evaluations such as moral judgment[Greene et al.,2001],good-bad judgment[Cunningham et al.,2003, 2004],and aesthetic judgments[Jacobsen et al.,2006],and support the hypothesis that anterior MPFC is also involved in intensive evaluation of stimulus valence in terms of the safety of human behaviors.Nevertheless,the ROI analysis showed that the anterior MFPC activity was greater for the identi?cation of social than physical risks.In addition,the anterior MPFC activity associated with the identi?cation of risky social situations was negatively correlated with sub-jective rating scores of social risks.The lower the risk rat-ing score of an item,the more ambiguous a social risk linked to the behavior described in the item,which in turn required intensive evaluative process underlain by the an-terior MPFC.These results indicate a more important role of the anterior MPFC in the identi?cation of social risks than that of the physical risks.Relative to the identi?cation of physical risks,the identi?cation of social risks may also require other cognitive process because additional activa-tions linked to the social risks were observed in the left middle temporal and angular gyrus,which have been shown to be involved in the processing of semantic infor-mation and/or autobiographical memory retrieval[Lee et al.,2002;Maguire et al.,2000;Paller et al.,2003].In con-trast,our fMRI results showed that the identi?cation of physical risks was more strongly linked to the ventral ACC activity relative to the identi?cation of social risks since the ventral ACC activity was greater to physical than social risky items.The ventral ACC is routinely activated in functional imaging studies involving all types of emo-tional stimuli[Bush et al.,2000]and functions to monitor con?icts between the functional state of an organism and any new information that has potential affective or motiva-tional consequences[Dalgleish,2004].The ventral ACC activation observed in our work supports the proposal that the identi?cation of physical risks is characterized with enhanced emotional processing relative to the identi?ca-tion of social risks.

Our fMRI results also showed increased activity in PCC in association with the identi?cation of both social and physical risks.However,the magnitude of the PCC activ-ity was correlated only with the rating scores of physical risks.The stronger the subjective belief of physical risk degrees,the greater the PCC activity was observed.The PCC has been suggested to be involved in memory re-trieval[Maddock and Buonocore,2001;Maguire et al., 2001;Wiggs et al.,1999]and the interaction between memory retrieval and emotion[Maddock,1999;Maddock et al.,2003].Other studies indicate that PCC activity is also engaged in self-reference processing[Fossati et al., 2003;Johnson et al.,2002;Kelley et al.,2002].It is possi-ble that self-related emotional experiences are employed to a larger degree during the identi?cation of physical than social risks.Taken together,the stronger emotion involvement in physical than social risk identi?cations mediated by the ACC and PCC may contribute to the higher subjective ratings of physical than social risks observed the previous[Weber et al.,2002]and the current study.

Our fMRI results also showed evidence for a positive correlation between the PCC activity associated with social risks and the scores of sensation seeking measured using MSSS.Because people who exhibited more preferences for risky situations reported higher scores of sensation seeking [Horvath and Zuckerman,1993;O’Jile et al.,2004;Rose-nbloom,2003],the correlation between MSSS scores and PCC activity suggest that participants in our study with stronger preferences for risky behaviors might undergo greater retrieval of self-emotional experiences during the identi?cation of social risks.Such correlations between per-sonality features and risk processing style should be inde-pendent of the risk domains which is supported by the ob-servation of positive correlation between PCC activity associated with physical risks and BSSS scores.The fact that different sensation seeking scores correlated with PCC activities associated with social and physical risks might be due to that MSSS and BSSS emphasize social and physi-cal risks,respectively.These correlation results are consist-ent with the?ndings of a recent animal study,which showed that neuronal activity in PCC increased when monkeys made risky relative to safe choices[McCoy and Platt,2005].Furthermore,BSSS scores were positively cor-related with the ventral ACC activity associated with iden-ti?cation of risky physical items,suggesting that partici-pants with high inclination of sensation seeking might undergo strong emotion-related processing when they assessed physical risks.

TABLE IV.T ransient activities associated with risk identi?cation

Brain region BA X Y Z Z-value Voxel no Physical risk identi?cation>Autobiographical control

Posterior Insula(L)BA13(L)23422425 4.67613 Posterior Insula(R)BA13(R)4621317 3.34285 Physical risk identi?cation>Autobiographical control

Amygdala(R)/Parahippocampal Gyrus(R)4622027 4.20638 Amygdala(L)/Parahippocampal Gyrus(L)23421628 4.28484

BA,Brodmann area;L,left hemisphere;R,right hemisphere;Voxels survived an uncorrected P value of0.005,cluster size>30,P< 0.05corrected(except[46–1317],P<0.067corrected).

r N eural M echanisms of R isk I denti?cation r

Neural Substrates Associated With Risk

Identi?cation T asks

Sustained neural responses re?ect general mechanisms that serve to bias speci?c processing pathways in response to speci?c task demands[Burgund et al.,2003].The sus-tained neural activity observed in our study mediated the on-going task demand to monitor the appearance of social or physical risks.In accord with our hypothesis,we found greater sustained activations in brain regions associated with the mental attribution(i.e.,posterior MPFC or BA9/ 32)when contrasting the social risk identi?cation task with the physical risk identi?cation task.This increased activa-tion implies that consideration of others’mental states is a key component for the process of monitoring social risks involved in interpersonal interactions.Recent imaging studies have repeatedly shown that several brain areas including posterior MPFC,the temporal poles,and the posterior end of the superior temporal sulcus and tem-poro-parietal junction(pSTS/TPJ)are involved in mental attribution[Frith and Frith,2003;Saxe et al.,2004].The ab-sence of the pSTS/TPJ activation in the present study sug-gests that a key component of mental attribution,i.e.,per-spective taking which are implemented by pSTS/TPJ[Frith and Frith,2006],may play a minimum role in our risk identi?cation tasks,possibly because our participants mainly took the?rst person perspective during the risk identi?cation tasks.

In addition,we found that,relative to the autobio-graphic task that controlled the semantic processing,cogni-tive categorization,and motor response,the social risk identi?cation task led to stronger sustained activation in the left SMA/dorsal ACC whereas the physical risk identi-?cation task gave rise to increased activation in the right cuneus/precuneus.The dorsal ACC,known as the‘‘cogni-tive cingulate’’[Bush et al.,2000],has been shown to be involved in con?ict monitoring and cognitive control [Kerns et al.,2004].The ACC activation during the social risk identi?cation task implies that participants had to deal with con?icts on categorization of social items as being risky or safe.The increased ACC activity may also func-tion to underlie processing of the con?ict between risk behaviors and social norms,while the physical risk identi-?cation task did not involve such con?icts.In addition,the SMA and left motor cortex(the left precentral gyrus/post-central gyrus)was activated during the social risk identi?-cation task,which possibly arose from the fact that the items used in the social risk identi?cation task engaged more description of actions and thus resulted in the involvement of mirror neurons in these brain areas[Buc-cino et al.,2004;Rizzolatti and Craighero,2004].The precuneus has been suggested to mediate the process of episodic memory retrieval[Naghavi and Nyberg,2005; Nyberg,1999;see Cavanna et al.,2006for review].For example,retrieval of remote autobiographical memory through the inspection of family photographs were associ-ated with increased activations in the right precuneus and bilateral lingul gyri[Gilboa et al.,2004].Likewise,the right cuneus characterizes the retrieval of speci?c autobiographi-cal events rather than general past memories[Addis et al., 2004].The right cuneus/precuneus activation obtained in the physical risk identi?cation task suggests that partici-pant mainly utilized their previously stored experiences to monitor the appearance of physical risks.Taken together, it may then be assumed that cognitive control and/or con?ict monitoring process play an important role in mon-itoring the occurrence of social risks whereas episodic memory retrieval is a critical process engaged in the iden-ti?cation of physical risks.Such difference in cognitive processes may then lead to faster behavioral performances in the physical than social risk identi?cation tasks.These analyses are consistent with the notion that evaluative judgments associated with strongly held attitudes(e.g., higher rating scores for physical than social risks in Weber et al.,2002and the current work)require a retrieval pro-cess[Nayakankuppam and Priester,under review]. Unlike sustained activities,transient neural responses related to risk identi?cation are presumably related to spe-ci?c processing of risky and safe items[Burgund et al., 2003].We found that,relative to the control task,the social risk identi?cation task induced enhanced transient activa-tion in bilateral posterior insula whereas the physical risk identi?cation task resulted in increased transient activation in bilateral amygdala.There has been evidence that the processing of social emotions such as embarrassment,dis-gust,and indignation is associated with the insula[Moll et al.,2005;Shin et al.,2000;Wicker et al.,2003].The tran-sient activation in bilateral posterior insula observed in our study implies that explicit identi?cation of social risks may induce social emotional reactions.Given that increased amygdala activation was associated with expo-sure to fearful facial expressions[Phan et al.,2002;Zald, 2003;see O¨hman,2005for review],basic emotion such as fear may be induced in the physical risk identi?cation task because of the amygdala activation linked to the physical risk identi?cation task.The amygdala activation may also arise from imagination of pain that was implied in the risky physical items,since pain-related signal changes in the amygdala have been repeatedly identi?ed in animals and humans[Neugebauer et al.,2004].Similar activation in the amygdala was also observed in a recent study that contrasted a risk rating task with a letter detection task [Vorhod et al.,2007].The transient amygdala activation observed here is also in line with the proposal that the amygdala plays a relatively transient role in emotional processing because amygdala activation increased during the perception of aversive pictures but did not persist dur-ing subjective reports of sustained negative emotion[Gar-rett and Maddock,2006].Note that the increased amygdala activation extended into the parahippocampal gyrus dur-ing the physical risk identi?cation task,which further sup-ports the assumption that the physical risk identi?cation task may be accompanied with emotional responses because the parahippocampal gyrus has been shown to

r Q in and H an r

mediate emotional evaluation[Lane et al.,1997;Winston et al.,2002]and emotional attitude[Wood et al.,2005]. Some of the brain areas underlying risk identi?cation identi?ed in the current work(speci?cally the ACC,amyg-dala and insula)have been shown to be involved in risky decision making[Kahn et al.,2000;Krain et al.,2006;Pau-lus et al.,2003;Sanfey et al.,2006].However,the network observed here did not include the parietal cortex,which is engaged in computation and assessment of probability during decision making[Dehaene et al.,1999;Ernst et al., 2004].This is probably due to the lack of clear description of the outcome and probability of risk situations in our tasks.Our?ndings support the view that risk perception and risk-related decision making involve both similar and distinct neural mechanisms[Vorhod et al.,2007].One may notice that some of the brain activations such as MPFC/ ACC and PCC related to identi?cation of risks were local-ized in the‘default mode network’,which usually shows increased acitivity when subjects rest quietly but awake with eyes closed and attenuates when people engage in tasks with high central executive demand[McKiernan et al.,2003;Raichle et al.,2001].Prior research suggests that the default mode network may be involved in mind wandering[Mason et al.,2007,Science,315,393–395]or social cognitions such as self-referential processing[Kelley et al.,2002;Zhu et al.,2007].Our fMRI results compliment the previous work by providing evidence for the func-tional role of the‘default mode network’in evaluation and memory retrieval involved in social and physical risk iden-ti?cations.

It should be noted that the current study has several limitations.First,most of the risky social items re?ected inappropriate behaviors.Because social risks are closely related to social appropriateness,it is dif?cult to rule out the possibility that subjects identi?ed social risks based on both the consequences of social behaviors and social appropriateness or desirability of social behaviors.How-ever,there is fMRI evidence that the processing of trans-gressions of social norms(social inappropriate behavior) was associated with increased activity in the lateral orbito-frontal cortex[Berthoz et al.,2002].Moreover,the orbito-frontal lesions resulted in impairment in attributing emo-tions of embarrassment to story protagonists and in identi-?cation of violations of social behavior[Blair and Cipolotti, 2000].It appears that the processing of social appropriate-ness is mediated by brain areas different from those observed in the current study.Whether or not distinct neu-ral mechanisms underpin judgments of consequences and appropriateness of social behaviors may be disentangled by designing social events that entail risks but are socially appropriate.Second,the transient activity indeed showed increased activation in amygdala during the physical risk identi?cation task relative to the autobiographical control task.Since previous fMRI studies found arousal-related neural activations mainly in amygdala[Lewis et al.,2007; Williams et al.,2005],it is possible that increased arousal might be induced during the physical identi?cation task relative to the control task.However,the contrast of risky vs.safe physical items showed activations in PCC and ACC but not in amygdala.This cannot be completely explained by increased arousal.Cognitive processes such as memory retrieval or con?ict monitoring may be also involved in the identi?cation of physical risk besides enhanced emotional processing.Third,implicit risk identi-?cation might be involved in the autobiographical task although subjects were asked to identify whether they had been engaged in the situations described by the stimuli. Contrasting risk identi?cation task with autobiographical task mainly uncovered the neural substrates of explicit risk assessment whereas some neural activations related to implicit risk identi?cation were not revealed in the con-trast.This can be assessed by comparing risky and safe items in a task that does not require explicit risk identi?ca-tion.Finally,as current work recruited subjects aged between20and31years,the neural mechanisms of risk identi?cation uncovered here may be limited to young adults.Aging effect on neural substrates of risk identi?ca-tion should be examined in future research.

CONCLUSION

Our fMRI results provide evidences for distinct neural substrates underlying the identi?cation of risks in the social and physical domains.The distinct neural activities were observed in association with both the identi?cation of stimulus valence and the task demand to monitor the appearance of risks.Our brain imaging results indicate that identi?cations of risks in the social and physical domains are different in both cognitive processes and emo-tional responses.Our?ndings provide neural bases for the psychometric categorization of risks into different domains and may help to explain differential human behaviors when confronted with social and physical risks.

REFERENCES

Addis DR,McIntosh AR,Moscovicth M,Crawley AP,McAndrews MP(2004):Characterizing spatial and temporal features of autobiographical memory retrieval networks:A partial least squares approach.Neuroimage23:1460–1471.

Bechara A,Damasio AR(2005):The somatic marker hypothesis:A neural theory of economic decision.Game Econ Behav52:336–372.

Berthoz S,Armony JL,Blair RJR,Dolan RJ(2002):An fMRI study of intentional and unintentional embarrassing violations of social norms.Brain125:1678–1696.

Blair RJR,Cipolotti L(2000):Impaired social response reversal:A case of‘‘acquired sociopathy’’.Brain123:1122–1141.

Blais AR,Weber EU(2001):Domain-speci?city and gender differ-ences in decision making.Risk Decis Policy6:47–69.

Blais AR,Weber EU(2006):A domain-speci?c risk-taking scale for adult populations.Judg Decis Making1:33–47.

Buccino G,Binkofski F,Riggio L(2004):The mirror neuron system and action recognition.Brain Lang89:370–376.

Burgund ED,Lugar HM,Miezin FM,Petersen SE(2003):Sus-tained and transient activity during an object-naming task:A

r N eural M echanisms of R isk I denti?cation r

mixed blocked and event-related fMRI study.Neuroimage 19:29–41.

Bush G,Luu P,Posner MI(2000):Cognitive and emotional in?u-ences in anterior cingulate cortex.Trends Cogn Sci4:215–222. Cavanna AE,Trimble MR(2006):The precuneus:A review of its functional anatomy and behavioral correlates.Brain129:564–583. Chadee D,Austen L,Ditton J(2007):The relationship between likelihood and fear of criminal victimization:Evaluating risk sensitivity as a mediating concept.Brit J Criminol47:133–153. Cunningham WA,Johnson MK,Gatenby JC,Gore JC,Banaji MR (2003):Neural components of social evaluation.J Pers Soc Psy-chol85:639–649.

Cunningham WA,Raye CL,Johnson MK(2004):Implicit and explicit evaluation:fMRI correlates of valence,emotional inten-sity,and control in the processing of attitudes.J Cogn Neurosci 16:1717–1729.

Dalgleish T(2004):The emotional brain.Nat Rev Neurosci5:582–589.

Dehaene S,Spelke E,Pinel P,Stanescu R,Tsivkin S(1999):Sources of mathematical thinking:Behavioral and brain-imaging evi-dence.Science284:970–974.

Donaldson DI(2004):Parsing brain activity with fMRI and mixed designs:What kind of a state is neuroimaging in?Trends Neu-rosci27:442–444.

Douglas M(1992):Risk and Blame:Essays in Cultural Theory.

London:Routledge.

Ernst M,Nelson EE,McClure EB,Monk CS,Munson S,Eshel N, Zarahn E,Leibenluft E,Zametkin A,Towbin K,Blair J,Char-ney D,Pine DS(2004):Choice selection and reward anticipa-tion:An fMRI study.Neuropsychologia42:1585–1597.

Fossati P,Hevenor SJ,Graham SJ,Grady C,Keightley ML,Craik F (2003):In search of the emotional self:An fMRI study using positive and negative emotional words.Am J Psychiatry 160:1938–1945.

Frith U,Frith CD(2003):Development and neurophysiology of mentalizing.Philos Trans R Soc Lond B Biol Sci358:459–473. Frith U,Frith CD(2006):The neural basis of mentalizing.Neuron 50:531–534.

Garrett AS,Maddock RJ(2006):Separating subjective emotion from the perception of emotion-inducing stimuli:An fMRI study.Neuroimage33:263–274.

Gilboa A,Winocur G,Grady CL,Hevenor SJ,Moscovicth M (2004):Remembering our past:Functional neuroanatomy of recollection of recent and very remote personal events.Cereb Cortex14:1214–1225.

Greene JD,Sommerville RB,Nystrom LE,Darley JM,Cohen JD (2001):An fMRI investigation of emotional engagement in moral judgment.Science293:2105–2108.

Hanoch Y,Johnson JG,Wilke A(2006):Domain speci?city in ex-perimental measures and participant recruitment:An applica-tion to risk-taking behavior.Psychol Sci17:300–304.

Horvath P,Zuckerman M(1993):Sensation seeking,risk appraisal, and risky behavior.Pers Indiv Differ14:41–52.

Hoyle RH,Stephenson MT,Palmgreen P,Lorch EP,Donohew RL (2002):Reliability and validity of a brief measure of sensation seeking.Pers Indiv Differ32:401–414.

Hughes C,Leekam S(2004):What are the links between theory of mind and social relations?Review,re?ections and new direc-tions for studies of typical and atypical development.Soc Dev 13:590–619.

Jacobsen T,Ricarda I,Schubotz RI,Ho¨fel L,Cramon DY(2006): Brain correlates of aesthetic judgment of beauty.Neuroimage 29:276–285.Johnson SC,Baxter LC,Wilder LS,Pipe JG,Heiserman JE,Priga-tano GP(2002):Neural correlates of self-re?ection.Brain 125:1808–1814.

Kahn I,Hendler T,Fried I,Ben-Bashat D,Yeshurunt Y(2000): Playing it safe or taking a risk:Evoking the human amygdala.

Neuroimage11:S236.

Kelley WM,Macrae CN,Wyland CL,Caglar S,Inati S,Heatherton TF(2002):Finding the self?An event-related fMRI study.J Cogn Neurosci14:785–794.

Kerns JG,Cohen JD,MacDonald AW III,Cho RY,Stenger VA, Carter CS(2004):Anterior cingulate con?ict monitoring and adjustments in control.Science303:1023–1026.

Krain AL,Wilson AM,Arbuckle R,Castellanos FX,Milham MP (2006):Distinct neural mechanisms of risk and ambiguity:A meta-analysis of decision-making.Neuroimage32:477–484. Lane RD,Reiman EM,Bradley MM,Lang PJ,Ahern GL,Davidson RJ,Schwartz GE(1997):Neuroanatomical correlates of pleasant and unpleasant emotion.Neuropsychologia35:1437–1444.

Lee ACH,Robbins TW,Graham KS,Owen AM(2002):‘‘Pray or prey?’’Dissociation of semantic memory retrieval from epi-sodic memory processes using positron emission tomography and a novel homophone task.Neuroimage16:724–735.

Lewis PA,Critchley HD,Rotshtein P,Dolan RJ(2007):Neural cor-relates of processing valence and arousal in affective words.

Cereb Cortex17:742–748.

Loewenstein GF,Weber EU,Hsee CK,Welch ES(2001):Risk as feelings.Psychol Bull127:267–286.

Luce RD,Weber EU(1986):An axiomatic theory of conjoint expected risk.J Math Psychol30:188–205.

MacCrimmon KR,Wehrung DA(1990):Characteristics of risk tak-ing executives.Manage Sci36:422–435.

Maddock RJ(1999):The retrosplenial cortex and emotion:New insights from functional neuroimaging of the human brain.

Trends Neurosci22:310–316.

Maddock RJ,Buonocore MH(2001):Remembering familiar people: The posterior cingulate cortex and autobiographical memory retrieval.Neuroscience104:667–676.

Maddock RJ,Garrett AS,Buonocore MH(2003):Posterior cingu-late cortex activation by emotional words:fMRI evidence from

a valence decision task.Hum Brain Mapp18:30–41.

Maguire EA,Mummery CJ,Buchel C(2000):Patterns of hippo-campal-cortical interaction dissociate temporal lobe memory subsystems.Hippocampus10:475–482.

Maguire EA,Vargha-Khadem F,Mishkin M(2001):The effects of bilateral hippocampal damage on fMRI regional activations and interactions during memory retrieval.Brain124:1156–1170. Malle BF(2005):Folk theory of mind:Conceptual foundations of human social cognition.In:Hassin RR,Uleman JS,Bargh JA, editors.The New Unconscious.New York:Oxford University Press.pp225–255.

Mason MF,Norton MI,Van Horn JD,Wegner DM,Grafton ST, Macrae CN(2007):Wandering minds:The default network and stimulus-independent thought.Science315:393–395.

McCoy AN,Platt ML(2005):Risk-sensitive neurons in macaque posterior cingulate cortex.Nat Neurosci8:1220–1227. McKiernan KA,Kaufman JN,Kucera-Thompson J,Binder JR (2003):A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging.J Cogn Neu-rosci15:394–408.

Moll J,de Oliveira-Souza R,Moll FT,Ignacio FA,Bramati IE, Caparelli-Daquer EM,Eslinger PJ(2005):The moral af?liations of disgust:A functional MRI study.Cogn Behav Neurol18:68–

78.

r Q in and H an r

Naghavi HR,Nyberg L(2005):Common fronto-parietal activity in attention,memory,and consciousness:Shared demands on integration?Conscious Cogn14:390–425.

Neugebauer V,Li W,Bird GC,Han JS(2004):The amygdala and persistent pain.Neuroscientist10:221–234.

Nyberg L(1999):Imaging episodic memory:Implications for cog-nitive theories and phenomena.Memory7:585–597.

O¨hman A(2005):The role of the amygdala in human fear:Auto-matic detection of threat.Psychoneuroendocrinology30:953–958. O’Jile JR,Ryan LM,Parks-Levy J,Betz B,Gouvier WD(2004):Sensa-tion seeking and risk behaviors in young adults with and with-out a history of head injury.Appl Neuropsychol11:107–112. Paller KA,Ranganath C,Gonsalves B,LaBar KS,Parrish TB,Gitel-man DR,Mesulam MM,Reber PJ(2003):Neural correlates of person recognition.Learn Mem10:253–260.

Paulus MP,Rogalsky C,Simmons A,Feinstein JS,Stein MB(2003): Increased activation in the right insula during risk-taking deci-sion making is related to harm avoidance and neuroticism.

Neuroimage19:1439–1448.

Paulus MP,Feinstein JS,Leland D,Simmons AN(2005):Superior temporal gyrus and insula provide response and outcome-de-pendent information during assessment and action selection in

a decision-making situation.Neuroimage25:607–615.

Phan KL,Wager T,Taylor SF,Liberzon I(2002):Functional neuro-anatomy of emotion:A meta-analysis of emotion activation studies in PET and fMRI.Neuroimage16:331–348.

Raichle ME,MacLeod AM,Snyder AZ,Powers WJ,Gusnard DA, Shulman GL(2001):A default mode of brain function.Proc Natl Acad Sci USA98:676–682.

Rizzolatti G,Craighero L(2004):The mirror-neuron system.Annu Rev Neurosci27:169–192.

Rosenbloom T(2003):Risk evaluation and risky behavior of high and low sensation seekers.Soc Behav Pers31:375–386.

Sanfey AG,Loewenstein G,McClure SM,Cohen JD(2006):Neuro-economics:Cross-currents in research on decision-making.

Trends Cogn Sci10:108–116.

Saxe R,Carey S,Kanwisher N(2004):Understanding other minds: Linking developmental psychology and functional neuroimag-ing.Annu Rev Psychol55:87–124.

Shin LM,Dougherty DD,Orr SP,Pitman RK,Lasko M,Macklin ML,Alpert NM,Fischman AJ,Rauch SL(2000):Activation of anterior paralimbic structures during guilt-related script-driven Imagery.Biol Psychiatry48:43–50.

Sjo¨berg L(1998):Worry and risk perception.Risk Anal18:85–93. Slovic P(1992):Perception of risk:Re?ections on the psychometric paradigm.In:Krimsky S,Golding D,editors.Social Theories of Risk.Westport,Connecticut:Praeger.pp117–152.Slovic P,Fischhoff B,Lichtenstein S(1986):The psychometric study of risk perception.In:Covello VT,Menkes J,Mumpower J,editors.Risk Evaluation and Management.New York: Plenum.pp3–24.

Slovic P,Finucane M,Peters E,MacGregor DG(2002):The affect heuristic.In:Gilovich T,Grif?n D,Kahneman D,editors.Heu-ristics and Biases:The Psychology of Intuitive Judgment.New York:Cambridge University Press.pp397–420.

Soane E,Chmiel N(2005):Are risk preferences consistent?The in?uence of decision domain and personality.Pers Indiv Differ 38:1781–1791.

Talairach J,Tournoux P(1998):Coplanar Stereotaxic Atlas of the Human Brain.New York:Thieme.

van Leijenhorst L,Crone EA,Bungea SA(2006):Neural correlates of developmental differences in risk estimation and feedback processing.Neuropsychologia44:2158–2170.

Viken RJ,Kline MP,Rose RJ(2005):Development and validation of an MMPI-based sensation seeking scale.Pers Indiv Differ 38:619–625.

Vorhold V,Giessing C,Wiedemann PM,Schu¨tz H,Gauggel S, Fink GR(2007):The neural basis of risk ratings:Evidence from

a functional magnetic resonance imaging(fMRI)study.Neuro-

psychologia45:3242–3250.

Weber EU,Blais A,Betz NE(2002):A domain-speci?c risk-attitude scale:Measuring risk perceptions and risk behaviors.J Behav Decis Making15:263–290.

Wicker B,Perrett DI,Baron-Cohen S,Decety J(2003):Being the target of another’s emotion:A PET study.Neuropsychologia 41:139–146.

Wiggs CL,Weisberg J,Martin A(1999):Neural correlates of semantic and episodic memory retrieval.Neuropsychologia 37:103–118.

Williams LM,Barton MJ,Kemp AH,Liddell BJ,Peduto A,Gordon E,Bryant RA(2005):Distinct amygdala-autonomic arousal pro-?les in response to fear signals in healthy males and females.

Neuroimage28:618–626.

Winston JS,Strange BA,O’Doherty J,Dolan RJ(2002):Automatic and intentional brain responses during evaluation of trustwor-thiness of faces.Nat Neurosci5:277–283.

Wood JN,Romero SG,Knutson KM,Grafman J(2005):Represen-tation of attitudinal knowledge:Role of prefrontal cortex, amygdala and parahippocampal gyrus.Neuropsychologia 43:249–259.

Zald DH(2003):The human amygdala and the emotional evalua-tion of sensory stimuli.Brain Res Rev41:88–123.

Zhu Y,Zhang L,Fan J,Han S(2007):Neural basis of cultural in?uence on self-representation.Neuroimage34:1310–1316.

r N eural M echanisms of R isk I denti?cation r

特种设备风险辨识及分析

特种设备风险辨识及分析 2.2.1起重设备风险辨识及分析 公司能严格执行起重设备设备管理制度,确保了设备安装、检修检测、维护和保养能够达规定要求,使设备始终处于完好状态,满足了生产需要。但在日常使用中存在以下固有风险:

2.2.2锅炉与辅机风险辨识及分析 公司锅炉“三证”齐全,安全附件完好,按规定合理设置报警和连锁保护装置,能严格执行设备检修管理制度,确保了设备安装、检修、维护和保养能够达规定要求,使设备始终处于完好状态,满足了生产需要。在日常使用中存在以下固有风险:

2.2.3工业气瓶风险辨识及分析 公司工业气瓶按规定在检验周期使用,使用场所存放量符合要求,工业气瓶充装、使用始终处于管控状态,满足了生产需要。但是,由于工业气瓶种类多,气体性质各异,气瓶流动范围广,使用场所较为分散,在日常使用中存在以下固有风险:

2.2.4电梯风险辨识及分析 电梯为公司新增特种设备。公司在电梯日常管理、维护及安全检查方面缺乏经验,同时,由于电梯的危险程度较大,安全要求较高,在日常使用中存在以下固有风险: 2.2.5厂内机动车辆风险辨识及分析 公司严格执行《厂内机动车辆管理制度》,明确车辆管理、使用责任,确保了设备购置、检修、维护和保养能够达规定要求,使设备始终处于完好状态,满足了生产需要。但公司厂内使用车辆使用效率高,周转量大,在日常使用中存在以下固有风险:

2.2.6压力容器和工业管道风险辨识及分析 公司压力容器和工业管道管理部门明确,安全附件完好,按规定合理设置报警和连锁保护装置,能严格执行设备检修管理制度,确保了设备安装、检修、维护和保养能够达规定要求,使其始终处于完好状态,满足了生产需要。在日常使用中存在以下固有风险:

办公室主任风险点及防范措施

办公室主任廉政风险点及防范措施 一、印章管理、保密工作岗 风险表现: 1、保管不当被盗印;不按制度审核用印,造成不良后果;不严格执行制度,主观随意用印造成失误; 2、处理涉密文件不及时、延误时机;故意泄露涉密内容;丢失涉密文件或对涉密文件、涉密载体保管不妥善造成泄密。 防控措施: 1、加强印章管理人员、保密人员的思想教育,签订保密承诺书,增强责任意识、安全防范意识; 2、强化对保密人员的岗位责任考核;建立保密文件登记台帐;不定期检查印章使用管理情况、保密制度落实情况; 3、建立印章管理、保密人员过错责任追究制度,对违反印章管理、违规处理涉密文件的人员严肃处理,避免工作上的主观随意性。 二、来文、来电处理岗 风险表现: 1、办理不及时、失误或不到位,导致工作延误或工作失误;发文不及时、办理失误或不规范,导致工作延误、失误。 防控措施 1、提高办公室人员素质,办公室对制发文件的“草拟、审

核、签发、复核、缮印、用印、登记、分发”等过程和环节,要严格把关,确保公文的规范性和权威性。 2、严格执行《公文处理办法》,熟悉收发文操作流程,按规定程序处理收文,对相关环节严格把关。 三、信访办理岗 风险表现: 1、未按要求进行登记,对紧急信访事项和信访信息,隐瞒、谎报、缓报; 2、对收到的信访事项未及时转送、交办; 3、未在法定期间内及时调查处理或在调查处理中偏袒一方,隐瞒真实情况,处理结果显失公正; 4、应当履行督办职责而未履行,信访资料未及时归档。 防控措施: 1、提升信访工作人员责任意识,严格落实工作制度要求,对隐瞒、谎报、缓报等行为严肃处理. 2、建立出具调查处理、复查复核意见书的时间预警制度。 3、加大督办检查力度,加强对信访资料的保管归档工作。 四、公务接待岗 风险表现: 1、不按接待管理规定厉行节约经费,铺张浪费。 2、在接待工作中损公肥私、造成贪污。 防控措施:

危害辨识与风险评价结果一览表

危险源识别、评价和预控一览表 工程名称: 北京市*************涉及电力工程工程(L1线、L3线) 注:1、判别依据:Ⅰ、不符合法律、法规及其他要求;Ⅱ、曾发生事故,仍未采取有效措施;Ⅲ、相关方合理要求; Ⅳ、直接观察到的危险;Ⅴ、作业条件危险性评价法(LEC法)。

要注意;<20(1级危险),可以接受。 3、控制措施包括:培训;施工组织设计、施工方案;安全、技术交底;监督、指挥、检查;规程、规范、标准、管理制度;管理方案等。 危险源识别、评价和预控一览表 Ⅳ、直接观察到的危险;Ⅴ、作业条件危险性评价法(LEC法)。

要注意;<20(1级危险),可以接受。 3、控制措施包括:培训;施工组织设计、施工方案;安全、技术交底;监督、指挥、检查;规程、规范、标准、管理制度;管理方案等。 危险源识别、评价和预控一览表 注:1、判别依据:Ⅰ、不符合法律、法规及其他要求;Ⅱ、曾发生事故,仍未采取有效措施;Ⅲ、相关方合理要求; Ⅳ、直接观察到的危险;Ⅴ、作业条件危险性评价法(LEC法)。

要注意;<20(1级危险),可以接受。 3、控制措施包括:培训;施工组织设计、施工方案;安全、技术交底;监督、指挥、检查;规程、规范、标准、管理制度;管理方案等。 危险源识别、评价和预控一览表 Ⅳ、直接观察到的危险;Ⅴ、作业条件危险性评价法(LEC法)。

要注意;<20(1级危险),可以接受。 3、控制措施包括:培训;施工组织设计、施工方案;安全、技术交底;监督、指挥、检查;规程、规范、标准、管理制度;管理方案等。 危险源识别、评价和预控一览表 工程名称: 北京市*************涉及电力工程工程(L1线、L3线)

(风险管理)办公风险防范管理措施

办公室风险防范管理措施 为建立健全工商系统和预防腐败体系,拓展从源头上预防腐败工作领域,构建和完善预防腐败工作长效机制,结合办公室工作职能和所查找的风险点,制定如下风险防范管理措施: 一、加强教育,筑牢思想防线 进一步加强党风廉政教育,创建学习型、服务型机关,立足实践,紧贴实际,采取学文件,讲党课等形式,集中组织办公室全体干部职工树立正确的人生观、价值观、权利观和政绩观,使大家政治上更加坚定,思想道德上更加纯洁,拒腐防变思想防线更加牢固。 二、突出重点,抓好主要环节的风险防范管理 针对办公室廉政风险情况,加强文件运转管理,防止出现未及时将文件报送领导审批、转发股室承办及文件多环节运转后去向不明等风险;加强印章使用管理,防止出现未审批盖章的风险;加强机关财务事项审核审批特别是资金的审批使用管理,防止出现不按规定权限和程序审批、以权谋私的风险;加强对群众来信来访的处理力度,防止出现非正常上访的风险;加强对宣传、调研、会议、培训等事务性支出的经费使用管理,防止出现扩大支出范围、虚列支出的风险。 三、严守制度,规范行政行为

严格执行文件签收制度,跟踪文件办理流程,做好流转登记工作;严格执行保密制度和印章管理的相关规定,确保印章安全;严格执行机关财务管理制度,规范财务收支审批人员和审核人员的权限;严格财务审批、呈批、报销程序,对申报的财务事项按照“先批事、后核经费”程序履行审批手续,经有关股(室、局)负责人审核后,办公室财务室再办理财务事项审批、上报和审核、报销事项;建立宣传活动多级审核责任制,加强对宣传事项和宣传内容的审核工作,确保宣传活动不出现导向性错误。 四、强化风险管理,落实工作责任 办公室工作人员在收取文件时,仔细核对清单,从源头上防止文件缺失,对于密级文件,由专管人员将文件亲自送到局领导办公室,并在旁等候,等领导同志阅毕后即收回妥善保管;认真落实出差和会议定点管理规定,积极推行公务卡结算管理制度,按照“先审核出差、会议饭店,再审核报销差旅费、会议费”的程序审批核准、报销差旅费、会议费;严格按照《会计基础工作规范》和《电算化工作规范》进行会议建帐、报销、审核、记帐、结帐、报告分析以及票据、会计档案管理等工作;加强对财务事项审批、报销审核等重点岗位的监督管理,切实做到不报人情帐;落实领导包案制度,规范信访处理程序,加强信访督查督办;加强与新闻媒体的交流沟通,认真落实新闻发言人制度,遇有重大事件和

危害因素的辨识与风险评价

辩识方法 辩识危害因素的辨识方法采取一种或结合多种评估方法。主要的评价方法有询问交谈、现场勘查、查阅有关记录、获取外部信息、安全检查(SCL)、工作危险源分析(JHA)、预先危害因素分析(PHA)、故障假说分析(WI)、失效模式与影响分析(FMEA)、危害与可操作性研究(HAZOP)。 危害因素辩识方法 第一类危险源 第一类危险源:系统中存在的、可能发生意外释放的各种能量或危险物质。 1、危险物质辨识:如氢气、原油、天然气、液化气、汽油、乙决、甲烷、煤油等可燃物质;硫化氢、一氧化碳、氯、氨、二氧化碳、氮气二氧化硫、甲醇等有毒物质;生产过程中使用的危险化学品。 2、能量辨识:辨识产生、供给能量和能量的载体。包括以下几个方面: a.具的动能的各类机械运动部件、工件和人体及产生的机械性、动力性等振动部件。

b.具有势能的平台及坑、井、沟口处等场所上的人体和物体。 c.带电体的电能,包括雷电、静电; d.高温设备和管线的热表面、高温介质及剧烈热反应工艺装置的热能及低温介质所具有的冷量。 e.盛装具有能量的介质的压力容器。 f.机械性、动力性等噪声的声能。 g.化学反应的化学能。 h.紫外线、激光射频辐射,超高压电场等非电离辐射等。 第二类危险源 第二类危险源:对第一类危险源控制设施和措施失控的状态和行为。主要包括以下几个方面: 1、控制设施和措施缺陷。 无控制设施和措施或控制设施不符合法律、法规、标准和设计规范等要求。 控制措施不好,起不到应有的作用。 2、人员失误:人的不安全行为中产生不良后果的行为。 3、管理缺陷:缺少规章制度、操作规程、工作职责不明确;组织不全;缺乏协调或协调不当、检查不及时、不到位;奖惩不分明;培训不到位等。 4、作业环境和场所不良:引起设备故障或人员失误的温度、温度、风雨雪、照明、视野、噪声、扰动、通风换气,色彩、作业区环境不良等环境因素。 危险源识别方法简介

风险辨识和评价的方法

风险辨识和评价方法 风险辨识和评价的方法很多,各企业应根据各自的实际情况选择使用。以下是常用的几种方法: 1.工作危害分析法(JHA) 工作危害分析法是一种定性的风险分析辨识方法,它是基于作业活动的一种风险辨识技术,用来进行人的不安全行为、物的不安全状态、环境的不安全因素以及管理缺陷等的有效识别。即先把整个作业活动(任务)划分成多个工作步骤,将作业步骤中的危险源找出来,并判断其在现有安全控制措施条件下可能导致的事故类型及其后果。若现有安全控制措施不能满足安全生产的需要,应制定新的安全控制措施以保证安全生产;危险性仍然较大时,还应将其列为重点对象加强管控,必要时还应制定应急处置措施加以保障,从而将风险降低至可以接受的水平。 2. 安全检查表分析法(SCL) 安全检查表法是一种定性的风险分析辨识方法,它是将一系列项目列出检查表进行分析,以确定系统、场所的状态是否符合安全要求,通过检查发现系统中存在的风险,提出改进措施的一种方法。安全检查表的编制主要是依据以下四个方面的内容: ①国家、地方的相关安全法规、规定、规程、规范和标准,行业、企业的规章制度、标准及企业安全生产操作规程。 ②国内外行业、企业事故统计案例,经验教训。 ③行业及企业安全生产的经验,特别是本企业安全生产的实践经验,引发事故的各种潜在不安全因素及成功杜绝或减少事故发生的成功经验。

④系统安全分析的结果,如采用事故树分析方法找出的不安全因素,或作为防止事故控制点源列入检查表。 3. 风险矩阵分析法(LS) 风险矩阵分析法是一种半定量的风险评价方法,它在进行风险评价时,将风险事件的后果严重程度相对的定性分为若干级,将风险事件发生的可能性也相对定性分为若干级,然后以严重性为表列,以可能性为表行,制成表,在行列的交点上给出定性的加权指数。所有的加权指数构成一个矩阵,而每一个指数代表了一个风险等级。R=L×S;R:风险程度;L:发生事故的可能性,重点考虑事故发生的频次、以及人体暴露在这种危险环境中的频繁程度;S:发生事故的后果严重性,重点考虑伤害程度、持续时间。 4.作业条件危险性分析法(LEC) 作业条件危险性分析法是一种半定量的风险评价方法,它用与系统风险有关的三种因素指标值的乘积来评价操作人员伤亡风险大小。三种因素分别是:L(事故发生的可能性)、E(人员暴露于危险环境中的频繁程度)和C(一旦发生事故可能造成的后果)。给三种因素的不同等级分别确定不同的分值,再以三个分值的乘积D(危险性)来评价作业条件危险性的大小,即:D=L×E×C。D值越大,说明该系统危险性大。 5.风险程度分析法(MES) 风险程度分析法是是一种半定量的风险评价方法,它是对作业条件危险性分析法(LEC)的改进。风险程度R,R=M×E×S。其中M为控制措施的状态;暴露的频繁程度E增加了职业病发病情况、环境影响状况两项影响因素;事故的可能后果S,

机房建设工程风险识别与防范措施

第一章油气集输站场安装与维修工程 第一节施工准备 一、技术交底 1.危害识别 安全措施交底不清、不全面、不及时,造成人员盲目施工发生事故。2.削减措施 施工前,应对所有施工人员进行详细的安全措施交底。同时组织项目所有施工人员对工程进行GAG分析,将工序中存在的危险因素逐一分析,并针对危害源逐一制定有针对性的消减措施。 二、材料采购 1.危害识别 ⑴采购的材料规格、型号、技术要求、性能等与设计不符,易造成管道、管件开裂、物料泄漏、爆炸、人员伤亡等事故发生。 ⑵材料自身存在质量缺陷,易造成爆炸、泄漏、人员伤亡等事故发生。 2.削减措施 ⑴对到货的材料要认真组织验收,核对其规格、型号、技术性能等各项参数,确认与设计要求相符。 ⑵选用信誉度较高的供货商,并对进场的施工材料,严格按施工规范要求进行逐一或抽检验收、试验。 三、施工机具准备 1.危害识别 ⑴施工机具存在本质不安全(零部件存在残、缺、坏,线路老化,仪表失灵等)。配套电源线破损,易造成人员触电和机械伤害。 ⑵搬运施工机具时,工机具脱手或人员配合不协调,造成搬运人员砸伤或工机具摔坏。 ·1·

2.削减措施 ⑴施工前对施工机具进行维修保养,保证其零部件不存在残、缺、坏,线路老化,仪表失灵等现象。同时检查配套电源线保证无破损,无老化。保证施工机具的配套仪表经过检验,并在检验期内。 ⑵搬运施工机具,手要抓牢,人员配合要协调,做到轻拿轻放。 四、三通一平 1.危害识别 ⑴在平原场地平整易造成人员坠井、翻车、沉陷等事故。 ⑵在山区或沼泽地段场地平整,易发生人员和车辆坠落、沉陷等事故。 ⑶在地下设施不明确,进行场地平整时,大型设备易将地下管道、电缆等损坏,造成泄漏、火灾、触电等危害。 ⑷施工现场搭设的临时办公室,材料库房、焊机房等临时设施未按安全防火要求进行搭设,或搭设不牢固,存在火灾、房屋倒塌的安全危害。 ⑸临时设施消防器材配备不到位,施工场地没有设环行消防道,在发生火灾时存在不能及时采取救火措施,人员、设备不能及时撤离的危害。 2.削减措施 ⑴应先熟悉场地情况,标出危险地段,设置安全标志和安全防护。 ⑵在特殊地段需由当地向导指引,勘察完现场后再进行场平施工。 ⑶场地平整前对施工区域地下设施进行排查,摸底,将地下管道、电缆等用警示带或标识线标识出来,确认无误后再进行场地平整。 ⑷施工现场搭设的临时办公室,材料库房、焊机房等临时设施严格按照安全防火要求进行搭设,并且搭设牢固。 ⑸根据施工区域的大小,及临时设施的需要按安全防火要求配备消防器材配。施工场地设有环行消防道,任何施工车辆严禁在消防通道内停车。 ·2·

风险识别与控制

1、1风险管理的几个概念 1、什么是风险:就是一个事项具有不确定性并给实现目标带来负 面影响的可能。简单的说就是“一个事项可能发生的危险或损失”。金融或投资中的风险定义为“风险是发生财务损失的可能性”。 2、什么是信贷风险:是指借款人及其担保人末按合同约定偿还贷 款本息的可能性。 3、什么是风险意识:是指人们对自己的生活中可能发生的各种意 外风险有清醒的认识。 4、什么是风险识别:用感知、判断或归类的方式对现实的和潜在 的风险性质进行鉴别的过程。风险识别是风险管理的第一步,也是风险管理的基础.只有在正确识别出自身所面临的风险的基础上,人们才能够主动选择适当有效的方法进行处理. 5、什么是风险控制:风险控制是指风险管理者采取各种措施和方 法,消灭或减少风险事件发生的各种可能性,或者减少风险事件发生时造成的损失。 1、2风险控制的方法 风险控制的四种基本方法:风险回避、损失控制、风险转移和风险保留。 1、风险回避是投资主体有意识地放弃风险行为,完全避免特 定的损失风险。简单的风险回避是一种最消极的风险处理办法,因为投资者在放弃风险行为的同时,往往也放弃了潜在的目标收

益。所以一般只有在以下情况下才会采用这种方法: (1)投资主体对风险极端厌恶。 (2)存在可实现同样目标的其他方案,其风险更低。 (3)投资主体无能力消除或转移风险。 (4)投资主体无能力承担该风险,或承担风险得不到足够的补偿。 2、损失控制不是放弃风险,而是制定计划和采取措施降低损失 的可能性或者是减少实际损失。控制的阶段包括事前、事中和事后三个阶段。事前控制的目的主要是为了降低损失的概率,事中和事后的控制主要是为了减少实际发生的损失。 3、风险转移是指通过契约,将让渡人的风险转移给受让人承担 的行为。通过风险转移过程有时可大大降低经济主体的风险程度。 风险转移的主要形式是合同和保险。 (1)合同转移。通过签订合同,可以将部分或全部风险转移给一个或多个其他参与者。 (2)保险转移。保险是使用最为广泛的风险转移方式。 4、风险保留即风险承担。也就是说,如果损失发生,经济主体 将以当时可利用的任何资金进行支付。风险保留包括无计划自留、有计划自我保险。 1、3风险识别与风险控制的关系

安全风险辨识和评价的方法

安全风险辨识和评价的方法 风险辨识和评价的方法很多,各企业应根据各自的实际情况选择使用。以下是常用的几种方法: 1.工作危害分析法(JHA) 工作危害分析法是一种定性的风险分析辨识方法,它是基于作业活动的一种风险辨识技术,用来进行人的不安全行为、物的不安全状态、环境的不安全因素以及管理缺陷等的有效识别。即先把整个作业活动(任务)划分成多个工作步骤,将作业步骤中的危险源找出来,并判断其在现有安全控制措施条件下可能导致的事故类型及其后果。若现有安全控制措施不能满足安全生产的需要,应制定新的安全控制措施以保证安全生产;危险性仍然较大时,还应将其列为重点对象加强管控,必要时还应制定应急处置措施加以保障,从而将风险降低至可以接受的水平。 2. 安全检查表分析法(SCL) 安全检查表法是一种定性的风险分析辨识方法,它是将一系列项目列出检查表进行分析,以确定系统、场所的状态是否符合安全要求,通过检查发现系统中存在的风险,提出改进措施的一种方法。安全检查表的编制主要是依据以下四个方面的内容:①国家、地方的相关安全法规、规定、规程、规范和标准,行业、企业的规章制度、标准及企业安全生产操作规程。②国内外行业、企业事故统计案例,经验教训。③行业及企业安全生产的经验,特别是本企业安全生产的实践经验,引发事故的各种潜在不安全因素及成功杜绝或减少事故发生的成功经验。④系统安全分析的结果,如采用事故树分析方法找出的不安全因素,或作为防止事故控制点源列入检查表。 3. 风险矩阵分析法(LS) 风险矩阵分析法是一种半定量的风险评价方法,它在进行风险评价时,将风险事件的后果严重程度相对的定性分为若干级,将风险事件发生的可能性也相对定性分为若干级,然后以严重性为表列,以可能性为表行,制成表,在行列的交点上给出定性的加权指数。所有的加权指数构成一个矩阵,而每一个指数代表了一个风险等级。R=L×S;R:风险程度;L:发生事故的可能性,重点考虑事故发生的频次、以及人体暴露在这种危险环境中的频繁程度;S:发生事故的后果严重性,重点考虑伤害程度、持续时间。 4.作业条件危险性分析法(LEC) 作业条件危险性分析法是一种半定量的风险评价方法,它用与系统风险有关的三种因素指标值的乘积来评价操作人员伤亡风险大小。三种因素分别是:L(事故发生的可能性)、E(人员暴露于危险环境中的频繁程度)和C(一旦发生事故可能造成的后果)。给三种因素的不同等级分别确定不同的分值,再以三个分值的乘积D(危险性)来评价作业条件危险性的大小,即:D=L ×E×C。D值越大,说明该系统危险性大。 5.风险程度分析法(MES) 风险程度分析法是是一种半定量的风险评价方法,它是对作业条件危险性分析法(LEC)的改进。风险程度R,R=M×E×S。其中M为控制措施的状态;暴露的频繁程度E增加了职业病发病情况、环境影响状况两项影响因素;事故的可能后果S,包括伤害、职业相关病症、财产损失和环境影响;M、E、S分别制定了其取值标准。

办公室主任风险点及防范措施

办公室主任风险点及防范措施 为不断完善惩治和预防腐败体系,努力拓展从源头上防治腐败工作领域,有效防范办公室工作中的廉政风险和监管风险,根据《威海市体育局关于推行廉政风险防范管理工作的实施意见》,结合办公室工作实际,现就办公室廉政风险防范管理工作制定如下方案。 一、工作目标 办公室主要负责机关文书、信息、统计、保密、档案、信访、政务公开、行政接待,以及机关各科室、直属局、事业单位的人事管理、机构编制、队伍建设等工作。 以邓小平理论和“三个代表”重要思想为指导,全面贯彻落实科学发展观,按照全市党风廉政建设工作会议精神,紧紧围绕文印管理、统计数据管理、劳资人事、信访保密等要害部位、关键环节,综合运用教育、制度、监督、改革等措施,集中力量抓好防范管理,从源头上杜绝不廉洁行为的发生和防范管理风险。 二、办公室xx风险点及其表现 1.在文件运转管理方面,存在未及时将文件报送领导审批、转发各单位、机关科室承办、督促各单位、机关科室按时办结及文件在多环节运转后去向不明等风险。 2.在印章使用管理方面,存在未审批盖章和以信函交换的方式传送印模时不派员监印致使印模丢失、失控的风险。 3.各项业务统计数据在没有对外公开前,存在被个别人或单位获取利用的风险。 4.在档案管理工作中,存在违反规定提供档案查询服务以及因管理不善造成档案丢失、损坏的风险。 5.在调研、会议、培训等事务性支出和项目经费使用方面,有扩大支出范围、虚列支出的风险。

⒍滥用职权。封官许愿、买官卖官,搞权钱交易、权权交易;违反干部人事工作规定,为跑官要官的人说情、打招呼,联系和引见有关人员;徇私舞弊,以权谋私,在干部工作中为本人、亲友或特定关系人谋取非法利益或特殊照顾;在干部考察考核等工作中弄虚作假、隐瞒实情。 ⒎用人失察。考核考察不够深入和准确,工作走过场,对干部综合评价不够全面,对干部“以才掩德”没有及时发现,导致“带病提拔”、“带病上岗”;在公务员录用等工作中实地考核失察,留有隐患。 ⒏工作失职。干部人事政策法规不熟,政策把握不准,工作把关不严,不能坚持原则和标准;在有关工作中掌握标准差异较大,造成不公平;因疏忽违反工作程序,或未按要求执行干部选拔任用工作回避制度,造成不良影响或后果;调研不够全面深入,工作不够严谨细致,责任心不强,工作拖拉,办理不及时。 ⒐监督不力。干部监督管理工作中,监督失之于宽、失之于软,不能及时发现问题苗头;对拉票贿选等问题不能及时发现、报告、制止;对群众反映的线索不能及时调查处理。⒑行为失范。违反干部人事工作纪律,在干部工作中跑风漏气,泄露未经批准对外公开的信息;拉帮结派、搞亲亲疏疏;收受他人贵重礼品、礼金、有价证券和支付凭证,参加可能影响工作的宴请、旅游和其他消费娱乐活动;接受单位或个人支付应由本人或配偶、子女等亲属负担的费用。 ⒒缺乏敏锐性。在政治思想工作中,可能存在政治敏锐性不强,不能及时了解广大干部职工思想动态的现象,不能为党组提供及时有效的决策参考。 三、xx风险点防范管理措施 对上述廉政风险点,要综合采取加强教育、合理分权、完善程序等多种措施,进行有效防范。 (一)文件运转管理 1.针对未及时将文件报送领导审批的风险点 防范管理措施:

神经环路的形成、功能与可塑性

项目名称:神经环路的形成、功能与可塑性 首席科学家:蒲慕明中国科学院上海生命科学研究院起止年限:至 依托部门:中国科学院

二、预期目标 本项目的总体目标: 在神经环路层面上解析神经系统发育、功能以及可塑性,同时了解与重要神经系统疾病相关的环路异常的机制。建立从微观的分子/细胞水平研究与宏观的系统/行为研究之间的桥梁。力争在神经细胞的产生和分化、细胞定位、突触形成和修剪、感觉信息的传递、整合与储存、工作记忆和抉择的环路机制、环路形成与功能的异常等前沿研究领域中取得重要进展。 五年预期目标: 1)在神经环路形成分子机制方面,深入认识神经干细胞增殖、分化和命运决定 的调控机制;揭示神经元迁移的动力原理和导向机制;进一步阐明神经元极化的胞内外机制;探索神经元树突和突触修剪的分子机制。 2)在神经环路功能及可塑性方面,阐明神经环路电信号的产生与调节机制、多 模态感觉信息整合的突触和环路机制、神经环路存储和提取感觉经验中的时序信息的突触机制、工作记忆和抉择行为的环路机制和工作原理。 3)在神经环路异常分子机制方面,将重点研究智障基因导致癫痫易感的环路形 成异常、抑制性突触传递系统调控与癫痫发生的关系、离子通道失常对神经元存活与突触和神经环路异常的作用。 4)五个课题有机联系、技术交叉。将充分利用团队优势,在以上三个研究方向 取得重要科研成果。具体表现为对神经环路的重要前沿问题有显著突破,在神经科学界取得领先地位。 5)开展与临床研究人员的交流与合作关系,以扩展具有临床应用前景的基础研 究。 6)培养学术骨干的基础科研能力,使之成为他们所在的研究领域中享有国际声 誉的科学家。建立具有国际竞争力的创新型研究团队。通过高质量的基础研究训练来提高研究生和博士后的科研素质,为中国神经科学后备人才的储备

【新编】办公室风险防范管理措施

办公室风险防范管理措施 为建立健全工商系统和预防腐败体系,拓展从源头上预防腐败工作领域,构建和完善预防腐败工作长效机制,结合办公室工作职能和所查找的风险点,制定如下风险防范管理措施: 一、加强教育,筑牢思想防线 进一步加强党风廉政教育,创建学习型、服务型机关,立足实践,紧贴实际,采取学文件,讲党课等形式,集中组织办公室全体干部职工树立正确的人生观、价值观、权利观和政绩观,使大家政治上更加坚定,思想道德上更加纯洁,拒腐防变思想防线更加牢固。 二、突出重点,抓好主要环节的风险防范管理 针对办公室廉政风险情况,加强文件运转管理,防止出现未及时将文件报送领导审批、转发股室承办及文件多环节运转后去向不明等风险;加强印章使用管理,防止出现未审批盖章的风险;加强机关财务事项审核审批特别是资金的审

批使用管理,防止出现不按规定权限和程序审批、以权谋私的风险;加强对群众来信来访的处理力度,防止出现非正常上访的风险;加强对宣传、调研、会议、培训等事务性支出的经费使用管理,防止出现扩大支出范围、虚列支出的风险。 三、严守制度,规范行政行为 严格执行文件签收制度,跟踪文件办理流程,做好流转登记工作;严格执行保密制度和印章管理的相关规定,确保印章安全;严格执行机关财务管理制度,规范财务收支审批人员和审核人员的权限;严格财务审批、呈批、报销程序,对申报的财务事项按照“先批事、后核经费”程序履行审批手续,经有关股(室、局)负责人审核后,办公室财务室再办理财务事项审批、上报和审核、报销事项;建立宣传活动多级审核责任制,加强对宣传事项和宣传内容的审核工作,确保宣传活动不出现导向性错误。 四、强化风险管理,落实工作责任 办公室工作人员在收取文件时,仔细核对清单,从源头上防止文件缺失,对于密级文件,由专管人员将文件亲自送到局领导办公室,并在旁等候,等领导同志阅毕后即收回妥善保管;认真落实出差和会议定点管理规定,积极推行公务卡结算管理制度,按照“先审核出差、会议饭店,再审核报销差旅费、会议费”的程序审批核准、报销差旅费、会议费;严格按照《会计基础工作规范》和《电算化工作规范》进行

软件项目风险的识别与风险的分析

软件项目风险的识别与 风险的分析 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

软件项目风险的识别与风险的分析 摘自—项目管理技术 软件开发项目是一项复杂的工程,涉及的因素很多,风险的管理过程有:风险的识别、风险的管理计划的制定、风险追踪、风险控制。风险识别是风险管理的第一步,而有效的风险分析是进行风险管理的基础,因此做好这2个过程的工作是软件项目成功的关键。 1软件风险的识别 风险识别过程的活动是将项目实施中的不确定性转变为明确的风险陈述。系统地识别风险是这个过程的关键,识别风险不仅要确定风险来源,还要确定何时发生、风险产生的条件,并描述其风险特征和确定哪些风险事件有可能影响本项目。风险识别不是一次性的活动,应当在项目执行过程中自始至终定期进行。 1.1风险识别的依据 从项目管理角度讲,风险识别依据有:合同、项目计划、工作任务分解WBS、各种历史参考资料(类似项目的资料)、项目的各种假设前提条件和约束条件。 从软件开发的生命周期看,每个阶段的输出(各种文档)都是下一阶段进行风险识别的依据,许多技术风险都可据此来分析。 1.2风险识别方法和工具 风险识别的方法很多,不同的方法适用于不同的场合,下表给出了常用的方法的适用情况。

软件项目的风险识别通常采用的工具为: (1)风险核对清单:将可能出现的问题列出清单,然后对照检查潜在的风险。 (2)头脑风暴法:项目成员、外聘专家、客户等各方人员组成小组,根据经验列出所有可能的风险。 (3)专家访谈:向该领域的专家或有经验人员了解项目中会遇到哪些困难。 (4)风险数据库:一个已知风险和相关的信息的仓库,它将风险输入计算机,并分配下一个连续的号码给这个风险,同时维持所有已经识 别的风险历史纪录,它在整个风险管理过程中都起着很重要的作 用。 在实际应用中,风险核对清单是一种最常用的工具,它是建立在以前的项目中曾遇到的风险的基础上。该工具的优点是简单快捷,缺点是容易限制使用者的思路。 1.3风险种类

如何辨识工作风险

如何辨识工作风险 1工作风险识别方法 (1)分析物料性质 ①易燃易爆物质 ②腐蚀和腐蚀性物质 a.电化学腐蚀 b.化学腐蚀性物质 (2)分析作业环境 ①生产性毒物 职工在生产过程中接触的以固体、液体、气体、蒸汽、烟尘等形式存在的原料、成品、半成品、中间体、反应副产物和杂质,并在操作时可经皮肤、呼吸道、消化道等进入人体,对健康产生损害、造成慢性中毒、急性中毒或死亡的物质。 ②生产性粉尘 其危害主要存在于开采、破碎、筛分、包装、配料、混合搅拌、散粉装卸及输送等过程和清扫、检修等作业场所。 ③噪声 ④振动 ⑤电磁辐射 ⑥高温、低温 a.高温危害 高温使劳动效率降低,增加操作失误率。 b.低温危害 低温作业人员受环境低温影响,操作功能随温度的下降 而明显下降。 ⑦采光、照明 作业场所采光、照明不良,易造成标示不清、人员的跌、绊和误操作率增加的现象,因而在危害识别时对作业环境的采光、照明是否满足国家有关建筑设计的采光、照明卫生标准要求作出分析。 ⑧工艺流程或生产条件 工艺流程或生产条件也会产生危险。并且能加剧生产过程中材料的危险性。

如:水就其性质来说没有爆炸的危险,但如果生产工艺的温度和压力超过了水的沸点,那么水的存在就具有蒸汽爆炸的危险。 综上所述,识别危害及环境因素应通过现场观察及所收集的资料,对所确定的评估对象,尽可能识别出实际的和潜在的危害,包括:物(设施)的不安全状态,主要有:可能导致事故发生和危害扩大的设计缺陷、工艺缺陷、设备缺陷、保护措旄和安全装置的缺陷;人的不安全行为,主要有:不采取安全措施、误动作、不按规定的方法操作,某些不安全行为(制造危险状态);可能造成职业病、中毒的劳动环境和条件,主要有:物理的(噪音、振动、湿度、辐射),化学的(易燃易爆、有毒、危险气体、氧化物等)以及生物因素;管理缺陷,主要有:安全监督、检查、事故防范、应急管理、作业人员安排、防护用品缺少、工艺过程等。 2风险识别与风险评估的分析步骤 (1)前期准备 收集整理四种清单:设备、设施清单;作业活动清单;人员(岗位)清单;环境因素清单。 (2)危害分析及评价方法 1)工作(岗位)危害分析法(JHA) 较细致地分析工作过程中存在危害的方法。把一项工作活动分解成几个步骤,识别每一步骤中的危害和可能的事故,设法消除危害。适用于在作业活动、检维修工作中。对作业人员操作活动中潜在危险和危害的识别,同时也适用于岗位人员工作活动中的危害分析。 2)安全检查表分析法(SCL) SCL是基于经验的方法,分析人员列出一些项目,识别与一般工艺设备和操作有关的已知类型的危害、设计缺陷以及事故隐患。适用于对建设阶段、固有设备设施,特别是对单一 设备的危害识别。 3)预危害性分析法(PHA) 在项目发展的初期(如概念设计阶段)识别可能存在的危害,是今后危害性分析的基础。适用于在工程项目或工艺装置等方案开发的初期阶段、设计阶段或建设初期进行的危害识别。

(危险源及风险辨识)办公人员岗位危害因素辨识与预防.doc

(本文档仅供参考用途,所载资料皆来自整理,欢迎大家分享交流) 办公人员岗位危害因素辨识与预防 1、危害因素:吸烟、明火,可能造成火灾。预防措施:严格执行《消防管理规定》,配备消防器材,工作结束后或因故离开工作场所检查火源。 2、危害因素:私自改动供电线路,可能造成触电、火灾隐患。预防措施:办公室内严禁私自用电,严禁乱 接电线。 3、危害因素:办公楼周边车辆违章驾驶,可能造成人员伤亡。预防措施:行走时注意避让过往车辆。 4、危害因素:擦窗户玻璃,可能造成高空坠落。预防措施:登高擦玻璃应采取防护措施。 5、危害因素:拖地时地面积存的积水,可能造成跌伤、积水。预防措施:未干时及时采取防滑措施,并设 置警示。 6、危害因素:办公备用电线路老化、漏电、插座损坏,可能造成触电、火灾隐患。预防措施:机电设备绝 缘良好,对老化的电器及时更换,下班前断电。 7、危害因素:打印机或复印机硒鼓老化或损坏,硒粉泄露、飞扬,可能造成肺部病或者矽肺病。预防措施 购进正规打印机或硒鼓,正确使用和维修、维护。 8、危害因素:高空不明物体坠落,可能造成坠物伤人。预防措施:高层建筑物下行走时注意安全,有坠物 警告区域严禁靠近。 9、危害因素:饮水机热水流出,可能造成人员烫伤。预防措施打水时规范操作,饮水机出现故障严禁使用。 10、危害因素:空调、手机、电脑的使用,电磁辐射影响健康。预防措施:适当采取防辐射措施。 11、危害因素:办公环境不洁,可能造成传染病流行。预防措施及时打扫卫生,适当采取卫生保健措施。 12、危害因素:夏季高温,可能造成中暑。预防措施:及时采取降温措施。 13、危害因素:乘坐通勤车上下车拥挤,可能造成挤伤、摔倒等。预防措施:排队上下车。 1

岗位廉洁风险点识别及防控工作方案

岗位廉洁风险点识别及防控工作方案 一、指导思想 廉洁风险防控工作紧紧围绕企业改革发展中心任务,以加强对权力的制约和监督为核心,以全面风险管理和内部控制制度为依托,以岗位风险防控为基础,旨在建立和完善权责清晰、流程规范、风险明确、措施有力、制度管用、预警及时的廉洁风险防控机制,充分发挥廉洁风险防控对企业健康发展的保障作用,提高预防腐败能力。 二、目标要求 廉洁风险防控就是对重点领域、重要岗位和关键环节可能发生腐败的廉洁风险点,科学评定廉洁风险等级,采取有效管控对策,切实预防腐败行为发生。换言之,廉洁风险防控就是针对思想道德、制度机制、岗位职责、业务流程、外部环境五类风险,通过计划、执行、考核、修正四个环节,建立前期预防、中期监控、后期处置三道防线。通过开展廉洁风险防控工作,找出企业经营管理中的薄弱环节并加以整改,从而达到强化内控、规范管理、促进发展的目的。 三、实施廉洁风险防控管理的对象及主要内容 廉洁风险防控管理的对象:重点是各级领导班子人员、人事、财务、资产、设备物资、经营管理、市场营销等关键岗位管理人员;

廉洁风险防控的领域,重点是对“三重一大”决策、工程招投标、业务外包、薪酬管理、选人用人、营销采购、财务管理、境外资产管理等业务事项风险的防控;廉洁风险防控的环节,重点是对企业经营管理中的决策权、执行权、监督权进行科学分解、合理配置和有效约束,不断创新经营管理模式,优化业务流程,突出对业务流程关键点、内部控制薄弱点的防控。 四、组织领导 廉洁风险防控工作实行党委统一领导,党政齐抓共管,纪委组织协调,部门各负其责的领导机制。 在党委统一领导下,成立由党政主要领导为组长、纪委书记为副组长、班子成员为成员的廉洁风险防控领导小组,领导小组下设办公室,办公室设在党群办(所属各单位设在综合办),办公室主任由党群办(各单位综合办)主任担任,各部门负责人担任成员。 五、实施步骤 (一)集中学习,强化认识阶段(6月25日-7月5日)及所属各单位要组织广大党员干部、重要岗位人员进行集中学习,明确开展廉洁风险防控工作的重要性,掌握方法步骤,了解工作要求,积极主动地参与到此项工作中来。 (二)岗位廉洁风险点识别阶段(7月5日-8月31日) 1、梳理岗位职责。各部门、各单位要明确所承担工作

第二节 项目风险的识别与分析

第二节项目风险的识别与分析 一、项目风险识别 二、项目风险分析与评价 风险分析包括对风险事件发生概率的估计和影响程度的估计。风险分析与评价可以采用定性和定量两类方法。定性的风险评价方法有专家打分法、层次分析法等,作用在于区分出不同风险的相对严重程度以及根据预先确定的可接受的风险度作出相应的决策。定量的风险评价方法包括敏感性分析、盈亏平衡分析、决策树、随机网络、蒙特卡罗模拟法等。(一)风险衡量 风险衡量包括风险量的衡量和风险影响的衡量。 1.风险量衡量 风险量是指各种风险的量化结果。风险量的大小取决于风险发生的概率和该风险的潜在损失。即: R=f(p,q) 其中:R为风险量;p为风险发生的概率;q为风险造成的潜在影响。 风险量的另一个相关概念是等风险量曲线,即由风险量相同的风险事件形成的曲线。等风险量曲线的形式见图8-5。

2.风险影响衡量 项目风险影响是指风险发生对项目目标实现造成的影响,工程中一般只涉及负面影响,包括进度延期、费用超支、质量事故、环境事故、安全事故等,风险影响衡量就是要了解风险影响的情况以及造成风险的责任方。 (二)风险分析与评价的程序 风险分析与评价的程序如下: (1)风险事件在确定时间周期内发生的可能性,同时估计这些风险造成负面影响的情况; (2)根据风险事件发生的数量和负面影响严重程度估计总损失额的大小; (3)预测风险事件发生的次数和负面影响严重程度、总损失额度等。 (三)风险事件发生概率的分析与评价 风险概率分析的方式有定性和定量两种方式。 定性方式可以将风险概率表示为“计划为零”、“很小”、“中度”、“一定的”、“较大”等形式,项目风险导致的损失大小也相对划分为重大损失、中等损失和轻度损失,这样可以在图8—6所示的风险等级图的坐标系中对风险进行定位,反映风险量的大小。

企业安全风险辨识分级管控程序

X限公司 XXXXXXXX有 程序(规范)文件 企业安全风险辨识分级管控程序 AQCX 编制XXXX 受控状态受控 审核XXXXX 复审XXXXX 批准XXXXXXX 版本号01页数11 发布日期:实施日期:

1.0总体要求、目标、基本原则、编制依据 1.1.总体要求 严格贯彻执行《中华人民共和国安全生产法》及《中共中央国务院关于推进安全生产领域改革发展的意见》(中发〔2016〕32号)、等相关规章制度要求,结合X限公司实际生产安全管理标准化建设需求,制定本管理程序。 XXXXXXX有 公司职能部门:生产科、XXXX等部门及人员积极按照公司部署,完成本部门、本业务范围内的风险点识别、风险分级及风险评价,对评价结果负责。 1.2.目标 根据相关法规和制度结合公司实际,完成安全生产标准化建设及企业安全生产风险分级管控与隐患排查治理体系的建设,全面实施安全管理原则,突出风险预控、关口前移,构建安全风险分级管理和隐患排查治理体系,推进事故预防工作科学化、信息化、标准化,实现把风险控制在隐患形成之前、把隐患消灭在事故前面,做到有效遏制生产安全事故的发生,保障员工生产财产安全。 1.3.基本原则 必须严格按照“安全风险分级管理、分级负责”、“管生产及业务必须管安全” 的原则,坚持统一指导、分级推进、全面实施、持续改进的基本原则,从而充分 发挥各部门基层专业技术人员的主导作用。 1.4.编制依据 安委办〔2016〕11号《国务院安委会办公室关于实施遏制重特大事故工作指南 构建双重预防机制的意见》 国家安全生产监督管理总局令第70号《企业安全生产风险公告六条规定》 《江苏省防范遏制重特大事故构建双重预防机制实施办法》 《深入推进全市企业安全风险辨识管控工作方案》 《XXXX工贸企业安全风险辨识管控工作验收评分细则》 《深入推进全市企业安全风险辨识管控工作方案》 《海门市安全风险分级管控实施意见工作》 《海门市安全风险分级管控实施意见工作》 《进一步推进全区企业安全风险辨识管控工作》 江苏省安监局关于进一步加强企业安全风险分级管控和隐患排查治理的双重预

安全风险预警防控工作体系.

宣威市必昌矿业有限公司双道沟煤矿安全风险防控工作体系 双道沟煤矿 2016年 10月 宣威市必昌矿业有限公司双道沟煤矿安全风险管控工作体系 煤矿安全风险管控管理体系以危险源辨识和风险评估为基础, 以风险管控为核心,以不安全行为管控为重点,通过制定针对性的管控标准和措施,达到“人、机、环、管”的最佳匹配,从而实现煤矿安全生产。其核心是通过危险源辨识和风险评估,明确煤矿安全管理的对象和重点;通过保障机制,促进安全生产责任制的落实和风险管控标准与措施的执行;通过危险源监测监控和风险管警,使危险源始终处于受控 状态。 一、总体要求、目标与原则 根据上级政府主管部门的指示要求,结合双道沟煤矿的实际,煤矿安全风险分级管控体系建设。 (一、总体要求:按照“全员参与,领导负责,职责明确,落实到位”的原则进行安全风险分级管控体系建设。结合煤矿实际情况, 严格落实,做到“全员、全过程、全方位、全天候”的风险管控模式。 (二、工作目标:通过开风险辨识、风险分级工作, 并通过建立风险管控体系做到有效遏制生产事故发生, 保障员工生产财产安全。(三、基本原则:坚持“统一指导、标杆示范、标准先行、分级推进,全面实施、持续改进”的基本原则,充分发挥各专业技术人员的主导作用和现场作业主动防控作用,全面落实企主体责任。 二、组织领导 煤矿成立安全风险分级体系领导小组: 组长:瞿国宪(矿长

副组长:李启荣 (技术负责人、瞿明松 (安全副矿长、朱尤廷 (生产副矿长、徐文平(机电副矿长 成员:夏福才、唐前新、段世泽、张玄、朱勋龙、徐文平 领导小组下设办公室在安全办公室, 总工程师段世泽兼任办公室主任。 三、职责分工 双道沟煤矿建立以矿长为第一责任人, 分管副矿长在业务范围内地区检查分析评估管控安全风险的工作体系,具体职责如下: 矿长(组长职责:负责安排安全风险分级体系建设的总体工作, 对安全风险防控主体建设负总责,督促并安排办公室成员做好组织、协调、计划、实施、总结、归纳、汇总等过程的工作,负责考核各责任人责任落实情况。 副矿长 (副组长职责:具体落实安全风险分级体系建设过程中的具体工作,完成各自区域内的风险点识别、风险分级及风险评价,对评价结果负责。 总工程师(办公室主任职责:具体负责体系建设工作组织协调、过程培训、技术指导,完成煤矿安全风险分级管控文件编制,对体系建设过程中各部门提出奖惩建议。 其它人员 (职能科室负责人、班组长 :按照“ 分级管理、分线负责” 、“ 管业务必须管安全” 的原则,煤矿生产、工艺、设备、电气等部门及人员积极按照煤矿部署,完成本部门、本矿范围内的风险点识别、风险分级及风险评价,对评价结果负责。 四、工作要求 1、矿长每年度要组织到矿长、职能科室负责人、班组长、专业技术人员认真做好年度辨识评估,组织制定年度工作方案,结合本矿井的灾害因素和工艺环节, 设施设备进行辨识评估, 编写辨识评估报告, 并根据辨识结果认真采取防控措施;在生

相关主题
文本预览
相关文档 最新文档