当前位置:文档之家› 基于三维动态捕捉系统和Matlab的穿戴式下肢外骨骼步态分析

基于三维动态捕捉系统和Matlab的穿戴式下肢外骨骼步态分析

基于三维动态捕捉系统和Matlab的穿戴式下肢外骨骼步态分析
基于三维动态捕捉系统和Matlab的穿戴式下肢外骨骼步态分析

嵌入式人体步态自动识别系统

嵌入式人体步态自动识别系统 早期的医学研究指出: 人的步态中有24种不同的成分,如果把这24种成分都考虑到,则步态是为个体所特有的。有关研究人员近些年来通过对人的步态分析,已经得出了在步态视频序列中含有人的身份信息,因此进行步态识别也是一种非常重要的生物识别技术。步态识别是近年来越多的研究者所关注的一种较新的生物认证技术,它是通过人的走路方式来识别人的身份。基于步态的身份认证识别技术相对于其它生物识别技术有如下优点: 远距离识别、识别对象的被动性、不易被隐藏、不易被察觉、应用领域广阔等,步态识别技术最近已经备受关注,并且已经取得了一些初步成果。如美国国防部研究项目署(DARPA)2000年的重大项目一HID(human identification at adistance)计划,其目的就是开发多模态视觉监控技术以实现远距离情况下人物的检测、分类和识别。中科院自动化研究所模式识别国家重点实验室近年也开始了对步态识别的研究,而且创建了NLPR步态数据库。虽然步态识别是一个新兴的研究领域,但是近年来已经涌现出了一些尝试性的工作。最早提出步态识别算法的是Niyogi与Adelson等人。Cunado和Nixon等人提出了一种基于模型的特征提取分析方法,VHT(velocity hough transform)。Kale等人将行人的外轮廓宽度作为图像特征,提出了一种依赖于角度的识别方法。而Johnson和Bobick 提出了一种不依赖于角度的步态识别算法。Sarkar等人提出了步态识别的基线算法。Lee等人提出了一种基于步态外形的表达方法,其具体做法是先将人体的各个部分映射到几个椭圆组成的模型上,然后用其质心位置和离心率作为步态特征来进行步态识别。Wang等人提出了一种简单有效的、基于人体运动轮廓的识别算法。值得注意的是,步态识别的研究尚处于初级阶段,表现在: a.实验都是在特定的环境下进行的,比如相对简单固定的背景,人相对于摄像机侧面行走,摄像机固定不动等;b.算法的评估都是在小样本数据库上进行的,而且数据库也不规范。迄今为止,针对步态识别所进行的研究几乎全部是基于PC机的,而在许多情况下,却需要非PC机环境,所以研究基于嵌入式平台的步态识别系统,具有一定的工程意义。本系统的功能是对采集到的步态视频序列进行图像处理,得到视频序列中的人体步态信息,再由步态算法根据

BTS-G-WALK三维步态分析评估系统

BTS G-WALK三维步态分析评估系统 BTS G-WALK三维步态分析评估系统由惯性传感器组成,传感器的组件包含了三维加速计,磁感应器和三维回旋器,可以放在第五腰椎位置进行功能性步态分析。系统可以根据测得的数据进行诊断及训练方案制定,可以迅速进入测试,并自动生成测试报告。 BTS G-WALK具有完善的步态及骨盆运动分析软件系统,可以方便又有效的对神经损伤以及骨科疾患患者进行功能性评估,同时可以对运动能力和治疗结果进行客观分析。 骨盆的运动学分析系统提供了常用运动步态常量,特别是关于骨盆前后旋转,对抗后倾以及侧屈的信息提示。与正常参量对比系统会自动将生成的数据与正常参量做对比,并直观的显示出患者评估与正常均值之间的差异。 传感器 跑台测量 应用程序和软件特点: 测量三维步态常量 速度节奏步长歩宽步态周期支撑期摆动期单腿和双腿支撑 神经性疾患应用领域轻偏瘫步态的典型特征为速度,节奏减慢,步长缩短。 正常值轻偏瘫患者值 速度68.5+/-6.7m/min44.0+/-22.9m/min 步频102.8+/-5stps/min84.8+/-22.4stps/min 步长 1.3+/-0.1m1.1+/-0.6m 帕金森疾患三维步态分析:支撑期和摆动期 预防老年性摔倒步速,跨步长以及双腿支撑时间均值与正常参考值之间的对比,是预防老年性摔倒一个重要的评估要素。 关节术后三维步态分析可记录关节功能恢复程度,假肢负载情况以及异常姿势矫正等问题的重要量化信息。 传感器类型 三维加速计,配灵敏计(±1,5g,±6g) 三维磁感器 三维回旋器,配灵敏计(±300gps±1200gps) 电池可通过USB口充电,使用时长18/24H

动态规划-图论

§1动态规划模型 如图所示,给定一个线路网络,两点之间连线上的数字表示 两点间距离,试求一条从A到E的路线,使总距离为最短。Mattlab求解: 首先利用Excel建立两个工作表edge和n分别存储图的上三 角阵和顶点数量。其中edge= 99999 5 2 99999 99999 99999 99999 99999 99999 99999 99999 99999 3 7 99999 99999 99999 99999 99999 99999 99999 99999 6 3 99999 99999 99999 99999 99999 99999 99999 99999 99999 6 99999 99999 99999 99999 99999 99999 99999 99999 3 8 99999 99999 99999 99999 99999 99999 99999 99999 1 99999 99999 99999 99999 99999 99999 99999 99999 99999 3 99999 99999 99999 99999 99999 99999 99999 99999 7 99999 99999 99999 99999 99999 99999 99999 99999 99999 n=9,然后在Matlab调入以上数据。同时将自编的动态规划 软件“dynamic.m”调入当前目录之中,在Matlab命令窗口

输入dynamic,回车后则在窗口显示出路径Path 和距离distance §2 最小生成树 例1 某工厂要架设局域网联通工厂各个部门。已知工厂有7个部门,各个部门间铺设网线的距离如上图所示,计算出铺设网线的最短距离。 Matlab 的算法: 首先,将上图的邻接矩阵存储为G ,顶点数存储为N ;即:G= 99999 50 60 99999 99999 99999 99999 50 99999 99999 65 40 99999 99999 60 99999 99999 52 99999 99999 45 99999 65 52 99999 50 30 42 99999 40 99999 50 99999 70 99999 99999 99999 99999 30 70 99999 99999 99999 99999 45 42 99999 99999 99999 2 5 3 1 4 7 6 50 60 45 65 52 40 50 70 30 42

三种动作捕捉系统解决方案的对比分析

三种动作捕捉系统解决方案的对比分析 2016年,全球范围内VR商业化、普及化的浪潮正在向我们走来。VR是一场交互方式的新革命,人们正在实现由界面到空间的交互方式变迁,这样的交互极其强调沉浸感,而用户想要获得完全的沉浸感,真正“进入”虚拟世界,动作捕捉系统是必须的,可以说动作捕捉技术是VR产业隐形钥匙。 目前动作捕捉系统有惯性式和光学式两大主流技术路线,而光学式又分为标定和非标定两种。那么我们可以将动作捕捉系统分为以下三大主类:基于计算机视觉的动作捕捉系统(光学式非标定)、基于马克点的光学动作捕捉系统(光学式标定)和基于惯性传感器的动作捕捉系统(惯性式)。接下来我们对这三种形式的动作捕捉系统进行简单的解析。 1.基于计算机视觉的动作捕捉系统 该类动捕系统比较有代表性的产品分别有捕捉身体动作的Kinect,捕捉手势的Leap Motion 和识别表情及手势的RealSense实感。 该类动捕系统基于计算机视觉原理,由多个高速相机从不同角度对目标特征点的监视和跟踪来进行动作捕捉的技术。理论上对于空间中的任意一个点,只要它能同时为两部相机所见,就可以确定这一时刻该点在空间中的位置。当相机以足够高的速率连续拍摄时,从图像序列中就可以得到该点的运动轨迹。这类系统采集传感器通常都是光学相机,基于二维图像特征或三维形状特征提取的关节信息作为探测目标。 基于计算机视觉的动作捕捉系统进行人体动作捕捉和识别,可以利用少量的摄像机对监测区域的多目标进行监控,精度较高;同时,被监测对象不需要穿戴任何设备,约束性小。然而,采用视觉进行人体姿态捕捉会受到外界环境很大的影响,比如光照条件、背景、遮挡物和摄像机质量等,在火灾现场、矿井内等非可视环境中该方法则完全失效。另外,由于视觉域的限制,使用者的运动空间被限制在摄像机的视觉范围内,降低了实用性。 2.基于马克点的光学动作捕捉系统

步态观察分析表

步态观察分析表(1)

、 步态观察分析表(2)

观察顺序由远端至近端,即从足、踝关节观察开始依次评价膝、髋关节、 骨盆及躯干。在评价每一个部位时,应对按步行周期中每一个环节的发生顺序进行仔细地观察,如从首次着地作为评价的起点。先观察矢状面,再从冠状面观察患者的行走特征。 步态分析是生物力学领域里的一个特殊分支学科,是一个新兴的跨学科的研究领域,是一门综合多种学科的当代生物医学的一项高新技术。步态分析实际上就是利用生物力学,运动学,人体生理学,人体解剖学,生物工程学,计算机学,电子学,精密机械工程学,自动化控制学及数字图像处理技术等多种跨学科知识,对人体行走的功能状态进行对比分析的一种生物力学的方法。 一、步态分析方法 步态分析的方法包括录像分析、三维步态分析、力台分析。录像分析中又包括定性分析和半定量分析,而三维步态分析和和力台分析为定量分析,需要使用高科技专用设备。下面我们先介绍步态的定性分析。 二、定性分析 (一)概述定性分析通常采用目测观察获得第一手资料,通过与正常步态进行比较,并结合以往的临床经验来认识异常步态的特征,对步态进行定性分析是目前临床中最常用的手段。了解病史和体检有助于诊断和鉴别诊断。 1. 了解病史通过了解病情,可以获知有关疼痛、肌无力、关节不稳等方面的主诉, 了解既往有关神经系统疾患或骨关节疾患病史等 2. 体检体检包括与行走动作有关的身体各部位(特别是下肢)的肌力、关节

活动 度、肌张力、本体感觉以及周围神经检查。体检有助于对步态障碍的发生原 因进行鉴别诊断 3. 观察步态 ( 1 )观察内容:步态的总体情况识别步行周期的时相与分期特点观察身体各部位的情况 ( 2 )观察方法确定观察角度观察具体步态的形成步态目测观察表的 内容 (二)定性分析的优缺点 优点:不需要昂贵的设计,评价快速方便。 缺点:结果具有一定的主观性,与观察者的观察技术水平和临床经验有着直接关系。 检查者难以准确的在短时间内完成多部位、多环节的分析,由于属定性分析,不能够进行量化,所以不利于进行学术交流。 (三)注意事项 观察场地内光线要充足,检查时被检查者应尽量少穿衣服,以便于观察患者的真实表现。依次观察某一个关节在站立相和迈步相各个环节中的表现,并按照踝、膝、髋、骨盆和躯干等顺序逐一进行观察,为了减少病人的观察时间,我们应采用录像分析法,这样可以反复播放病人的行走情况,便于细致观察。三、量表评定 Holden 功能行走分级、Wisconsin 步态量表、Tinetti 步态量表、限时站起和行走测验

动态计划求解方法的Matlab实现及应用[]

动态规划求解方法的Matlab实现及应用[1].txt我自横刀向天笑,笑完我就去睡觉。你的手机比话费还便宜。路漫漫其修远兮,不如我们打的吧。第 %卷第 ,期信息工程大学学报 S>:+% <>+, !""’年 >月 T>8D3F: >C 53C>DEFB2>3 G3?23@@D23? 032H@DA2BI 6@N+!""’ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! 动态规划求解方法的 !"#$"%实现及应用 于斌,刘姝丽,韩中庚 <信息工程大学信息工程学院,河南郑州 #’"""!) 摘要:文章对动态规划问题的求解方法进行了分析研究,根据问题的特点、难点和关键点做了 针对性的处理,然后用 !"#$"%做了实现尝试,从而实现了“最佳组队”和“最短路线”等问题的 求解。实践证明所采用方法和程序都是有效的。 关键词:动态规划;基本方程;!"#$"%实现;最佳组队 中图分类号:* !!&+,文献标识码:-文章编号:&%.& $ "%.,

$ "# !"#$"% &’"$(>"#(*+ *, #-’ ./+"0(1 23*43"00(+4 5663*"1-"+7 8#9 566$(1"#(*+ /0 123,450 6789:2,。-< =7>3?9?@3? <53AB2B8B@ >C 53C>DEFB2>3 G3?23@@D23?,53C>DEFB2>3 G3?23@@D23? 032H@DA2BI,=7@3?J7>8 #’"""!,K723F) 5%9#3"1#:1I F3F:IJ23? F3L 23H@AB2?FB23? B7@ LI3FE2M ND>?DFEE23? FNND>FM7,F3 @CC@MB2H@ L2AN>AF: 7FA O@@3 L>3@

手功能三维动作捕捉分析系统

手功能三维动作捕捉分析系统

用途: 手在人日常生活、工作中发挥重要作用。我国上肢残疾并伴功能障碍者超过400百万人,绝大部分为手功能障碍。此外临床因截肢、骨折、周围神经损伤、中枢神经损伤等引发的手部疼痛和瘫痪发生率较高。手的感觉、运动功能障碍将严重影响患者的生活质量,同时给患者家庭和社会带来沉重的负担。本产品通过三维捕捉技术,镜像患者手功能状态,给 予准确的评估,指导患者应用有效的康复技术进行康复训练。 能大大改善患者手感觉、运动功能障碍,降低致残率,提高患者的生活质量;将会减少社会对这些患者的支出(减少了医疗费用,护理费用,社会助残费用,家庭成员误工费用,残疾人用具费等),同时使工作年龄段的患者更多的重返工作岗位,变为生产力,所以既有较好的社会效益又有良好的经济效益。 镜像疗法: 镜像视觉反馈作为直接的中枢刺激手段,具有较好刺激靶向性,能特定地激活大脑运动、感觉皮层,达到康复治疗目的。 双侧上肢训练: 大脑皮质间抑制的正常化、开发同侧运动通路及神经反馈有关,对于双手协调性运动和单侧运动中患手的表现有较好疗效。 运动想象疗法: 通过视觉和听觉回路的主动式想象,以接受认识再接受到认识的循环往复过程,进行强化训练,以增强患者的感觉信息回路传输到大脑信号,调节病变受损的神经突触功能,使其活化,并促使再生,在训练过程中始终贯穿模拟想象运动。 虚拟现实技术: 提供虚拟场景和虚拟对象并允许用户和虚拟对象间进行交互式操作,实现逼真的视觉、触觉等反馈信息,目前将虚拟现实游戏引入脑卒中患者的功能训练。 镜像疗法: 镜像视觉反馈作为直接的中枢刺激手段,具有较好刺激靶向性,能特定地激活大脑运动、感觉皮层,达到康复治疗目的。 双侧上肢训练: 大脑皮质间抑制的正常化、开发同侧运动通路及神经反馈有关,对于双手协调性运动和单侧运动中患手的表现有较好疗效。 运动想象疗法: 通过视觉和听觉回路的主动式想象,以接受认识再接受到认识的循环往复过程,进行强化训练,以增强患者的感觉信息回路传输到大脑信号,调节病变受损的神经突触功能,使其活化,并促使再生,在训练过程中始终贯穿模拟想象运动。 虚拟现实技术: 提供虚拟场景和虚拟对象并允许用户和虚拟对象间进行交互式操作,实现逼真的视觉、触觉等反馈信息,目前将虚拟现实游戏引入脑卒中患者的功能训练。 特点: l 一体移动式台车设计, 方便转运 l 高度可调,满足不同 体型患者 l 双屏显示:患者与治 疗医师分屏操控 l 人体工学底座设计, 便于轮椅患者 主要适用人群: l 截肢,幻肢痛 l 外周或中枢神经损伤(脑卒中、脑外伤、周围神经损伤) l CRPS (慢性区域性疼痛综合征) l 感觉过敏或者是感觉迟钝的病人 l 手外伤术后治疗

正常步态下距骨三维有限元模型的建立

正常步态下距骨三维有限元模型的建立 摘要: 目的:建立一个具有高度几何相似性的足踝部三维有限元模型,并用此模型静态地分析人体不同步态相时距骨的生物力学特性,量化距骨的应力-应变状况。 方法:基于志愿者足的三维CT扫描数据,利用Mimics13.0、Geomagic10.0软件对足踝相关组织进行几何重建,导入Hypermesh10.0软件中进行网格划分,赋予材料属性,最后导入相)时的受力状况,进行有限元分析。 结果:建立距骨及周围结构的三维有限元模型,共21865个节点、73440个单元,具有较好的几何相似性。正常步态中从落地相到离地相中等效应力峰值在距骨滑车分别为3.0 MPa、4.3 MPa、4.8 MPa;在距骨颈分别为1.3 MPa、1.9 MPa、2.8 MPa;在距舟关节分别为2.8 MPa、3.0 MPa、3.4 MPa;在距下关节分别为2.2 MPa、1.8 MPa、1.5 MPa。 结论:本研究中创建的三维有限元模型,经验证是一个正确可靠的模型,可以帮助临床医生和其他研究人员更好的理解正常步态下距骨的许多生物力学特性。 关键词:距骨;生物力学;有限元分析;步态 引言: 距骨具有独特的解剖结构和功能,无肌肉附着,大部分骨质被关节软骨面包围,是人体重力传至足部的枢纽,故有“骨半月板”之称[1]。人体在行走时,足踝的生物力学变化比较复杂,因此研究正常步态下距骨生物力学变化较为困难。全面了解距骨在正常步态下的应力分布可以为我们研究距骨生理学和病理学提供十分有用的信息,理解距骨在正常步态下力的传递对足的损伤及治疗有重要意义。活体组织研究能得到较为精确数据,但因伦理学的原因受到限制。随着计算机技术和有限元理论的不断发展,人们开始大量使用数值模型和有限元法分析复杂的结构。与以往的生物力学实验相比,有限元方法可以建立高度几何相似及物理相似的有限元模型,既可以反映区域性力学特性,有可以反映整体信息;既可以进行精确的数字分析,有可以进行形象的、直观的定性研究。有限元分析方法的最大特点是对生物体的无损伤,可以模拟活体组织内部的生物力学行为,完成其他研究方法所不能实现的加载方式及约束条件,得到客观实体实验所难以得到的研究结果。可以通过改变载荷加载方式、改变材料特性等方法进行个体化受力分析,研究省时快捷,费用低廉,应用面广。本研究基于CT数据建立距骨及周围结构的三维有限元模型,分析不同步态下距骨结构的应力变化,以期为距骨生物力学研究提供新的研究手段。 1材料与方法 1.1数据收集:男性志愿者1名,25岁,身高170 cm,体质量60kg。先行X线检查, 排除足部肿瘤、畸形等其他病变,进行右足踝部64排螺旋CT平扫,层厚0.45 mm,数据以DICOM格式输出保存。1.2有限元模型建立CT扫描的数据导入三维重建软件Mimics13.0,通过阈值分开骨组织及软组织,建立距骨及周围结构的几何模型,输出为STL文件。然后导入逆向工程软件Geomagic Studio10.0中,对模型进行除噪点、平滑,根据各关节面的几何形状,在各骨面上划分软骨边界,最后拟合曲面,输出为Iges格式。再导入有限元前处理

三维步态分析在骨科康复等临床医学的应用

三维步态分析在骨科康复等临床医学的应用 作者:刘安民先生,英国曼彻斯特索尔福德大学健康学院研究员 一步态分析研究的历史 行走是人类最基本的运动,行走的姿态可分为不同的类型。步态分析是一门有关人行走过程中, 体态, 骨骼间(关节) ,肌肉与肢体,以及肢体与外界物体间相对运动,力学关系的分析方法。步态分析是固体力学在生物系统应用(即生物力学)的典型范例。 人类对动物及自身姿态及运动的兴趣和研究起源可以 上溯到公元前三个多世纪的亚里士多德。他的‘动物的行走’被广泛认为是人类有关包括自身在内的动物行走研究的最 早专著。文艺复兴时期的艺术家达分奇被认为是生物力学的先驱之一,因为他首次在力学环境下研究人的骨骼解剖结构。十七世纪的法国物理家勒内·笛卡尔最早提出人和所有动物的行走都遵循统一的力学法则,他的这一思想对促进和推动生物力学的持续发展起到了重要作用。同一时期的意大利物理家乔瓦尼·阿方索·博雷利接受了这一思想,并对鸟和鱼等走,跑、跳、飞和游等动作进行了研究,他甚至在力学框架内研究了心脏的活塞运动。确定人体重心的位置,测量出吸和呼的空气量,并指出吸气是肌肉收缩造成,而呼气

是由于身体组织弹性造成。博雷利首次阐明骨肌系统的杠杆结构对运动而不是力本身的放大作用。肌肉必须产生足以克服运动阻力的力才能实现运动。受伽利略影响,他在牛顿三大定律发表前便建立了直观了解关节静力平衡规律的方法。 运动是生物力学的重要组成部分,有关动物运动及人类步态的研究随着工业革命的开始得到进一步发展,首先,著名的德国爱德华·韦伯和威廉·韦伯兄弟正式系统地对人类行走进行了研究,1836年合著了‘人类行走力学’。随后, 相机的发明对生物运动学产生了巨大推动作用。该时期的法国生理学家艾蒂安·朱尔斯·马雷在专著‘动物机械原理’中,提出了动物,人和机器都遵守同一物理法则,人体仅是有生命的机器的理论。他利用自己发明的步枪式连拍照相机成功记录了鹈鹕等多种鸟,动物及人的动作。英国人爱德华·迈布瑞奇(与其同龄,同与1904去世)几乎于同一时期在美国利用多架相机,成功捕捉了奔马连续动作的多幅照片,不仅证明马在奔跑的过程中会产生四蹄离地的瞬间,而且证明了法国人马雷理论的正确性。这二位开创性的工作使得他们被后人尊为生物力学的先驱。他们采用的联系动作连拍摄影的方法到目前为止还是步态分析的重要组成部分。 上个世纪四十年代,二战造成的众多伤残人员对假肢的大量需求促进了步态分析的研究。当时的假肢无论在设计和临床应用都没有成熟的步态生物力学理论可寻。每个残疾人

动态规划 销售人员分配问题(matlab编程)

数学规划课程设计 题目:销售人员费配问题 姓名: 学号: 成绩: 2011年6月

销售人员费配问题 摘要:动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法,本论文通过对动态规划的基本概念和基本思路,并利用Matlab对动态规划中的销售人员分配问题进行了分析,然后利用Matlab语言进行了程序设计和计算,是复杂问题简单化,避免了繁琐的计算,从而使问题能跟方便地得到解决。 关键词:动态规划销售人员分配问题Matlab语言

一、问题重述 某企业甲、乙、丙三个销售市场,其市场的利润与销售人员的分配有关,现有6个销售人员, 二、问题分析 首先我们对设备的分配规定一个顺序,即先考虑分配给甲市场,其次乙市场,最后丙市场,但分配时必须保证企业的总收益最大。 将问题按分配过程分为三个阶段,根据动态规划逆序算法,可设: 1、阶段数k=1,2,3(即甲、乙、丙三个市场的编号分别为1,2,3); 2、状态变量x k 表示分配给第k 个市场至第3个市场的人员数(即第k 阶段初尚未分配的人员数); 3、决策变量u k 表示分配给第k 市场的人员数; 4、状态转移方程:x k+1=x k -u k ; 5、g k (u k )表示u k 个销售人员分配到第k 个市场所得的收益值,它由下表可查得; 6、f k (x k )表示将x k 个销售人员分配到第k 个市场所得到的最大收益值,因而可得出递推方程: f k (x k )= 6 ,...,1,0max =k u [ g k (u k )+ f k+1(x k -u k )],k=1,2,3 f 4(x 4)=0 三、问题求解 1)k=3时,市场丙的分配方案和总收益. 最大收益:f 3(x 3)=6 ,...,1,0max 3=u [g 3(x 3)]

3DSuit三维人体运动捕捉传感器

3DSuit三维人体运动捕捉传感器 ?公司名称: ?发布日期: ?所在地: ?生产地址: ?已获点击: ?北京星网宇达科技开发有限公司 ?2007-8-28 ?美国 ?3200 3DSuit工作原理: 17个惯性动态传感器每个都包括陀螺,加速计和磁力计。它可以感应绕3轴的旋转,通过复杂的算法来计算横滚俯仰和航向。通信设备包括传感器输出的数据,并计算四肢相对“主心骨"的位置。同时运用特别的算法来帮助计算主心骨相对地面的位置。所有数据将通过蓝牙传送到电脑。3DSuit 软件处理并传输数据到3D动画软件。所有步骤都在动态中用最小时间间隔完成,真正做到实时实动。 3D suit说明(中文版) >> 产品介绍>> 3DSuit动作捕捉采用17个OSV3惯性传感器,可以对人体主要骨骼部位的运动进行实时测量。 3DSuit动作捕捉系统可根据反向运动学原理测算出人体关节的位置,并将数据施加到相应的骨骼上。由于动作捕捉惯性传感器主要依赖无处不在的地球重力和磁场,所以运动捕捉服在任何地点都可以正常使用,无需事先作任何准备工作。 物理惯性传感器和连接线的外壳具有温度补偿和防水的特性,适合在水下、雨中、或冷热气候中使用,只要是有生物的地方,运动捕捉服都可以正常使用。

一、可选三种套装样式: 1. 系带套装: 使用者的每个身体部位单独安装捕捉装置,提高了灵活性,适合不同体型的人士使用。 2. 内置式套装: 在运动捕捉服袖子的内部,上下两端均缝制有传感器口袋,传感器口袋中装有传感器,连接线则在外部走线。 3. 全身套装: 定制式全身套装的传感器和线缆均为嵌入式。捕捉服可水洗,使用极其方便,可以快速安装并且开始工作。 二、3DSuit 惯性动作捕捉系统特点: ● 灵活性: 不受光线束缚,您不再需要固定场所的动作捕捉工作室,无论何时何地都能操作使用 ● 高性价比:

最优化方法的Matlab实现(公式(完整版))

第九章最优化方法的MatIab实现 在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。 用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容: 1)建立数学模型即用数学语言来描述最优化问题。模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。 2)数学求解数学模型建好以后,选择合理的最优化方法进行求解。 最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。 9.1 概述 利用Matlab的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。 具体而言,包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题。另外,该工具箱还提供了线性、非线性最小化,方程求解,曲线拟合,二次规划等问题中大型课题的求解方法,为优化方法在工程中的实际应用提供了更方便快捷的途径。 9.1.1优化工具箱中的函数 优化工具箱中的函数包括下面几类: 1 ?最小化函数

2.方程求解函数 3.最小—乘(曲线拟合)函数

4?实用函数 5 ?大型方法的演示函数 6.中型方法的演示函数 9.1.3参数设置 利用OPtimSet函数,可以创建和编辑参数结构;利用OPtimget函数,可以获得o PtiOns优化参数。 ? OPtimget 函数 功能:获得OPtiOns优化参数。 语法:

【CN110633005A】一种光学式无标记的三维人体动作捕捉方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910262689.8 (22)申请日 2019.04.02 (71)申请人 北京理工大学 地址 100081 北京市海淀区中关村南大街5 号 (72)发明人 陈文颉 游清 李晔 陈杰  窦丽华  (74)专利代理机构 北京理工大学专利中心 11120 代理人 高燕燕 (51)Int.Cl. G06F 3/01(2006.01) G06N 3/04(2006.01) (54)发明名称 一种光学式无标记的三维人体动作捕捉方 法 (57)摘要 本发明提供一种光学式无标记的三维人体 动作捕捉方法,解决了传统非光学式及光学式有 标记人体动作捕捉方法对人体运动的束缚问题, 并在一定程度上减少了单次人体动作捕捉的所 用时长。包括:利用不同关节点的位置与其和真 实人体的对应关系,确定人体关节点编号和各个 关节点之间的连接关系;利用深度卷积神经网 络,结合所述编号和连接关系,进行多角度人体 图像的二维关节点提取以及关节点之间肢体骨 骼连线,得到人体关节点的二维坐标信息;利用 不同坐标系之间的转换关系以及所述人体关节 点的二维坐标信息,绘制出三维空间中的人体骨 架模型,使该骨架模型反映出三维空间中真实的 人体姿态运动信息,便于后续将该动作捕捉方法 用于人体运动分析领域。权利要求书1页 说明书6页 附图3页CN 110633005 A 2019.12.31 C N 110633005 A

权 利 要 求 书1/1页CN 110633005 A 1.一种光学式无标记的三维人体动作捕捉方法,其特征在于,包括: 利用不同关节点的位置与其和真实人体的对应关系,确定人体关节点编号和各个关节点之间的连接关系; 利用深度卷积神经网络,结合所述编号和连接关系,进行多角度人体图像的二维关节点提取以及关节点之间肢体骨骼连线,得到人体关节点的二维坐标信息; 利用不同坐标系之间的转换关系以及所述人体关节点的二维坐标信息,绘制出三维空间中的人体骨架模型,使该骨架模型反映出三维空间中真实的人体姿态运动信息,便于后续将该动作捕捉方法用于人体运动分析领域。 2.如权利要求1所述的方法,其特征在于,所述关节点增加了人体双脚脚尖这两个关节点。 3.如权利要求2所述的方法,其特征在于,所述关节点包含18个人体关节点。 4.如权利要求1或2或3所述的方法,其特征在于,所述利用不同关节点的位置与其和真实人体的对应关系,确定人体关节点编号和连接关系采用以下方式:首先确定待提取的人体关节点位置,以及关节点与实际人体骨骼的对应关系,即确定关节点在人体骨骼上的位置;然后为所述对应关系进行关节点编码,确定人体关节点的序号,并根据真实人体肢体与骨骼方向,确定关节点之间的连接方式。 5.如权利要求1或2或3所述的方法,其特征在于,所述利用深度卷积神经网络,结合编号和连接关系,进行多角度人体图像的二维关节点提取以及关节点之间肢体骨骼连线具体包括以下步骤: 步骤一、将由不同角度拍摄出来的人体姿态图像传入深度卷积神经网络; 步骤二、利用深度卷积神经网络中的置信图对人体关节点的二维坐标进行提取; 步骤三、利用深度卷积神经网络中的部分肢体关系向量场以及人体关节点连接关系,判断出人体关节点之间的实际肢体方向; 步骤四、利用深度卷积神经网络中的贪婪分析算法对图像中已提取的人体关节点进行连接; 步骤五、将关节点提取结果以及连接结果显示在原人体姿态图像上,作为二维人体姿态的骨架模型。 6.如权利要求1或2或3所述的方法,其特征在于,所述利用不同坐标系之间的转换关系以及人体关节点的二维坐标信息,正确绘制出三维空间中的人体骨架模型采用以下方法:利用人体关节点的二维坐标信息,通过对图像像素坐标系、图像坐标系、摄像机坐标系以及世界坐标系之间转换关系的推导得出含有关节点未知三维坐标的方程组,利用最小二乘法针对方程进行求解,得到人体关节点的三维坐标,再利用关节点的编码顺序及相互连接关系,绘制出三维人体骨架模型。 2

三维步态分析在骨科康复等临床医学的应用

三维步态分析在骨科康复等临床医学的应用

三维步态分析在骨科康复等临床医学的应用 作者:刘安民先生,英国曼彻斯特索尔福德大学健康学院研究员 一步态分析研究的历史 行走是人类最基本的运动,行走的姿态可分为不同的类型。步态分析是一门有关人行走过程中, 体态, 骨骼间(关节) ,肌肉与肢体,以及肢体与外界物体间相对运动,力学关系的分析方法。步态分析是固体力学在生物系统应用(即生物力学)的典型范例。 人类对动物及自身姿态及运动的兴趣和研究起源可以 上溯到公元前三个多世纪的亚里士多德。他的‘动物的行走’被广泛认为是人类有关包括自身在内的动物行走研究的最 早专著。文艺复兴时期的艺术家达分奇被认为是生物力学的先驱之一,因为他首次在力学环境下研究人的骨骼解剖结构。十七世纪的法国物理家勒内·笛卡尔最早提出人和所有动物的行走都遵循统一的力学法则,他的这一思想对促进和推动生物力学的持续发展起到了重要作用。同一时期的意大利物理家乔瓦尼·阿方索·博雷利接受了这一思想,并对鸟和鱼等走,跑、跳、飞和游等动作进行了研究,他甚至在力学框架内研究了心脏的活塞运动。确定人体重心的位置,测量出吸和呼的空气量,并指出吸气是肌肉收缩造成,而呼气

是由于身体组织弹性造成。博雷利首次阐明骨肌系统的杠杆结构对运动而不是力本身的放大作用。肌肉必须产生足以克服运动阻力的力才能实现运动。受伽利略影响,他在牛顿三大定律发表前便建立了直观了解关节静力平衡规律的方法。 运动是生物力学的重要组成部分,有关动物运动及人类步态的研究随着工业革命的开始得到进一步发展,首先,著名的德国爱德华·韦伯和威廉·韦伯兄弟正式系统地对人类行走进行了研究,1836年合著了‘人类行走力学’。随后, 相机的发明对生物运动学产生了巨大推动作用。该时期的法国生理学家艾蒂安·朱尔斯·马雷在专著‘动物机械原理’中,提出了动物,人和机器都遵守同一物理法则,人体仅是有生命的机器的理论。他利用自己发明的步枪式连拍照相机成功记录了鹈鹕等多种鸟,动物及人的动作。英国人爱德华·迈布瑞奇(与其同龄,同与1904去世)几乎于同一时期在美国利用多架相机,成功捕捉了奔马连续动作的多幅照片,不仅证明马在奔跑的过程中会产生四蹄离地的瞬间,而且证明了法国人马雷理论的正确性。这二位开创性的工作使得他们被后人尊为生物力学的先驱。他们采用的联系动作连拍摄影的方法到目前为止还是步态分析的重要组成部分。 上个世纪四十年代,二战造成的众多伤残人员对假肢的大量需求促进了步态分析的研究。当时的假肢无论在设计和临床应用都没有成熟的步态生物力学理论可寻。每个残疾人

基于Matlab的动态规划程序实现

动态规划方法的Matlab 实现与应用 动态规划(Dynamic Programming)是求解决策过程最优化的有效数学方法,它是根据“最优决策的任何截断仍是最优的”这最优性原理,通过将多阶段决策过程转化为一系列单段决策问题,然后从最后一段状态开始逆向递推到初始状态为止的一套最优化求解方法。 1.动态规划基本组成 (1) 阶段 整个问题的解决可分为若干个阶段依次进行,描述阶段的变量称为阶段变量,记为k (2) 状态 状态表示每个阶段开始所处的自然状况或客观条件,它描述了研究问题过程的状况。各阶段状态通常用状态变量描述,用k x 表示第k 阶段状态变量,n 个阶段决策过程有n+ 1个状态。 (3) 决策 从一确定的状态作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。描述决策的变量称为决策变量,决策变量限制的取值范围称为允许决策集合。用()k k u x 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数。用()k k D x Dk(xk)表示k x 的允许决策的集合。 (4) 策略 每个阶段的决策按顺序组成的集合称为策略。由第k 阶段的状态k x 开始到终止状态的后部子过程的策略记为{}11(),(),,()k k k k n n u x u x u x ++ 。可供选择的策略的范围称为允许策略集合,允许策略集合中达到最优效果的策略称为最优策略。从初始状态* 11()x x =出发,过程按照最优策略和状态转移方程演变所经历的状态序列{ } **** 121,,,,n n x x x x + 称为最优轨线。 (5) 状态转移方程 如果第k 个阶段状态变量为k x ,作出的决策为k u ,那么第k+ 1阶段的状态变量1k x +也被完全确定。用状态转移方程表示这种演变规律,记为1(,)k k k x T x u +=。 (6) 指标函数 指标函数是系统执行某一策略所产生结果的数量表示,是衡量策略优劣的数量指标,它定义在全过程和所有后部子过程上,用()k k f x 表示。过程在某阶段j 的阶段指标函数是衡量该阶段决策优劣数量指标,取决于状态j x 和决策j u ,用(,)j j j v x u 表示。 2.动态规划基本方程 (){} 11()min ,,(),()k k k k k k k k k k f x g v x u f x u D x ++=∈???? Matlab 实现 (dynprog.m 文件) function [p_opt,fval]=dynprog (x,DecisFun,SubObjFun,TransFun,ObjFun) % x 是状态变量,一列代表一个阶段的所有状态; % M-函数DecisFun(k,x) 由阶段k 的状态变量x 求出相应的允许决策变量; % M-函数SubObjFun(k,x,u) 是阶段指标函数, % M-函数ObjFun(v,f) 是第k 阶段至最后阶段的总指标函数 % M-函数TransFun(k,x,u) 是状态转移函数, 其中x 是阶段k 的某状态变量, u 是相应的决策变量; %输出 p_opt 由4列构成,p_opt=[序号组;最优策略组;最优轨线组;指标函数值组]; %输出 fval 是一个列向量,各元素分别表示p_opt 各最优策略组对应始端状态x 的最优函数值。

三维人体动态计算机模拟及仿真系统

三维人体动态计算机模拟及仿真系统 (一) LifeMOD生物力学数字仿真软件 1. 简介 LifeMOD 生物力学数字仿真软件是在 MSC.ADAMS 基础上,进行二次开发,用以研究人体生物力学特征的数字仿真软件,是当今最先进、最完整的人体仿真软件。LifeMOD 生物力学数字仿真软件可用于建立任何生物系统的生物力学模型。这种仿真技术可使研究人员建立各种各样的人体生物力学模型,模拟和仿真人体的运动,并深入地了解人体动作背后的力学特性以及动作技能控制规律。鉴于LifeMOD 生物力学数字仿真软件的强大功能,它成功地应用于生物力学、工程学、康复医学等多个领域。 2. 厂商 美国BRG(Biomechanics Research Group)公司具有超过20年的与世界顶级研究机构和商业机构的成功合作历史,包括体育器材生产商、整形外科、人体损伤研究机构、高校和研究院所、政府机构、医疗器械生产商以及空间技术研究机构,在生物力学、工程学、康复医学等许多行业中有卓越的名誉。 3. 型号 LifeMOD 2008.0.0 4. 功能 LifeMOD 生物力学数字仿真软件的功能强大、先进而且普遍适用。 LifeMOD 生物力学数字仿真软件可用于建立任何生物系统的生物力学模型。这种仿真技术可使研究人员建立各种各样的人体生物力学模型;这些模型既能够再现现实的人体运动,也能够按照研究者的意愿预测非现实的人体运动;通过人体动作的模拟和仿真,计算出人体在运动过程中的运动学和动力学数据,从而使研究者能够深入地了解人体动作背后的力学特性以及动作技能控制规律。 在体育领域,利用LifeMOD的个性化建模和强大的计算能力,不但可以将运动员的比赛和训练情况进行再现并分析运动学、动力学特征,而且能够根据运动员各自的生理特征来进行不同情况的仿真,进行优化分析,进而达到优化运动员技术的目的,从而指导和帮助运动训练。 5. 软件特性 LifeMOD 生物力学数字仿真软件是创建成熟、可信的人体模型的工具。它具有以下特性: ● 快速生成人体模型。能在不到一分钟的时间里完成人体模型的创建。● 完整的骨骼/皮肤/肌肉模型。具有骨骼、皮肤、肌肉的人体模型与受试 对象是成比例的。 ● 可根据研究需要,建立不同精度的人体模型。(简单的是19环节18关

步态分析概述

步态分析及常用步态测量方法 周长青 2016年01月05日

目录 1 步态概述 (3) 1.1 步态的定义 (3) 1.2 步态的两个基本要求 (3) 1.3 步态周期中的关键时刻 (3) 1.4 步态周期的阶段划分 (3) 1.5 步态的基本指标 (4) 1.5.1 时间因子 (5) 1.5.2 距离因子 (6) 1.5.3 步行速度 (7) 1.6 步态的成熟 (7) 1.7 步态的影响因素 (7) 2 步态检查测量方法 (8) 2.1 时间参数测量 (8) 2.2 空间参数测量 (8) 2.3 运动学测量 (9) 2.4 动力学测量 (9) 2.5 肌电测量 (10) 3 正常步态 (10) 3.1 站立与平衡 (10) 3.2 行走步态周期规律 (11) 3.2.1 矢状面 (11) 3.2.2 额状面 (12) 3.2.3 水平面 (13)

3.3 步态评价(穿鞋的影响) (13) 4 病理步态 (14) 4.1 病态站立与病态平衡 (14) 4.2 长短腿步态 (14) 4.3 踝部障碍者步态 (14) 4.4 膝关节障碍者步态 (15) 4.5 髋关节障碍者步态 (16) 4.6 脊柱及肩带障碍者步态 (16) 4.7 全身障碍者步态 (17) 5 步态分析系统推荐 (17) 5.1 独立测试仪器列表 (17) 5.1.1 运动学仪器: (17) 5.1.2 惯性参数测量仪器: (21) 5.1.3 三维力测量仪器: (23) 5.1.4 压力测量仪器: (24) 5.1.5 肌电测量仪器: (25) 5.2 测试系统推荐 (26) 6 附录 (29)

Bertec步态分析测力跑台

内部技术培训资料-----------Bertec步态分析测力跑台 (销售部使用) 版本:初级版 状态:受控 编制:技术部 审核:赵伟 批准:李国涛 维拓启创(北京)信息技术有限公司 2017年6月7日

编辑说明 本资料主要以基础普及为主,属于行业专业知识培训资料,目的是使销售人员在短时间内了解运动医学领域的专业知识、现状及发展前景。掌握-Bertec 步态分析测力跑台的基本理论体系、适用范围、产品特点。便于迅速进入角色,展开工作。 此资料适用于营销人员、市场部、销售部及其他岗位人员,入职培训使用,因时间仓促,不足之处敬请谅解指正,我们会在下次修订过程中给予完善。 本资料只供内部使用,因涉及公司技术及商业秘密,故不得将其原件或复印件对外泄露。 编者:技术部赵伟

目录 第一章三维步态分析的研究与应用 (4) 1.步态分析主要应用领域: (4) 2.临床步态分析的目的 (5) 3.步态定量分析的方法 (5) 3.1运动学分析 (5) 3.2 动力学检测的效率提高 (5) 3.3 时空参数分析的实时性提高 (6) 3.4 动态肌电图的应用发展 (6) 3.5 氧价分析 (7) 4 正常步态模式 (7) 5.异常病理步态(以中枢神经受损为例) (7) 5.1 中枢神经受损 (7) 5.2 临床步态分析在诊疗方向的应用 (8) 第二章平板和跑台在步态分析中的比较 (9) 1.测力平板的局限性 (9) 2.测力跑台 (9) 3.测力跑台的优势 (10) 4.测力跑台的局限性 (10) 第三章同类测力跑台的比较(Bertec Vs AMTI) (11) 1.Bertec FIT简介 (11) 2.Bertec FIT 与AMTI(前后双带)的具体参数比较 (12) a)精度: (12) b)动态响应: (12) c)跑带运动的影响: (12) d)单跑带与分离跑带: (12) e)左右分离跑带与前后分离跑带: (12) f)皮带的控制: (12) g)倾斜: (13) h)可选附件: (13) 第四章Bertec测力跑台安装指南 (15) 1.基本注意事项和建议 (15) 2. 安装位置准备工作 (15) 3.系统布局 (16) 4. 电源要求 (16) 5.基本尺寸 (17) 6.施工简图 (18) 7.小结 (19)

相关主题
文本预览
相关文档 最新文档