当前位置:文档之家› 用MATLAB 仿真SVPWM模块

用MATLAB 仿真SVPWM模块

用MATLAB 仿真SVPWM模块
用MATLAB 仿真SVPWM模块

用MATLAB 仿真SVPWM 模块,给出程序和输出波形?

1 SVPWM 仿真原理

SVPWM 是确定三相逆变电源电力电子器件开断时刻的一种方式。三相桥式逆变电路每个桥臂有两个开关管,其开关信号互补。三相桥式逆变电路各桥臂通断状态的组合为6个有效的空间矢量V4(100)、V6(110)、V2(010)、V 3(011)、V1(001)、V5(101)和2个零矢量V0(000)、V7(111)。为了得到旋转空间矢量V ,在不降低直流电压利用率情况下能调控三相逆变器输出的基波电压和消除低次谐波,可用矢量V 所在扇区边界的两个相邻特定矢量Vx 和Vy 及零矢量Vz 合成一个等效的电压矢量V ,调控V 的大小和相位。则在时间很短的一个开关周期Ts 中,矢量存在时间就由组成这个区域的两个相邻的非零矢量Vx 存在Tx 时间、Vy 存在Ty 时间以及零矢量Vz 存在T0时间来等效,即

VxTx+VyTy+VzT0=VTs=V(Tx+Ty+T0)(1)

将Vx=2/3VD 、Vy=2/3VDej600、Vz=0代入上式,得

)60sin(30θ-=Vdc

Vplm Ts Tx (2) θsin 3Vdc

Vplm Ts Ty =(3) )30cos(3100θ--=Vdc

Vplm Ts T (4) 通过矢量V 所在的二维静止坐标系α轴和β轴的分量u α、u β来计算电压矢量所在的扇区(我们把圆周分成6个扇区,扇区序号用N 表示)。若u β>0,则A=1,否则A=0;若3u α-u β>0,则B=1,否则B=0;若-3u α-u β>0,则C=1,否则C=0。扇区N=A+2B+4C 。每个扇区内的矢量有扇区所在的两个边界矢量和零矢量共同合成,其作用时间如上所说。利用MATLAB/SIMULINK 仿真,其仿真框图如下

图3.1 基于SVPWM逆变器仿真框图

图3.1中SVPWM模块为根据空间矢量控制方法确定电力电子器件开关时刻模块。

图3.2 确定开关管开断时刻模块

图3.2 中的svpwm 为MATLAB的S函数,其程序如下:

/*u[4]={ uα、uβ,Tz,Vdc}*/

int A,B,C,N;

double X,Y,Z,Tx,Ty,T0,Tl,Tm,Th;

if (u[1]>0) A = 1;

else A=0;

if ((1.732051*u[0]-u[1])>0) B = 1;

else B=0;

if ((-1.732051*u[0]-u[1])>0) C = 1;

else C=0;

N=A+2*B+4*C;

X=1.732051*u[1]*u[2]/u[3];

Y=(0.8660*u[1]+1.5*u[0])*u[2]/u[3];

Z=(-0.8660*u[1]+1.5*u[0])*u[2]/u[3];

switch (N)

{

case 1: Tx= Y;Ty=-Z;break;

case 2: Tx=-X;Ty= Y;break;

case 3: Tx= Z;Ty= X;break;

case 4: Tx=-Z;Ty=-X;break;

case 5: Tx= X;Ty=-Y;break;

default: Tx=-Y;Ty= Z;

}

if ((Tx+Ty)>u[2])

{

Tx=Tx*u[2]/(Tx+Ty);

Ty=Ty*u[2]/(Tx+Ty);

}

T0=(u[2]-(Tx+Ty))/4;

Tl=(u[2]+Tx-Ty)/4;/*Tl=T0/4+Tx/2*/

Tm=(u[2]-Tx+Ty)/4;/*Tm=T0/4+Ty/2*/

Th=(u[2]+Tx+Ty)/4;/*Th=T0/4+Ty/2+Ty/2*/

switch (N)

{

case 1 :y[0]=Tm;y[1]=T0;y[2]=Th;break;

case 2 :y[0]=T0;y[1]=Th;y[2]=Tm;break;

case 3 :y[0]=T0;y[1]=Tl;y[2]=Th;break;

case 4 :y[0]=Th;y[1]=Tm;y[2]=T0;break;

case 5 :y[0]=Th;y[1]=T0;y[2]=Tl;break;

default :y[0]=Tl;y[1]=Th;y[2]=T0;

}

2 SVPWM仿真波形

图3.3 开关函数Sa的波形

图3.4 开关函数Sb的波形

图3.5 开关函数Sc的波形

图3.6 逆变器A相波形

基于Matlab的FM仿真实现

摘要 本次设计主要是以Matlab为基础平台,对FM信号进行仿真。介绍了FM信号,及其调制和解调的基本原理,并设计M文件,分析在混入噪声环境下的波形失真,以及分析FM的抗噪声性能。本设计的主要目的是对Matlab的熟悉和对模拟通信理论的更深化理解。 关键词:Matlab;FM;噪声

前言 (2) 1 设计基础 (3) 1.1 Matlab及M文件的简介 (3) 1.2模拟调制概述 (4) 1.2.1模拟调制系统各个环节分析 (5) 1.2.2 模拟调制的意义 (6) 2 FM基本原理与实现 (7) 2.1 FM的基本原理 (7) 2.1.1调制 (7) 2.1.2解调 (8) 2.2 FM的实现 (8) 2.2.1 FM调制的实现 (8) 2.2.2 FM解调的实现 (9) 2.3 调频系统的抗噪声性能 (10) 2.3.1 高斯白噪声信道特性 (10) 3 FM的仿真实现与分析 (14) 3.1 未加噪声的FM解调实现 (14) 3.2 叠加噪声时的 FM解调 (16) 总结 (20) 致谢 (21) 参考文献 (22) 附录 (23)

通信按照传统的理解就是信息的传输。在当今高度信息化的社会,信息和通信已成为现代社会的命脉。信息作为一种资源,只有通过广泛传播与交流,才能产生利用价值,促进社会成员之间的合作,推动社会生产力的发展,创造出巨大的经济效益。而通信作为传输信息的手段或方式,与传感技术、计算机技术相融合,已成为21世纪国际社会和世界经济发展的强大动力。可以预见,未来的通信对人们的生活方式和社会的发展将会产生更加重大和意义深远的影响。 在通信系统中,从消息变换过来的原始信号所占的有效频带往往具有频率较低的频谱分量(例如语音信号),如果将这种信号直接在信道中进行传输,则会严重影响信息传送的有效性和可靠性,因此这种信号在许多信道中均是不适宜直接进行传输的。在通信系统的发射端通常需要有调制过程,将调制信号的频谱搬移到所希望的位置上,使之转换成适于信道传输或便于信道多路复用的已调信号;而在接收端则需要有解调过程,以恢复原来有用的信号。调制解调方式常常决定了一个通信系统的性能。随着数字化波形测量技术和计算机技术的发展,可以使用数字化方法实现调制与解调过程。 调制在通信系统中具有重要的作用。通过调制,不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于信道传输或便于信道多路复用的已调信号,而且它对系统的传输有效性和传输可靠性有着很大的影响。调制方式往往决定了一个通信系统的性能。调制技术是指把基带信号变换成传输信号的技术。基带信号是原始的电信号,一般是指基本的信号波形,在数字通信中则指相应的电脉冲。在无线遥测遥控系统和无线电技术中调制就是用基带信号控制高频载波的参数(振幅、频率和相位),使这些参数随基带信号变化。用来控制高频载波参数的基带信号称为调制信号。未调制的高频电振荡称为载波(可以是正弦波,也可以是非正弦波,如方波、脉冲序列等)。被调制信号调制过的高频电振荡称为已调波或已调信号。已调信号通过信道传送到接收端,在接收端经解调后恢复成原始基带信号。

基于 MATLAB 的QPSK系统仿真设计与实现

通信系统仿真设计实训报告1.课题名称:基于MATLAB 的QPSK系统仿真设计与实现 学生学号: 学生姓名: 所在班级: 任课教师: 2016年10月25日

目录 1.1QPSK系统的应用背景简介 (3) 1.2 QPSK实验仿真的意义 (3) 1.3 实验平台和实验内容 (3) 1.3.1实验平台 (3) 1.3.2实验内容 (3) 二、系统实现框图和分析 (4) 2.1、QPSK调制部分, (4) 2.2、QPSK解调部分 (5) 三、实验结果及分析 (6) 3.1、理想信道下的仿真 (6) 3.2、高斯信道下的仿真 (7) 3.3、先通过瑞利衰落信道再通过高斯信道的仿真 (8) 总结: (10) 参考文献: (11) 附录 (12)

1.1QPSK系统的应用背景简介 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。 1.2 QPSK实验仿真的意义 通过完成设计内容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。了解QPSK的实现方法及数学原理。并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。 理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。复习MATLAB编程的基础知识和编程的常用算法以及使用MATLAB仿真系统的注意事项,并锻炼自己的编程能力,通过编程完成QPSK调制解调系统的仿真,以及误码率测试,并得出响应波形。在完成要求任务的条件下,尝试优化程序。 通过本次实验,除了和队友培养了默契学到了知识之外,还可以将次实验作为一种推广,让更多的学生来深入一层的了解QPSK以至其他调制方式的原理和实现方法。可以方便学生进行测试和对比。足不出户便可以做实验。 1.3 实验平台和实验内容 1.3.1实验平台 本实验是基于Matlab的软件仿真,只需PC机上安装MATLAB 6.0或者以上版本即可。 (本实验附带基于Matlab Simulink (模块化)仿真,如需使用必须安装simulink 模块) 1.3.2实验内容 1.构建一个理想信道基本QPSK仿真系统,要求仿真结果有 a.基带输入波形及其功率谱 b.QPSK信号及其功率谱

Matlab分布式计算工具箱使用指南

Matlab分布式计算工具箱使用指南 使用Matlab进行分布式计算需要两个产品: 1、分布式计算工具箱(Distributed Computing Toolbox) 2、Matlab分布计算引擎MDCE(Matlab Distributed Computer Engine) MDCE主要用于执行Clinet Session中定义的job和task 一、安装MDCE MDCE安装在D:\Program Files\MATLAB\R2008a\toolbox\distcomp\bin目录下: 在Matlab的command windows中执行 mdce install %安装引擎 mdce start %启动引擎 执行上面两条命令后,分布式计算引擎服务程序就安装完毕了。MDCE就是一个服务进程,在使用MDCE 之前需要首先启动它。 二、启动一个Job Manager startjobmanager -name matlabsky -v %启动一个名为matlabsky的作业管理进程 jm = findResource('scheduler','type','jobmanager', 'Name', 'matlabsky'); %找出PC上有效的分布计算资源 三、启动Worker startworker -name worker1 out = findResource('worker') waitForState(job, 'finished',1000) jm=findResource('scheduler','type','jobmanager','name','default_jobma nager'); 四、分布式计算工具箱示例 在运行示例之前,必须先安装 MDCE,然后启动一个Job Manager 和若干个Worker,并且在Job Manager中注册Worker。要查看MDCE进程的状态,可以用nodestatus.bat批处理文件来查看。如果在Job Manager中没有注册Worker,那么Job Manager就没有办法把任务分配给Worker计算,当调用waitForState(job, 'finished')命令时,就会发生死锁。 1、Programming a Basic Job with a Job Manager jm=findResource('scheduler','type','jobmanager','name','ccy'); j = createJob(jm); createTask(j, @sum, 1, {[1 1]}); createTask(j, @sum, 1, {[2 2]}); createTask(j, @sum, 1, {[3 3]}); submit(j); waitForState(j) results = getAllOutputArguments(j)

基于MATLAB的模拟调制系统仿真与测试(AM调制)

闽江学院 《通信原理设计报告》 题目:基于MATLAB的模拟调制系统仿真与测试学院:计算机科学系 专业:12通信工程 组长:曾锴(3121102220) 组员:薛兰兰(3121102236) 项施旭(3121102222) 施敏(3121102121) 杨帆(3121102106) 冯铭坚(3121102230) 叶少群(3121102203) 张浩(3121102226) 指导教师:余根坚 日期:2014年12月29日——2015年1月4日

摘要在通信技术的发展中,通信系统的仿真是一个重点技术,通过调制能够将信号转化成适用于无线信道传输的信号。 在模拟调制系统中最常用最重要的调制方式是用正弦波作为载波的幅度调制和角度调制。在幅度调制中,文中以调幅、双边带和单边带调制为研究对象,从原理等方面阐述并进行仿真分析;在角度调制中,以常用的调频和调相为研究对象,说明其调制原理,并进行仿真分析。利用MATLAB下的Simulink工具箱对模拟调制系统进行仿真,并对仿真结果进行时域及频域分析,比较各个调制方式的优缺点,从而更深入地掌握模拟调制系统的相关知识,通过研究发现调制方式的选取通常决定了一个通信系统的性能。 关键词模拟调制;仿真;Simulink 目录 第一章绪论 (1) 1.1 引言 (1) 1.2 关键技术 (1) 1.3 研究目的及意义 (2) 1.4 本文工作及内容安排 (2) 第二章模拟调制原理 (3) 2.1 幅度调制原理 (3) 2.1.1 AM调制 (4) 第三章基于Simulink的模拟调制系统仿真与分析 (6) 3.1 Simulink工具箱简介 (6) 3.2 幅度调制解调仿真与分析 (8) 3.2.1 AM调制解调仿真及分析 (8) 第四章总结 (12) 4.1 代码 (13) 4.2 总结 (14)

MATLAB计算与仿真课程试卷+答案

一.简答题(每题5分,共40分) 1.数组运算和矩阵运算的运算符有什么区别? 答:在加、减运算时数组运算与矩阵运算的运算符相同,乘、除和乘方运算时,在矩阵运算的运算符前加一个点即为数组运算,如a*b为矩阵乘,a.*b为数组乘。 2. 命令文件与函数文件的主要区别是什么? 答:(1)命令文件是一系列命令的组合,函数文件的第一行必须用function说明; (2)命令文件没有输入参数,也不用返回参数,函数文件可以接受输入参数,也可以返回参数; (3)命令文件处理的变量为工作空间变量,函数文件处理的变量为函数内部的局部变量,也可以处理全局变量。 3. 如何定义全局变量? 答:用关键字global可以把一个变量定义为全局变量,在M文件中定义全局变量时,如果在当前工作空间已经存在了相同的变量,系统将会给出警告,说明由于将该变量定义为全局变量,可能会使变量的值发生改变,为避免发生这种情况,应该在使用变量前先将其定义为全局变量。 4. 什么是Simulink ? 答:Simulink是一个用来对动态系统进行建模、仿真和分析的软件包,它支持连续的、离散的或二者混合的线性和非线性系统,也支持具有多种采样速率的多速率系统。 5. 如何在Simulink中进行指定仿真时间的操作? 选择Simulation菜单打开参数设置对话框,在Solver页面中第一项Simulation time 中通过输入开始时间和结束时间来确定仿真时间。 6. MATLAB的变量命名有什么规则?能用”NaN”来作为变量名吗,为什么? 答:变量可以包括数字、字母、下划线,必须以字母开头 可以,因为符合变量名命名规则 7. 简述MATLAB命令窗的主要作用? 答:命令窗口是MATLAB的主要交互窗口,用于输入命令并显示除图形以外的所有执行结果。是MATLAB提供给用户使用的管理功能的人机界面,其管理功能包括:管理工作空间中的变量、数据的输入输出的方式和方法,开发、调试、管理M 文件和M函数的各种工具。 8. 简述MATLAB桌面集成环境包括的7个窗口及其主要功能? 答:桌面是MATLAB的主要工作界面。命令窗口是MATLAB的主要交互窗口,用于输入命令并显示除图形以外的所有执行结果。工作空间管理窗口用于显示当前计算机内存中MATLAB变量的名称、数学结构、该变量的字节数及其类型,可对变量进行观察、编辑、保存和删除。命令历史窗口显示用户在命令窗口中所输入的每条命令的历史记录,并标明使用时间,这样可以方便用户查询。当前目录窗口显示当前用户工作所在的路径。Start菜单用于选择菜单中的命令执行MATLAB产品的各种工具,并且可以查阅MATLAB所含的各种资源。编译窗口为用户提供了一个图形界面进行M文件的编写和调试。 二.编程题(每题10分,共60分) 1.编写M文件,使用for循环计算f=5^x,当f(x)>500就终止程序,在命令窗口中调用函数文件,求终止程序时f的值和n运行的值分别为多少? 解: function[y]=f(x) % 2分 for x=1:00 % 4分 f=5^x if f>500 f=z n=x break % 4分 end end 2. 编写程序分别对符号表达式23 3546 f x y x y =+-+的x和y求一阶微分。 解:smys x y % 2分 f=3*x^2+5*y^3-4*x+6*y; % 4分 dfdx=diff(f)% 对x求一阶微分% 2分 dfdy=diff(f,y)% 对y求一阶微分% 2分 3. 写出用黑色画出一条正弦虚线和一条余弦点划线,时间为0到2π并标记横坐标和纵坐标,并限定x轴和y轴的显示范围,并添加图例的步骤。 解: x=0:pi/10:2*pi; y1=sin(x); y2=cos(x); %4分 plot(x,y1,’:b’,x,y2,’-.b’) % 2分 xlabel(‘x’) ylabel(‘y’) %2分 axis([0 2*pi -1 1]) %2分 第1页(共2页)

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:) ()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

MATLAB分布式并行计算服务器配置和使用方法Word版

Windows下MATLAB分布式并行计算服务器配置和使用方 法 1MATLAB分布式并行计算服务器介绍 MATLAB Distributed Computing Server可以使并行计算工具箱应用程序得到扩展,从而可以使用运行在任意数量计算机上的任意数量的worker。MATLAB Distributed Computing Server还支持交互式和批处理工作流。此外,使用Parallel Computing Toolbox 函数的MATLAB 应用程序还可利用MATLAB Compiler (MATLAB 编译器)编入独立的可执行程序和共享软件组件,以进行免费特许分发。这些可执行应用程序和共享库可以连接至MATLAB Distributed Computing Server的worker,并在计算机集群上执行MATLAB同时计算,加快大型作业执行速度,节省运行时间。 MATLAB Distributed Computing Server 支持多个调度程序:MathWorks 作业管理器(随产品提供)或任何其他第三方调度程序,例如Platform LSF、Microsoft Windows Compute Cluster Server(CCS)、Altair PBS Pro,以及TORQUE。 使用工具箱中的Configurations Manager(配置管理器),可以维护指定的设置,例如调度程序类型、路径设置,以及集群使用政策。通常,仅需更改配置名称即可在集群间或调度程序间切换。 MATLAB Distributed Computing Server 会在应用程序运行时在基于用户配置文件的集群上动态启用所需的许可证。这样,管理员便只需在集群上管理一个服务器许可证,而无需针对每位集群用户在集群上管理单独的工具箱和模块集许可证。 作业(Job)是在MATLAB中大量的操作运算。一个作业可以分解不同的部分称为任务(Task),客户可以决定如何更好的划分任务,各任务可以相同也可以不同。MALAB中定义并建立作业及其任务的会话(Session)被称为客户端会话,通常这是在你用来编写程序那台机器上进行的。客户端用并行计算工具箱来定义和建立作业及其任务,MDCE通过计算各个任务来执行作业并负责把结果返

基于MATLAB的模拟信号频率调制(FM)与解调分析

课程设计任务书 学生姓名:杨刚专业班级:电信1302 指导教师:工作单位:武汉理工大学 题目:信号分析处理课程设计 -基于MATLAB的模拟信号频率调制(FM)与解调分析 初始条件: 1.Matlab6.5以上版本软件; 2.先修课程:通信原理等; 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、利用MATLAB中的simulink工具箱中的模块进行模拟频率(FM)调制与解调,观 察波形变化 2、画出程序设计框图,编写程序代码,上机运行调试程序,记录实验结果(含计算结 果和图表等),并对实验结果进行分析和总结; 3、课程设计说明书按学校统一规范来撰写,具体包括: ⑴目录;⑵理论分析; ⑶程序设计;⑷程序运行结果及图表分析和总结; ⑸课程设计的心得体会(至少800字,必须手写。); ⑹参考文献(不少于5篇)。 时间安排: 周一、周二查阅资料,了解设计内容; 周三、周四程序设计,上机调试程序; 周五、整理实验结果,撰写课程设计说明书。 指导教师签名: 2013 年 7月 2 日 系主任(或责任教师)签名: 2013年 7月 2日

目录 1 Simulink简介 (1) 1.1 Matlab简介······················································错误!未定义书签。 1.2 Simulink介绍 ···················································错误!未定义书签。 2 原理分析 ·····························································错误!未定义书签。 2.1通信系统 ·························································错误!未定义书签。 2.1.1通信系统的一般模型 ···································错误!未定义书签。 2.1.2 模拟通信系统 (3) 2.2 FM调制与解调原理···········································错误!未定义书签。 3 基于Matlab方案设计 (6) 3.1 Matlab代码 (6) 3.2 Matlab仿真 (8) 4 基于Simulink方案设计 (12) 4.1 使用Simulink建模和仿真的过程 (12) 4.1.1 Simulink模块库简介 (12) 4.1.2 调制解调模块库简介 (13) 4.2 FM调制与解调电路及仿真 (14) 4.3 仿真结果分析 (17) 5 心得体会 ·····························································错误!未定义书签。 6 参考文献 (20) 本科生课程设计评定表

基于MATLAB的QPSK通信系统仿真设计毕业设计论文

基于MATLAB的QPSK通信系统仿真设计 摘要 随着移动通信技术的发展,以前在数字通信系统中采用FSK、ASK、PSK 等调制方式,逐渐被许多优秀的调制技术所替代。本文主要介绍了QPSK调制与解调的实现原理框图,用MATLAB软件中的SIMULINK仿真功能对QPSK调制与解调这一过程如何建立仿真模型,通过对仿真模型的运行,得到信号在QPSK 调制与解调过程中的信号时域变化图。通过该软件实现方式,可以大大提高设计的灵活性,节约设计时间,提高设计效率,从而缩小硬件电路设计的工作量,缩短开发周期。 关键词 QPSK,数字通信,调制,解调,SIMULINK -I-

Abstract As mobile communications technology, and previously in the adoption of digital cellular system, ASK, FSK PSK modulation, etc. Gradually been many excellent mod ulation technology substitution, where four phase-shift keying QPSK technology is a wireless communications technology in a binary modulation method. This article prim arily describes QPSK modulation and demodulation of the implementation of the prin ciple of block diagrams, focuses on the MATLAB SIMULINK software emulation in on QPSK modulation and demodulation the process how to build a simulation model, through the operation of simulation model, I get signal in QPSK modulation and dem odulation adjustment process domain change figure. The software implementation, ca n dramatically improve the design flexibility, saving design time, increase efficiency, design to reduce the workload of hardware circuit design, and shorten the developmen t cycle. Keywords QPSK, Digital Communication,modulation,demodulation,SIMULINK -II-

信号与系统的MATLAB仿真

信号与系统的MATLAB 仿真 一、信号生成与运算的实现 1.1 实现)3(sin )()(π±== =t t t t S t f a )(sin )sin()sin(sin )()(t c t t t t t t t S t f a '=' '== ==πππ π ππ m11.m t=-3*pi:0.01*pi:3*pi; % 定义时间范围向量t f=sinc(t/pi); % 计算Sa(t)函数 plot(t,f); % 绘制Sa(t)的波形 运行结果: 1.2 实现)10() sin()(sin )(±== =t t t t c t f ππ m12.m t=-10:0.01:10; % 定义时间范围向量t f=sinc(t); % 计算sinc(t)函数 plot(t,f); % 绘制sinc(t)的波形 运行结果: 1.3 信号相加:t t t f ππ20cos 18cos )(+= m13.m syms t; % 定义符号变量t f=cos(18*pi*t)+cos(20*pi*t); % 计算符号函数f(t)=cos(18*pi*t)+cos(20*pi*t) ezplot(f,[0 pi]); % 绘制f(t)的波形 运行结果:

1.4 信号的调制:t t t f ππ50cos )4sin 22()(+= m14.m syms t; % 定义符号变量t f=(2+2*sin(4*pi*t))*cos(50*pi*t) % 计算符号函数f(t)=(2+2*sin(4*pi*t))*cos(50*pi*t) ezplot(f,[0 pi]); % 绘制f(t)的波形 运行结果: 1.5 信号相乘:)20cos()(sin )(t t c t f π?= m15.m t=-5:0.01:5; % 定义时间范围向量 f=sinc(t).*cos(20*pi*t); % 计算函数f(t)=sinc(t)*cos(20*pi*t) plot(t,f); % 绘制f(t)的波形 title('sinc(t)*cos(20*pi*t)'); % 加注波形标题 运行结果:

增量式PID控制算法的MATLAB仿真

增量式PID 控制算法的MATLAB 仿真 PID 控制的原理 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID 控制,又称PID 调节。PID 控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID 控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID 控制技术。PID 控制,实际中也有PI 和PD 控制。PID 控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 一、 题目:用增量式PID 控制传递函数为G(s)的被控对象 G (s )=5/(s^2+2s+10), 用增量式PID 控制算法编写仿真程序(输入分别为单位阶跃、正弦信号,采样时间为1ms ,控制器输出限幅:[-5,5],仿真曲线包括系统输出及误差曲线,并加上注释、图例)。程序如下 二、 增量式PID 原理 { U(k)= ?u(k)+ U(k-1) 或 { U(k)= ?u(k)+ U(k-1) 注:U(k)才是PID 控制器的输出 三、 分析过程 1、对G(s)进行离散化即进行Z 变换得到Z 传递函数G(Z); 2、分子分母除以z 的最高次数即除以z 的最高次得到; )]}2()1(2)([)()]1()({[)(-+--++ --=?n n n T T n T T n n K n U D I P O εεεεεε)] 2()1(2)([)(i )]1()([)(-+--++--=?n n n Kd n K n n K n U P O εεεεεε

MATLAB与仿真应用

摘要 MATLAB是美国mathworks公司开发的大型数学计算软件,它具有强大的矩阵处理和绘图功能,已经广泛地应用于科学研究和工程技术的各个领域,MATLAB 以矩阵和向量为基本数据单元,提供了丰富的矩阵操作和矩阵运算功能,并在这些基本运算基础上提供了可供各种科学研究和工程技术门类使用的工具箱。极大地方便了科学计算和工程问题的求解,使得科技人员从复杂的变成工作中解放出来,专注于数学模型的建立。本文着重介绍MATLAB的基本操作和一些基础应用,并通过例子来阐述说明,熟悉MATLAB函数调用,了解其在电工电子技术中的应用。掌握Matlab基本语法结构及调试方法,熟悉Matlab函数调用,熟练其用于电工电子的一些计算,并学会用Matlab/Simulink进行简单电路的仿真。 一、MALTISM简介 MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 在MATLAB函数库中,除了基本初等函数外,还有初等矩阵和矩阵变换、线性代数方程组合矩阵特征的求解、多项式运算和求根、函数的插值和数据的多项式拟合、数值积分和常数微分方程数值解、函数求极值、单变量非线性方程求解根、数据分析和傅里叶变换,以及某些特殊的矩阵函数和数学函数,这些函数都可以直接调用。用户可以根据自己的需要任意扩充函数库。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用. 二、MATLAB的应用。 MATLAB产品族可以用来进行以下各种工作: ●数值分析 ●数值和符号计算

MATLAB控制系统与仿真设计

MATLAB控制系统与仿真 课 程 设 计 报 告 院(系):电气与控制工程学院 专业班级:测控技术与仪器1301班 姓名:吴凯 学号:1306070127

指导教师:杨洁昝宏洋 基于MATLAB的PID恒温控制器 本论文以温度控制系统为研究对象设计一个PID控制器。PID控制是迄今为止最通用的控制方法,大多数反馈回路用该方法或其较小的变形来控制。PID控制器(亦称调节器)及其改进型因此成为工业过程控制中最常见的控制器(至今在全世界过程控制中用的84%仍是纯PID调节器,若改进型包含在内则超过90%)。在PID控制器的设计中,参数整定是最为重要的,随着计算机技术的迅速发展,对PID参数的整定大多借助于一些先进的软件,例如目前得到广泛应用的MATLAB仿真系统。本设计就是借助此软件主要运用Relay-feedback法,线上综合法和系统辨识法来研究PID控制器的设计方法,设计一个温控系统的PID控制器,并通过MATLAB中的虚拟示波器观察系统完善后在阶跃信号下的输出波形。 关键词:PID参数整定;PID控制器;MATLAB仿真。 Design of PID Controller based on MATLAB Abstract This paper regards temperature control system as the research object to design a pid controller. Pid control is the most common control method up until now; the great majority feedback loop is controlled by this method or its small deformation. Pid controller (claim regulator also) and its second generation so become the most common controllers in the industry process control (so far, about 84% of the controller being used is the pure pid controller, it’ll exceed 90% if the second generation included). Pid parameter setting is most important in pid controller designing, and with the rapid development of the computer technology, it mostly recurs to some advanced software, for example, mat lab simulation software widely used now. this design is to apply that soft mainly use Relay feedback law and synthetic method on the line to study pid

QPSK通信系统性能分析与MATLAB仿真报告

淮海工学院课程设计报告书 课程名称:通信系统的计算机仿真设计 题目:QPSK通信系统性能分析 与MATLAB仿真 学院:电子工程学院 学期:2013-2014-2 专业班级: 姓名: 学号: 评语: 成绩: 签名: 日期:

QPSK通信系统性能分析与MATLAB仿真 1 绪论 1.1 研究背景与研究意义 数字信号传输系统分为基带传输系统和频带传输系统,频带传输系统也叫数字调制系统,该系统对基带信号进行调制,使其频谱搬移到适合在信道(一般为带通信道)上传输的频带上。数字调制和模拟调制一样都是正弦波调制,即被调制信号都为高频正弦波。数字调制信号又称为键控信号,数字调制过程中处理的是数字信号,而载波有振幅、频率和相位3个变量,且二进制的信号只有高低电平两个逻辑量即1和0,所以调制的过程可用键控的方法由基带信号对载频信号的振幅、频率及相位进行调制,最基本的方法有3种:正交幅度调制(QAM) 、频移键控( FSK) 、相移键控( PSK) 。根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制) 。 本实验采用QPSK。QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。 1.2 课程设计的目的和任务 目的在于使学生在课程设计过程中能够理论联系实际,在实践中充分利用所学理论知识分析和研究设计过程中出现的各类技术问题,巩固和扩大所学知识面,为以后走向工作岗位进行设计打下一定的基础。 课程设计的任务是: (1)掌握一般通信系统设计的过程,步骤,要求,工作内容及设计方法,掌握用计算机仿真通信系统的方法。 (2)训练学生网络设计能力。 (3)训练学生综合运用专业知识的能力,提高学生进行通信工程设计的能力。1.3 可行性分析 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,

某温度控制系统的MATLAB仿真

课程设计报告 题目某温度控制系统的MATLAB仿真(题目C)

过程控制课程设计任务书 题目C :某温度控制系统的MATLAB 仿真 一、 系统概况: 设某温度控制系统方块图如图: 图中G c (s)、G v (s)、G o (s)、G m (s)、分别为调节器、执行器、过程对象及温度变送器的传递函数;,且电动温度变送器测量范围(量程)为50~100O C 、输出信号为4~20mA 。G f (s)为干扰通道的传递函数。 二、系统参数 二、 要求: 1、分别建立仿真结构图,进行以下仿真,并求出主要性能指标: (1)控制器为比例控制,其比例度分别为δ=10%、20%、50%、100%、200%时,系统广义对象输出z(t)的过渡过程; (2)控制器为比例积分控制,其比例度δ=20%,积分时间分别为T I =1min 、3min 、5min 、10min 时,z(t)的过渡过程; 0m v o 0f o o =5min =2.5min =1.5(kg/min)/mA =5.4C/(kg/min) =0.8 C C T T K K K x(t)=80f(t)=10; ;;; ;给定值; 阶跃扰动

(3)控制器为比例积分微分控制,其比例度δ=10%,积分时间T I=5min,微分时间T D = 0.2min时,z(t)的过渡过程。 2、对以上仿真结果进行分析比对,得出结论。 3、撰写设计报告。 注:调节器比例带δ的说明 比例控制规律的输出p(t)与输入偏差信号e(t)之间的关系为 式中,K c叫作控制器的比例系数。 在过程控制仪表中,一般用比例度δ来表示比例控制作用的强弱。比例度δ定义为 式中,(z max-z min)为控制器输入信号的变化范围,即量程;(p max-p min)为控制器输出信号的变化范围。 = c p(t)K e(t) max min ( ) =100% ) max min e z z p(p-p δ - ?

MATLAB分布式并行计算环境

前言:之前在本博客上发过一些关于matlab并行计算的文章,也有不少网友加我讨论关于这方面的一些问题,比如matlab并行计算环境的建立,并行计算效果,数据传递等等,由于本人在研究生期间做论文的需要在这方面做过一些研究,但总体感觉也就是一些肤浅的应用,现已工作,已很少再用了,很多细节方面可能也记不清了,在这里将以前做的论文内容做一些整理,将分几个小节,对matlab并行计算做个一个简要的介绍,以期对一些初学者有所帮助,当然最主要的还是多看帮助文档及相关技术文章!有不当之处敬请各位网友指正, 3.1 Matlab并行计算发展简介 MATLAB技术语言和开发环境应用于各个不同的领域,如图像和信号处理、控制系统、财务建模和计算生物学。MA TLAB通过专业领域特定的插件(add-ons)提供专业例程即工具箱(Toolbox),并为高性能库(Libraries)如BLAS(Basic Linear Algebra Subprograms,用于执行基本向量和矩阵操作的标准构造块的标准程序)、FFTW(Fast Fourier Transform in the West,快速傅里叶变换)和LAPACK(Linear Algebra PACKage,线性代数程序包)提供简洁的用户界面,这些特点吸引了各领域专家,与使用低层语言如C语言相比可以使他们很快从各个不同方案反复设计到达功能设计。 计算机处理能力的进步使得利用多个处理器变得容易,无论是多核处理器,商业机群或两者的结合,这就为像MATLAB一样的桌面应用软件寻找理论机制开发这样的构架创造了需求。已经有一些试图生产基于MATLAB的并行编程的产品,其中最有名是麻省理工大学林肯实验室(MIT Lincoln Laboratory)的pMATLAB和MatlabMPI,康耐尔大学(Cornell University)的MutiMATLAB和俄亥俄超级计算中心(Ohio Supercomputing Center)的bcMPI。 MALAB初期版本就试图开发并行计算,80年代晚期MA TLAB的原作者,MathWorks 公司的共同创立者Cleve Moler曾亲自为英特尔HyperCube和Ardent电脑公司的Titan超级计算机开发过MATLAB。Moler 1995年的一篇文章“Why there isn't a parallel MATLAB?[**]”中描述了在开了并行MA TLAB语言中有三个主要的障碍即:内存模式、计算粒度和市场形势。MATLAB全局内存模式的多数并行系统的分布式模式意味着大数据矩阵在主机和并行机之间来回传输。与语法解析和图形例程相比,那时MA TLAB只花了小部分的时间行例程上,这使得并行上的努力并不是很有吸引力。最后一个障碍对于一个资源有限的组织来讲确实是一个现实,即没有足够多的MA TLAB用户将其用于并行机上,因此公司还是把注意力放在单个CPU的MA TLAB开发上。然而这并不妨碍一些用户团体开发MA TLAB并行计算功能,如上面提到的一些实验室和超级计算中心等。 有几个因素使并行MATLAB工程在MathWorks公司内部变得很重要,首先MATALB 已经成长为支持大规模工程的领先工程技术计算环境;其次现今的微处理器可以有两个或四个内核,将来可能会更多甚至个人并行机,采用更复杂的分层存储结构,MA TLAB可以利用多处理器计算机或网络机群;最后是用户团体中要求全面成熟解决方案的呼声也越来越高[] Cleve Moler. Parallel MATLAB: Multiple Processors and Multi Cores, Th eMathWorks News&Notes 。 有三种途径可以用MATLAB来创建一个并行计算系统。第一种途径是主要是把MATLAB或相似程序翻译为低层语言如C或FORTRAN,并用注解和其它机制从编译器中生成并行代码,如CONLAB和FALCON工程就是这样。把MATLAB程序翻译为低层C或FORTRAN语言是个比较困难的问题,实际上MathWorks公司的MA TLAB编译软件就能转换生成C代码到生成包含MATLAB代码和库并支持各种语言特性的包装器。

相关主题
文本预览
相关文档 最新文档