当前位置:文档之家› 太阳能电池背板的结构及性能分析

太阳能电池背板的结构及性能分析

硅太阳能电池的结构及工作原理

一.引言: 太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。 当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。欧洲一些高水平的核研究机构也开始转向可再生能源。在国际光伏市场巨大潜力的推动下,各国的太阳能电池制造业争相投入巨资,扩大生产,以争一席之地。 全球太阳能电池产业1994-2004年10年里增长了17倍,太阳能电池生产主要分布在日本、欧洲和美国。2006年全球太阳能电池安装规模已达1744MW,较2005年成长19%,整个市场产值已正式突破100亿美元大关。2007年全球太阳能电池产量达到3436MW,较2006年增长了56%。 中国对太阳能电池的研究起步于1958年,20世纪80年代末期,国内先后引进了多条太阳能电池生产线,使中国太阳能电池生产能力由原来的3个小厂的几百kW一下子提升到4个厂的4.5MW,这种产能一直持续到2002年,产量则只有2MW左右。2002年后,欧洲市场特别是德国市场的急剧放大和无锡尚德太阳能电力有限公司的横空出世及超常规发展给中国光伏产业带来了前所未有的发展机遇和示范效应。 目前,我国已成为全球主要的太阳能电池生产国。2007年全国太阳能电池产量达到1188MW,同比增长293%。中国已经成功超越欧洲、日本为世界太阳能电池生产第一大国。在产业布局上,我国太阳能电池产业已经形成了一定的集聚态势。在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。 中国的太阳能电池研究比国外晚了20年,尽管最近10年国家在这方面逐年加大了投入,但投入仍然不够,与国外差距还是很大。政府应加强政策引导和政策激励,尽快解决太阳能发电上网与合理定价等问题。同时可借鉴国外的成功经验,在公共设施、政府办公楼等领域强制推广使用太阳能,充分发挥政府的示范作用,推动国内市场尽快起步和良性发展。 太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总 绿色环保节能太阳能 能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显

太阳能电池片的相关参数

硅太阳能电池的性能参数主要有:短路电流、开路电压、峰值电流、峰值电压、峰值功率、填充因子和转换效率等。 ①短路电流(isc):当将太阳能电池的正负极短路、使u=0时,此时的电流就是电池片的短路电流,短路电流的单位是安培(a),短路电流随着光强的变化而变化。 ②开路电压(uoc):当将太阳能电池的正负极不接负载、使i=0时,此时太阳能电池正负极间的电压就是开路电压,开路电压的单位是伏特(v)。单片太阳能电池的开路电压不随电池片面积的增减而变化,一般为0.5~ 0.7v。 ③峰值电流(im):峰值电流也叫最大工作电流或最佳工作电流。峰值电流是指太阳能电池片输出最大功率时的工作电流,峰值电流的单位是安培(a)。 ④峰值电压(um):峰值电压也叫最大工作电压或最佳工作电压。峰值电压是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位是v。峰值电压不随电池片面积的增减而变化,一般为0.45~0.5v,典型值为 0.48v。 ⑤峰值功率(pm):峰值功率也叫最大输出功率或最佳输出功率。峰值功率是指太阳能电池片正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:pm===im×um。峰值功率的单位是w(瓦)。太阳能电池的峰值功率取决于太阳辐照度、太阳光谱分布和电池片的工作温度,因此太阳能电池的测量要在标准条件下进行,测量标准为欧洲委员会的101号标准,其条件是:辐照度lkw/㎡、光谱aml.5、测试温度25℃。

⑥填充因子(ff):填充因子也叫曲线因子,是指太阳能电池的最大输出功率与开路电压和短路电流乘积的比值。计算公式为ff=pm/(isc×uoc)。填充因子是评价太阳能电池输出特性好坏的一个重要参数,它的值越高,表明太阳能电池输出特性越趋于矩形,电池的光电转换效率越高。串、并联电阻对填充因子有较大影响,太阳能电池的串联电阻越小,并联电阻越大,填充因子的系数越大。填充因子的系数一般在0.5~0.8之间,也可以用百分数表示。 ⑦转换效率(η):转换效率是指太阳能电池受光照时的最大输出功率与照射到电池上的太阳能量功率的比值。即: η=pm(电池片的峰值效率)/a(电池片的面积)×pin(单位面积的入射光功率),其中pin=lkw/㎡=100mw/cm2。 组件的板形设计一般从两个方向入手。一是根据现有电池片的功率和尺寸确定组件的功率和尺寸大小;二是根据组件尺寸和功率要求选择电池片的尺寸和功率。 电池组件不论功率大小,一般都是由36片、72片、54片和60片等几种串联形式组成。常见的排布方法有4片×9片、6片×6片、6片×12片、6片×9片和6片×10片等。下面就以36片串联形式的电池组件为例介绍电池组件的板型设计方法。

太阳能背板的简介

背板简介 一、背板的结构及特点 (1)由多层高分子薄膜经碾压黏合起来的复合膜,主要由三层组成:含氟膜(或其替代物)+PET层(或其替代物)+与EV A粘结层(有含氟膜、改性EV A、PE、PET等)。经典TPT结构 特点: 优异的耐侯性 低的水汽渗透率 良好的电绝缘性 一定的粘结强度 (2)含氟膜(或其替代物) 主要有PVF(聚偏氟乙烯)、PVDF(聚偏二氟乙烯)、PTFE(聚四氟乙烯)、THV(四氟乙烯、六氟丙烯、偏氟乙烯共聚物)、聚酰亚胺、改性PET(聚对苯二甲酸乙二酯)等。 各种膜性能对比

备注:加工方式不同对膜的性能影响很大,一般说来挤出法优于流延法,涂布法因为其工艺尚不成熟,性能相对最差。 (3)PET (聚对苯二甲酸乙二酯) 作用:降低水汽透过 优异的绝缘性能 缺点:在高温高湿中容易水解 在紫外光照中易发生光降解 (4)与EV A 粘结层 与EV A 粘结层主要有含氟膜和EV A (不同于EV A 胶膜)两大类 。 性能要求:优秀的抗紫外能力 较高的光反射率 一定粘结强度 与EV A 粘结层性能比较 可直接用作太阳电池组件或太阳能集热器的封装材料。 三、市场上主流背板及其组成 目前背板主要有:TPT 结构,TPE 结构,纯PET 结构,APA 结构,AAA 结构(此处T 泛指含氟层) TPT 结构:含氟层+PET+含氟层 O OCH )

TPE结构:含氟层+PET+EV A(低V A含量) APA结构:聚酰亚胺+PET+聚酰亚胺 AAA结构:三层聚酰亚胺复合 国外较知名的背板厂家有:Isovolta、Madico、Covene、Honeywell、Krempel、3M、SFC、Toyal等。 国内的背板厂家主要有:台湾台虹、杭州特富龙、苏州中来、苏州赛伍,其中特富龙和中来属于自主研发,台虹和赛伍的含氟膜是从国外采购。 几种主流背板性能对比

太阳能电池背板

太阳能电池背板 1 2008年~2009年太阳电池背板需求变化预测 太阳电池背板是保护太阳电池模件的外部构件,由薄膜的种类(PET系,氟系,其他)和它的搭配元素构成,保护层无条件的与模件的样式,设计,使用场合,用途相适应,有各种各样结构样式。多数情况下,模件厂商配合自家的产品指定背板的所要求性能和规格。背板厂商与其相配合来设计模件厂商所要求的产品,但,也有模件厂商指定设计图的情况。 因为太阳电池在屋外经过长时间的使用,所以要求其具有优良的耐久性·耐候性,即使背板在温度、湿度变化和残酷的自然环境下也不老化。作为满足这个条件的薄膜,太阳电池实用化刚开始使用氟系的PVF膜。 但是,背板用的PVF膜供应商限于美国的杜邦公司,随着需求的扩大,由于供应非常紧,出现了能否稳定供应的问题,由于需求平衡的紧迫,也有价格很难下降的问题。并且,通过废弃和处理方法对环境的超载有很大的担忧,作为表明没有杂质能源的太阳电池模件,并不是最适合的。 在模件厂商中,也有不使用PVF,摸索采用带有耐久性和耐候性的背板。特别是日本国内,在模件厂商与背板厂商双方国内可能供应下使用材料,进行背板的开发,从1990年初使用长期耐久性PET薄膜代替PVF,推进向PET系背板的替换。现在,在日本国内生产背板大部分都可以看到PET系。 在日本推进PET系背板的应用背景是模件厂商各公司除了避开难供应价格高的PVF的使用外,把太阳电池安置在住宅,公寓,大楼等建筑物的屋顶,为建筑物供给部分的电力使用,这种方法是一般做法,使用环境(气象条件等)并不是很严酷,在模件上与欧洲和美国相比,使用年数短。再者,日本国内的PET薄膜厂商的技术能力也有很强的影响。 另一方面,在海外,平原和海岸等宽阔的土地上铺满很多太阳电池大规模发电设备,背板在恶劣环境中长时间自由保养与使用相适用,耐久性是必须的。因为改变长年使用习惯的材料,抵抗感很高「要是使用氟系薄膜的话就放心」,由于这种意识,到现在为止PVF系的薄膜的应用仍是主流。 最近由于模件价格降低,做为快速削减材料成本举措,展开以PET为中心的背板并打入到日本的模件厂商的海外市场,扩大其在模件厂商的市场占有率,在海外市场,非氟系背板的知名度,信赖性提升,PET系背板的应用正一点一点的增加。 背板有复合保护层的和没有复合保护层的,一般,薄膜系模件是有保护层的,结晶系模件多是没有保护层的。 结晶系模件是夹在结晶系电池的玻璃盖上和背板之间,用封装材料(主要是EVA)密封的结构,电池是几十~几百μm,封装材料大约是0.4mm~1.0mm,确保一定程度的厚度,并不是不需要高保护性。 特别是在海外市场,PVF/PET/PVF没有保护层的构造是一般的材料,在日本,为了确保PET系和PVF系有相同等的耐久性和可靠性,采用耐加水分解PET薄膜和保护薄膜搭配的构造。

太阳能电池性能参数

太阳能电池性能参数 1、开路电压 开路电压UOC:即将太阳能电池置于AM1.5光谱条件、100 mW/cm2的光源强度照射下,在两端开路时,太阳能电池的输出电压值。 2、短路电流 短路电流ISC:就是将太阳能电池置于AM1.5光谱条件、100 mW/cm2的光源强度照射下,在输出端短路时,流过太阳能电池两端的电流值。 3、最大输出功率 太阳能电池的工作电压和电流是随负载电阻而变化的,将不同阻值所对应的工作电压和电流值做成曲线就得到太阳能电池的伏安特性曲线。如果选择的负载电阻值能使输出电压和电流的乘积最大,即可获得最大输出功率,用符号Pm表示。此时的工作电压和工作电流称为最佳工作电压和最佳工作电流,分别用符号Um和Im表示。 4、填充因子 太阳能电池的另一个重要参数是填充因子FF(fill factor),它是最大输出功率与开路电压和短路电流乘积之比。 FF:是衡量太阳能电池输出特性的重要指标,是代表太阳能电池在带最佳负载时,能输出的最大功率的特性,其值越大表示太阳能电池的输出功率越大。FF 的值始终小于1。串、并联电阻对填充因子有较大影响。串联电阻越大,短路电流下降越多,填充因子也随之减少的越多;并联电阻越小,其分电流就越大,导致开路电压就下降的越多,填充因子随之也下降的越多。 5、转换效率 太阳能电池的转换效率指在外部回路上连接最佳负载电阻时的最大能量转换效率,等于太阳能电池的输出功率与入射到太阳能电池表面的能量之比。太阳能电池的光电转换效率是衡量电池质量和技术水平的重要参数,它与电池的结构、结特性、材料性质、工作温度、放射性粒子辐射损伤和环境变化等有关。

图2.4.1 太阳能电池输出特性曲线

太阳能电池探究亮特性光照强度关系

扬州大学物理科学与技术学院 大学物理综合实验训练论文实验名称:太阳能电池探究亮特性光照强度关系 班级:物教1201班 姓名:郑清华 学号:120801117 指导老师:李俊来

太阳能电池探究亮特性光照强度关系 物教1201 郑清华指导老师:李俊来 摘要:本文介绍了太阳能电池研究背景、实验原理等。在不同光强条件对单晶硅太阳电尺进行了测试.研究发现,当光强为3433.56—10617.33W/2 m时,开路电压随着光强的增加呈对数关系增加,短路电流几乎呈线性变化。效率随着光强的增加先增加后减小,最大效率值1、21%。填充因子随着光强的增加减小。 关键词:太阳能电池;输出特性;光强特性。 一、研究背景 随着经济社会的不断发展,能量与能源问题的重要性日益凸显。人类对能源的需求,随着社会经济而急剧膨胀,专家估计目前每年能源总消耗量为200亿吨标准煤,并且其中90%左右为不可再生的化石能源来维持。就目前情况,全球化石能源储备只能维持100年左右。太阳能以其清洁、长久、无害等优点自然而然成为人类可持续发展不得不考虑的能源方式。太阳每年通过大气向地球输送的能量高达3×1024焦耳,而地球上人类一年的能源总需求达到约4.363×1020焦耳,也就是说,如果我们可以收集其中的万分之一到万分之二就足够我们的需求。太阳能是最为清洁的能源,并且不受任何地域限制,随处可取。此外,将太阳能转换为电能后,电能又是应用范围最广,输送最方便的一种能源。 太阳能一般指太阳光的辐射能量。我们知道在太阳内部无时无刻不在进行着氢转变为氦的热核反应,反应过程中伴随着巨大的能量释放到宇宙空间。太阳释放到宇宙空间的所有能量都属于太阳能的范畴。太阳能电池是目前太阳能利用的关键环节,核心概念是pn结和光生伏特效应 晶体硅太阳电池在如今的光伏市场中占据了绝对主导的地位,而且这一地位在今后很长一段时间内不会改变,因此提高晶体硅太阳电池效率,降低生产成本, 使晶体硅太阳电池能与常规能源进行竞争成为现今光伏时代的主题.太阳能是最具发展潜力的新能源。光伏发电是解决能源危机,实现能源可持续发展的重要途径之一。硅太阳能电池是当今市场的主流产品,其最高效率是24.7%,由新南威尔士大学马丁·格林教授研制的PERL单晶硅电池取得单并保持至今。继续提高转换效率十分困难,但电池的效率会随温度和光强变化而变化。因此,研究温度和光强对太阳能电池的影响是必要的。 二、太阳能光伏电池实验 (一)实验目的 1.了解pn结的基本结构与工作原理。 2.了解太阳能电池组件的基本结构,理解其工作原理。

太阳能电池背板PVDF

一、太阳能电池背板(PVDF) 随着不可再生资源的逐步减少以及矿物类资源生产、使用中产生的各种污染问趣,各国都在用政策的、法律的手段逐步加大对再生能源和清洁能源的开发利用,并努力提高其在整个能源使用中的比例。在这些清洁和可再生能源中,太阳能是其中最重要的能源之一。且前太阳能设备常用的是太阳能电池板,它是将太阳能转化为电能的一个重要设备。此类产品使用年限一般按照25年以上进行设计,要确保产品达到如此长的使用期限,就需要严格控制各组件质量,而这些组件中太阳能电池背板的作用不容小觑,太阳能电池背板起着保护光伏组件中的电池片的作用。中国可再生能源学会预计的太阳能背板材料的市场发展趋势,2013年全球的需求将是2009年的3倍。 二、太阳能电池模组结构及其对背板的性能要求 图2是太阳能电池模组结构示意图。共中一般按玻璃.胶膜一电池板一胶膜-TPT叠合于铝合金框内。由于太旧能电池模组是放置在室外的电气产品,因此背板除了具有保护功能以外,还必须具备25年之久的可靠的绝缘性能、阻水性、耐老化性能。表1列出了背板性能要求的一览表,在这些指标中一个衡量太阳能电池背板性能好坏的重要指标是水蒸气渗透率。若太阳能背板阻隔水蒸气渗透的性能不良,则空气中的湿气(尤其是阴雨湿气更大)会透过太阳能背板进入到内侧,水蒸气的渗透会影响到EV A(乙烯一醋酸乙烯共聚物)的粘结性能,导致背板与EV A脱离,进而使更多湿气直接接触电池片而使电池片被氧化。

三、PVDF树脂在背板中的应用 目前用于太阳能电池组件封装的背板常用TPT聚氟乙烯复合膜,TPT一般常用三层结构(PVF/PET/PVF),外层保护层PVF具有良好的抗环境侵蚀能力,中间层为PET聚脂薄膜具有良好的绝缘性能,内层PVF需经表面处理和EV A具有良好的粘接性能。PVDF树脂作为与PVF结构相接近的树脂产品,由于PVDF的含氟量59%远大于PVF的41%,其用于背板有着更好的特性要求。 四、正是基于PVDF树脂所特有的分子结构,PVDF材料具有以下特点: ·完全抵御日光降解 ·优异的耐化学品和耐溶剂性 ·高耐磨性 ·很好的耐沽污性 ·不支持真菌和细菌的生长,具有较好的阻燃和低烟特性 ·对大多数气体和液体的低渗透 ·高介电强度和体积电阻 ·很好的热a定性 ·在高温下的高机械温度 ·易于加工,成型与焊接 ·高纯度

光伏组件背板

用于组件背面,组件背表面的关键特征是它必须具有很低的热阻,并且必须阻止水或者水蒸汽的进入,对电池起保护和支撑作用,具有可靠的绝缘性、阻水性、耐老化性。一般具有三层结构,外层保护层,具有良好的抗环境侵蚀能力,中间层为具有良好的绝缘性能,内层和EVA具有良好的粘接性能。背板是光伏组件一个非常重要的组成部分,用来抵御恶劣环境对组件造成伤害,确保组件使用寿命。 一、背板的结构及、性能、使用、运输事项 ①、可分为:TPT、TPE、和PET/聚烯烃结构。其中T指美国杜邦公司的聚氟乙烯(PVF)薄膜,其商品名为Tedlar。P指双向拉伸的聚对苯二甲酸乙二醇酯薄膜,即PET薄膜,又名聚酯薄膜或涤纶薄膜。E指乙烯-醋酸乙烯树脂EVA。聚烯烃指各种以碳碳结构为主链的塑料。在各个注明的结构层之间使用合适的胶粘接复合而成太阳能电池背板。1.1.4 T PT背板TPT(聚氟乙烯复合膜),用在组件背面,作为背面保护封装材料。厚度0.17mm,纵向收缩率不大于1.5%,用于封装的TPT至少应该有三层结构:外层保护层pVF具有良好的抗环境侵蚀能力,中间层为聚脂薄膜具有良好的绝缘性能,内层PVF需经表面处理和EVA 具有良好的粘接性能。封装用Tedlar必须保持清洁,不得沾污或受潮,特别是内层不得用手指直接接触,以免影响EVA的粘接强度。TPT背板由PVF(聚氟乙烯薄膜)-PET(聚脂薄膜)-PVF三层薄膜构成的背膜,简称TPT;TPT有三层结构:外层保护层PVF 具有良好的抗环境侵蚀能力,中间层为聚脂薄膜具有良好的绝缘性能,内层PVF 经表面处理和EVA 具有良好的粘接性能。

TPT必须保持清洁,不得沾污或受潮,特别是内层不得用手指直接接触,以免影响和EVA 的粘接强度。 太阳电池的背面覆盖物—氟塑料膜为白色,对阳光起反射作用,因此对组件的效率略有提高,并因其具有较高的红外发射率,还可降低组件的工作温度,也有利于提高组件的效率。 当然TPT背板具有良好的耐候性、极佳的机械性能、延展性、耐老化、耐腐蚀、不透气,以及耐众多化学品、溶剂和着色剂的腐蚀。有出色的抗老化性能并在很宽的温度范围内保持了韧性和弯曲性。提高组件的效率。增强组件的抗渗水性。对组件背部起到了很好密封保护作用,延长了组件的使用寿命;提高了组件的绝缘性能。 背板的运输 TPT背膜应避光、避热、避潮运输,平整堆放。背膜的最佳贮存条件:放在恒温、恒湿的仓库内,其温度在0-40℃之间,相对湿度小于60%。避免阳光直照,不得靠近有加热设备或有灰尘等污染的地方,并应注意防火。保质期为12月。

HIT太阳能电池

高效HIT太阳能电池的发展现状 2013-5-27 13:17|发布者: 沈秋晨|查看: 1973|评论: 0|原作者: 乔秀梅,贾锐等|来自: Solarzoom 摘要: 摘要:带有本征薄层的异质结(Heterojunctionwith Intrinsic Thinfilm(HIT))太阳能电池起源于Hamakawa等设计的a-Si/c-Si堆叠太阳能电池,与单晶、非晶硅太阳能电池相比,其具有低温工艺,高的稳定性等优点, ... 摘要:带有本征薄层的异质结(Heterojunctionwith Intrinsic Thinfilm (HIT))太阳能电池起源于Hamakawa等设计的a-Si/c-Si堆叠太阳能电池,与单晶、非晶硅太阳能电池相比,其具有低温工艺,高的稳定性等优点,具有广阔的发展前景。 本文介绍了HIT太阳能电池的基本结构和能带并对其特点进行了深入的分析,根据相关文献从清洗,透明导电氧化层(TCO)的制备,非晶硅层的制备,背表面场的制备等方面深入分析了HIT太阳能电池的技术发展状况,并以三洋公司为引线,简单介绍了HIT太阳能电池的产业发展现状。 关键词:HIT;太阳能电池;结构;特点;技术发展;产业发展 1HIT太阳能电池的结构及其特点 1.1HIT太阳能电池的结构 1.1.1基本结构 HIT电池的本质是异质结太阳能电池,A.I.Gubanov于1951年就已经提出了异质结的概念,并且进行了理论分析,但是由于当时制备异质结的工艺技术十分复杂和困难,所以异质结的样品迟迟没有制备成功。1960年Anderson成功的制备出高质量的异质结样品,还提出了十分详细的理论模型和能带结构图。带本征薄层异质结(HIT)太阳能电池是由MakotoTanaka和MikioTaguchi等人于1992年在三洋公司第一次制备成功。图1为常见的双面异质结电池的结构示意图,其特征是三明治结构,中间为衬底p(n)型晶体Si,光照侧是n(p)-i型a-Si膜,背面侧是i-p+(n+)型a-Si膜,在两侧的顶层溅射TCO膜,电极丝印在TCO膜上,构成具有对称型结构的HIT太阳电池。本征a-Si:H起到钝化晶体硅表面的缺陷的作用。最常见的是p型硅基异质结太阳能电池,其广泛应用于光伏产业,因为p型硅片是常见的光伏材料且以p型单晶硅为衬底的电池接触电阻较低,但是由于硼和间隙氧的存在,使得以p型单晶硅为衬底的太阳电池有较严重的光照衰减问题。且由于c-Si(p)/a-Si(i/p)界面氢化非晶硅价带带阶(0.45ev)要比导带带阶大(0.15ev),n型硅基比p型硅基更适合双面异质结太阳能电池。图2是异质结的能带图。对n型Si衬底HIT电池,前表面处较大的价带带阶形成少子空穴势阱,因势阱中空穴势垒较高,热发射概率小,从而有效地阻止了光生空穴的传输。在背面处,薄本征a-Si:H层以及n型a-Si:H层与n型c-Si形成有效

单晶硅太阳能电池板详细参数(精)

单晶硅太阳能电池板详细参数(精)

单晶硅太阳能电池板,铝合金边框,钢化玻璃面板详细参数:单晶硅太阳能板100W 尺寸:963x805x35MM 净重:11KGS 工作电压:33.5V 工作电流:2.99A 开路电压:41.5V 短路电流:3.57A 蓄电池:24v 二、产品特点: 采用平均转换效率在15%以上的优质单晶硅太阳电池单片,具有优良的弱光响应性能,符合 IEC61215 和电气保护 II 级标准。太阳能电池转换效率高。 而且太阳能电池板阵列一次性性能佳。太阳能电池板阵列的表面 采用高透光绒面钢化玻璃封装,气密性、耐候性好,抗腐蚀。 阳极氧化铝边框:机械强 度高,具有良好的抗风性和防雹性,可在各种复杂恶劣的气候条件下使用,便于安装。太阳能电池板在制造时, 先进行化学处理, 表面做成了一个象金字塔一样的绒面, 能减少反射,更好地吸收光能。采用双栅线,使组件的封装的可靠性更高。 太阳能电池板阵列抗冲击性能佳, 符合 IEC 国际标准。 太阳能电池板阵列层之间采用双层 EVA 材料以及 TPT 复合材料,组件气密性好,抗潮,抗紫外线好,不容易老化。直流接线盒:采 用密封防水、高可靠性多功能 ABS 塑料接线盒,耐老化防水防潮性能好;连接端采用易操作的专用公母插头, 使用安全、方便、可靠。带有旁路二极管能减少局部阴影而引起的损害。 工作温度:-40℃~+90℃使用寿命可达 20 年以上,衰减小于 20%。三、 问题集锦:1、什么是太阳能电池 答:太阳能电池是基于半导体的光伏效应将太阳辐射 直接转换为电能的半导体器件。 现在商品化的太阳能电池主要有以下几种类型:单晶硅太阳 能电池、多晶硅太阳能电池、非晶硅太阳能电池,目前还有碲华镉电池、铜铟硒电池、纳米氧化钛敏化电池、多晶硅薄膜太阳能电池及有机太阳能电池等。 晶体硅(单晶、多晶太阳能电池需要高纯度的硅原料,一般要求纯度至少是 99. 99998%,也就是一千万个硅原子中最多允许 2 个杂质原子存在。硅材料是用二氧化硅(SiO2,也就是我们所熟悉的沙子作为原料, 将其熔化并除去杂质就可制取粗级硅。从二氧化硅到太阳能电池片, 涉及多个生

太阳能组件背板常见问题

太阳能背板常见问题及分析 尽管目前全球太阳能光伏市场处于产能过剩时期,但是每年的太阳能光伏电站的装机量还是在快速的发展。人们对于太阳能组件的认识也慢慢地开始全面起来。太阳能组件一般需要投放在自然环境中,历经风吹雨打各种环境。背板作为组件的"后宫"卫士要对各种环境有一定的防御能力。 一、前言 目前市场中出现的背板的种类比较多,但是前提必须具有可靠的绝缘性、阻水性、耐老化性。不同厂家、不同结构出现不同的命名方法,例如:TPT、TPE、KPK、KPE、AAA、PET、PET- PET 、PPE.FPF 、FPE 等等不同的背板结构名称。 其中:T:指杜邦公司的聚氟乙烯(PVF)薄膜,商品名为Tedlar。K:指Arkema公司生产的PVDF专利商标名为K (Kynar)。P:指PET薄膜--聚对苯二甲酸乙二醇酯薄膜(背板的骨架)。E:指EVA(VA含量较低),或者聚烯烃PO。A: 改性聚酰胺(简称PA ,Nylon)Isovolta开发有AAA结构背板。F:指氟碳涂料: PTFE(聚四氟乙烯)涂料; PVDF(聚偏氟乙烯)涂料; FEVE 氟乙烯与乙烯基醚的共聚物. 当然很多涂料型背板厂家为了强调自己产品的质量好,也自称F为"T"。 二、常见背板出现问题 1、黄变 在太阳能光伏组件层压过程中,使用两层胶膜对太阳能电池进行粘接,使得太阳能电池与玻璃和背板合为一体。两层胶膜一般会有一层需要将短波紫外线进行截止。而背板本身对紫外光300nm-380nm的耐紫外强度有一定抵抗能力,但是部分背板在紫外光的照射下还是会发生黄变,导致背板层的分子组成部分被破坏,背板的整体性能下降,同时背板的反射率降低,影响组件的整体输出。含氟材料在没有经过其他处理时本身有耐紫外的能力。如果两层胶膜均没有将短波紫外线进行截止,紫外线会直接导致位于底层的背板变黄。 产生影响:首先会使组件的外观很不美观,另外黄变后的背板会减少对太阳光的反射,进而会影响太阳能电池对太阳光的吸收效果,最终降低组件的功率输出。 2、背板鼓包 电池片存在热斑的位置以及隐形胶带位置都容易出现背板鼓包,尤其在两个位置出现重叠的情况下更加容易出现背板鼓包,主要是温度高导致材料气化所致。组件在应用过程中,电池片本身吸收的太阳光会有一部分转变成热能,造成组件内部温度升高,EVA内的紫外吸收剂将吸收的紫外光转换成一部分热能,散发到组件内部。一般来讲正常组件的工作温度在70℃-80℃之间,根据测试数据证明,温度升高会对组件的功率输出造成影响,组件本身的温度每升高1℃,组件的输出功率会相应的减少约1W,因此在背板材料在选型过程中应考虑背板材料的热传导系数。热传导系数和背板本身的基材和成分组成有关,热量主要靠介质传导。 采取措施:在电池片投入时,保证投入电池片都是合格的,在标准内的电池片,焊接过程中要避免出现开焊、虚焊等情况,敷设时要按照图纸粘贴隐形胶带。 3、背板条下气泡 产生原因:背板条造成汇流带之间存在较大梯度,敷设员工没有将EVA条放到位,造成EVA没有很好地进行填充。 造成影响:在组件后期使用过程中,气泡会逐渐扩大以及气泡周围的材料会氧化变质,大大地影响组件的使用寿命。 4、背板划伤 产生原因:原材料本身所自带的问题,在原材料检验过程中没有发现,直接进入生产车间;敷设后的层压件在传输线上运输时,传输线上尖锐物品对背板造成划口;修边人员在修边过程中对背板引起的伤害。

太阳能电池的的性能主要取决于它的光电转换效率和输出功率

太阳能电池板太阳能电池的的性能主要取决于它的光电转换效率和输出功率. 1.效率越大,相同面积的太阳能电池板输出功率也就越大, 用高效率的太阳 能电池板可以节省安装面积, 但是价格更贵. 2.太阳能电池的功率, 在太阳能电池板的背面标牌中, 有关于太阳能电池 板的输出参数, 如VOC开路电压,ISC短路电流,VMP工作电压,IMP工作电流, 等. 但我们只需要用工作电压和工作电流就可以了, 这两个相乘就可以得 这块太阳能电池板的输出功率. 太阳能电池板介绍:采用高质量单晶/多晶硅材料,经精密设备树脂封装生产出来的太阳能板,有良好的光电转换效果,外形美观,使用寿命长。 太阳能电池板的作用是将太阳的光能转化为电能后,输出直流电存入蓄电池中。太阳能电池板是太阳能发电系统中最重要的部件之一。 太阳能电池组件可组成各种大小不同的太阳能电池方阵,亦称太阳能电池阵列。太阳能电池板的功率输出能力与其面积大小密切相关,面积越大,在相同光照条件下的输 出功率也越大。 2.太阳能电池板的种类 (1)单晶硅太阳能电池 目前单晶硅太阳能电池的光电转换效率为15%左右,最高的达到24%,这是目前所有种类的太阳能电池中光电转换效率最高的,但制作成本很大,以致于它还不能被大量广泛和普遍地使用。由于单晶硅一般采用钢化玻璃以及防水树脂进行封装,因此其坚固耐用,使用寿命一般可达15年,最高可达25年。 (2)多晶硅太阳能电池 多晶硅太阳能电池的制作工艺与单晶硅太阳能电池差不多,但是多晶硅太阳能电池的光电转换效率则要降低不少,其光电转换效率约12%左右(2004年7月1日日本夏普上市效率为%的世界最高效率多晶硅太阳能电池)。从制作成本上来讲,比单晶硅太阳能电池要便宜一些,材料制造简便,节约电耗,总的生产成本较低,因此得到大量发展。此外,多晶硅太阳能电池的使用寿命也要比单晶硅太阳能电池短。从性能价格比来讲,单 晶硅太阳能电池还略好。

硅太阳能电池的主要性能参数

硅太阳能电池的主要性能参数 本信息来源于太阳能人才网|https://www.doczj.com/doc/3115127357.html, 原文链接: 硅太阳能电池的性能参数主要有:短路电流、开路电压、峰值电流、峰值电压、峰值功率、填充因子和转换效率等。 ①短路电流(isc):当将太阳能电池的正负极短路、使u=0时,此时的电流就是电池片的短路电流,短路电流的单位是安培(a),短路电流随着光强的变化而变化。 ②开路电压(uoc):当将太阳能电池的正负极不接负载、使i=0时,此时太阳能电池正负极间的电压就是开路电压,开路电压的单位是伏特(v)。单片太阳能电池的开路电压不随电池片面积的增减而变化,一般为0.5~0.7v。 ③峰值电流(im):峰值电流也叫最大工作电流或最佳工作电流。峰值电流是指太阳能电池片输出最大功率时的工作电流,峰值电流的单位是安培(a)。 ④峰值电压(um):峰值电压也叫最大工作电压或最佳工作电压。峰值电压是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位是v。峰值电压不随电池片面积的增减而变化,一般为0.45~0.5v,典型值为0.48v。 ⑤峰值功率(pm):峰值功率也叫最大输出功率或最佳输出功率。峰值功率是指太阳能电池片正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:pm===im ×um。峰值功率的单位是w(瓦)。太阳能电池的峰值功率取决于太阳辐照度、太阳光谱分布和电池片的工作温度,因此太阳能电池的测量要在标准条件下进行,测量标准为欧洲委员会的101号标准,其条件是:辐照度lkw/㎡、光谱aml.5、测试温度25℃。 ⑥填充因子(ff):填充因子也叫曲线因子,是指太阳能电池的最大输出功率与开路电压和短路电流乘积的比值。计算公式为ff=pm/(isc×uoc)。填充因子是评价太阳能电池输出特性好坏的一个重要参数,它的值越高,表明太阳能电池输出特性越趋于矩形,电池的光电转换效率越高。 串、并联电阻对填充因子有较大影响,太阳能电池的串联电阻越小,并联电阻越大,填充因子的系数越大。填充因子的系数一般在0.5~0.8之间,也可以用百分数表示。 ⑦转换效率(η):转换效率是指太阳能电池受光照时的最大输出功率与照射到电池上的太阳能量功率的比值。即: η=pm(电池片的峰值效率)/a(电池片的面积)×pin(单位面积的入射光功率),其中pin=lkw /㎡=100mw/cm2。 电池组件的板型设计 在生产电池组件之前,就要对电池组件的外型尺寸、输出功率以及电池片的排列布局等进行设计,这种设计在业内就叫太阳能电池组件的板型设计。电池组件板型设计的过程是一个对电池组件的外型尺寸、输出功率、电池片排列布局等因素综合考虑的过程。设计者既要了解电池片的性能参数,还要了解电池组件的生产工艺过程和用户的使用需求,做到电池组件尺寸合理,电池片排布紧凑美观。 组件的板形设计一般从两个方向入手。一是根据现有电池片的功率和尺寸确定组件的功率和尺寸大小;二是根据组件尺寸和功率要求选择电池片的尺寸和功率。 电池组件不论功率大小,一般都是由36片、72片、54片和60片等几种串联形式组成。常见的排布方法有4片×9片、6片×6片、6片×12片、6片×9片和6片×10片等。下面就以36片串联形式的电池组件为例介绍电池组件的板型设计方法。

晶硅太阳能电池组件—背板材料产品技术原材料测试方法及质量问题修订稿

晶硅太阳能电池组件—背板材料产品技术原材料测试方法及质量问题 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

Renewable Energy Photovoltaic technology is used worldwide to provide reliable and cost-effective electricity for industrial, commercial, residential and community applications. The average lifetime of PV modules can be expected to be more than 25 years. The disposal of PV systems will become a problem in view of the continually increasing production of PV modules. These can be recycled for about the same cost as their disposal. Photovoltaic modules in crystalline silicon solar cells are made from the following elements, in order of mass: glass, aluminium frame, EVA copolymer transparent hermetising layer, photovoltaic cells, installation box, Tedlar protective foil and assembly bolts. From an economic point of view, taking into account the price and supply level, pure silicon, which can be recycled from PV cells, is the most valuable construction material used. Recovering pure silicon from damaged or end-of-life PV modules can lead to economic and environmental benefits. Because of the high quality requirement for the recovered silicon, chemical processing is the most important stage of the recycling process. The chemical treatment conditions need to be precisely adjusted in order to achieve the required purity level of the recovered silicon. For PV systems based on crystalline silicon, a series of etching processes was carried out as follows: etching of electric connectors, anti- reflective coating and n-p junction. The chemistry of etching solutions was individually adjusted for the different silicon cell types. Efforts were made to formulate a universal composition for the etching solution. The principal task at this point was to optimise the etching temperature, time and alkali concentration in such a way that only as much silicon was removed as necessary.

太阳能电池的基本特性与性能参数

1、太阳能电池的基本特性 太阳能电池的基本特性有太阳能电池的极性、太阳电池的性能参数、太阳能电池的伏安特性三个基本特性。具体解释如下 1、太阳能电池的极性 硅太阳能电池的一般制成P+/N型结构或N+/P型结构,P+和N+,表示太阳能电池正面光照层半导体材料的导电类型;N和P,表示太阳能电池背面衬底半导体材料的导电类型。太阳能电池的电性能与制造电池所用半导体材料的特性有关。 2、太阳电池的性能参数 太阳电池的性能参数由开路电压、短路电流、最大输出功率、填充因子、转换效率等组成。这些参数是衡量太阳能电池性能好坏的标志。 3 太阳能电池的伏安特性 P-N结太阳能电池包含一个形成于表面的浅P-N结、一个条状及指状的正面欧姆接触、一个涵盖整个背部表面的背面欧姆接触以及一层在正面的抗反射层。当电池暴露于太阳光谱时,能量小于禁带宽度Eg的光子对电池输出并无贡献。能量大于禁带宽度Eg的光子才会对电池输出贡献能量Eg,大于Eg的能量则会以热的形式消耗掉。因此,在太阳能电池的设计和制造过程中,必须考虑这部分热量对电池稳定性、寿命等的影响。 2、有关太阳电池的性能参数 1、开路电压 开路电压UOC:即将太阳能电池置于100 mW/cm2的光源照射下,在两端开路时,太阳能电池的输出电压值。 2、短路电流 短路电流ISC:就是将太阳能电池置于标准光源的照射下,在输出端短路时,流过太阳能电池两端的电流。 3、大输出功率

太阳能电池的工作电压和电流是随负载电阻而变化的,将不同阻值所对应的工作电压和电流值做成曲线就得到太阳能电池的伏安特性曲线。如果选择的负载电阻值能使输出电压和电流的乘积最大,即可获得最

太阳能电池背板使用的各种氟塑料的比较

太阳能电池背板使用的各种氟塑料的比较一.背景: 随着太阳能产业的发展,各种相关部件也越来越多的成为业界热议的话题。在太阳能电池组件中封装材料一直是除硅片以外最重要的材料,封装材料包括玻璃、胶膜、背板、铝框和硅胶。其中由于背板的主要材料一直为外国公司所垄断,在07、08年一度供不应求,所以背板也是最为引人关注的封装材料。 常用的背板可以分为TPT、TPE、全PET和PET/聚烯烃结构。其中T指美国杜邦公司的聚氟乙烯(PVF)薄膜,其商品名为Tedlar。P指双向拉伸的聚对苯二甲酸乙二醇酯薄膜,即PET薄膜,又名聚酯薄膜或涤纶薄膜。E指乙烯-醋酸乙烯树脂EVA。聚烯烃指各种以碳碳结构为主链的塑料。在各个注明的结构层之间使用合适的胶粘接复合而成太阳能电池背板。 二.氟塑料薄膜在背板上的使用: 要讲清楚太阳能电池背板的性能,就必须首先清楚各种氟材料的性能。目前最多使用的氟塑料薄膜为PVF薄膜。国际上生产PVF的供应商非常少,除美国杜邦公司外,有报道中国的蓝天环保和晨光化工院都有小批量生产。杜邦发明PVF后一直未能找到大规模的用途,纠其原因:一方面其综合性能如化学稳定性、阻水性、热稳定性等均不如其它氟塑料;另一方面PVF加工非常麻烦,其熔点和分解点非常接近,挤出成膜时需要添加潜溶剂或共聚改性,这给膜质量的控制和溶剂的回收都带来了很高的要求。在太阳能电池背板大量使用前,PVF主要是推广领域是铝合金建材保护、农药包装涂料等。由于杜邦公司最早将其推广使用在太阳能电池的背板保护上,随近几年太阳能电池组件需求的猛增,Tedlar的需求也随之猛增,以至供不应求。 由于PVF的供应商很少,许多公司争相使用其它氟材料薄膜来替代PVF薄膜。目前已经商品化的背板使用的氟塑料薄膜有聚偏氟乙烯(PVDF)、聚三氟氯乙烯(ECTFE)、四氟乙烯-六氟丙烯-偏氟乙烯共聚物(THV)。几种氟塑料的结构如下表。 简称化学名分子结构式主要背板供应商 PVF 聚氟乙烯-(CH2-CHF)n- Isovolta、Madico、Krempel PVDF 聚偏氟乙烯-(CH2-CF2)n- 东洋铝业、Krempel ECTFE 三氟氯乙烯-乙烯共 聚物-(CH2-CH2)n-(CFCl-CF2) m- Honeywell

(整理)太阳能电池各电性能参数-草稿.

太阳能电池各电性能参数的本质及工艺意义 ?武宇涛 ? 电性能参数主要有:V oc,Isc,Rs,Rsh,FF,Eff,Irev1,… 电性能参数在生产过程中尤其是在实时的生产控制现场,非常及时地反映了整个生产线生产工艺尤其是后道工序的动态变化情况,为我们对产线的控制及生产设备工艺参数的实时调节起到了非常重要的参考作用。 从可控性难易角度来说,V oc,Rs,Rsh,主要和原材料及生产工艺的本身特征相关,与工艺现场的调控波动性关系不是特别紧密,可称之为长程可控参数。而Isc,FF, Irev1与工艺现场的调控联系紧密,对各调控参数比较敏感,可称之为短程可控参数。 当然我们最关心的是效率Eff。而Eff则是以上所有参数的综合表现。 太阳能电池的理论基础建立在以下几个经典公式之上: Voc=(KT/q)×ln(Isc/Io+1) Voc=(KT/q)×ln(N aNd/ni2) 1 2 FF=Pm/(Voc×Isc)=Vm×Im/ (Voc×Isc) 3 4

Eff=Pm/(APin)=FF×Voc×Isc/APin=FF×Voc×Jsc/Pin 5 图-1太阳能电池的I-V曲线 图-2太阳能电池等效电路 从上面5式我们可以看到,与效率直接相关的电性能参数主要有:FF,Voc, Isc。在生产中我们还比较关心暗电流情况:Irev1,由1式可以看出,它与Voc有比较紧密地联系(实际也是这样的)。 为了更好地说明各参数间的联系,这里先录用几组数据如下:

表-1 线别Uoc Isc FF Rs Rsh EFF Irev>6>16%Isc>8.2Voc>620FF>78 P156(71)0.6188.2177.20.00381816.11%0.17%78.73%56.2%33.1% 1.3% P156(62)0.6168.2176.60.00413315.92%0.53%56.06%55.2%18.1%0.4% E-CELL(LY)0.6277.2978.10.00312914.68% 1.23%40.03%20.3%69.8%65.8% 以上P156均系LDK片源。 1,Voc 由于光生电子-空穴对在内建场的作用下分别被收集到耗尽层的两端,从而形成电势。所以我们认为Voc是内建电场即PN 结扫集电流的能力的直观表现。 由上面公式1所反映,Voc主要与电池片的参杂浓度(Nd)相关。对于宽△Eg的电池材料,相对会有比较高的Voc;但△Eg过高,又会导致光吸收效率的迅速下降(主要是长波段响应降低),使Isc是降低,所以需要找到一个最佳掺杂深度值。另一方面,高参杂又会引入更多的复合中心,使复合电流增加,同样也降低了Voc。所以在没有引起复合电流增加或者其增量比较小的前提下,参杂浓度的提高对Voc总是有益的。 在上表所示的三种成品电池片中,P156的片子与E-CELL 片子Voc有着显著的不同,这显然是由于冶金级硅的杂质浓度过大导致的。而对于62栅线和71栅线的电池片,由于其总体参杂浓度并没有显著的改变,所以其开压并没有显著差别。从上表还可以看出,E-CELL电池的Isc已经比比另两者有显著降低,我们可以认为对于P156的正常多晶硅电池片其Voc在620mv左右达

相关主题
文本预览
相关文档 最新文档