当前位置:文档之家› 2013年高考数学综合题难题解答-数列与不等式-尖子生必备

2013年高考数学综合题难题解答-数列与不等式-尖子生必备

2013年高考数学综合题难题解答-数列与不等式-尖子生必备
2013年高考数学综合题难题解答-数列与不等式-尖子生必备

高考数学综合题难题解答-数列与不等式(超级困难)

高考数学全国卷选做题之不等式

2010——2016《不等式》高考真题 2010全国卷设函数f(x)=241 x-+ (Ⅰ)画出函数y=f(x)的图像; (Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围. 2011全国卷设函数()||3 =-+,其中0 f x x a x a>. (I)当a=1时,求不等式()32 ≥+的解集. f x x (II)若不等式()0 x≤-,求a的值. f x≤的解集为{x|1}

2012全国卷已知函数f (x ) = |x + a | + |x -2|. (Ⅰ)当a =-3时,求不等式f (x )≥3的解集; (Ⅱ)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围。 2013全国卷Ⅰ 已知函数()f x =|21||2|x x a -++,()g x =3x +. (Ⅰ)当a =-2时,求不等式()f x <()g x 的解集; (Ⅱ)设a >-1,且当x ∈[2a -,12 )时,()f x ≤()g x ,求a 的取值范围.

2013全国卷Ⅱ 设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ac ≤13; (2)2221a b c b c a ++≥. 2014全国卷Ⅰ 若,0,0>>b a 且ab b a =+11 (I )求33b a +的最小值; (II )是否存在b a ,,使得632=+b a ?并说明理由.

2014全国卷Ⅱ设函数() f x=1(0) ++-> x x a a a (Ⅰ)证明:() f<,求a的取值范围. f x≥2 (Ⅱ)若()35 2015全国卷Ⅰ已知函数=|x+1|-2|x-a|,a>0. (Ⅰ)当a=1时,求不等式f(x)>1的解集; (Ⅱ)若f(x)的图像与x轴围成的三角形面积大于6,求a的取值范围

高考理科数学专题复习题型数列

第8讲数列 [考情分析]数列为每年高考必考内容之一,考查热点主要有三个方面:(1)对等差、等比数列基本量和性质的考查,常以客观题的形式出现,考查利用通项公式、前n项和公式建立方程(组)求解,利用性质解决有关计算问题,属于中、低档题;(2)对数列通项公式的考查;(3)对数列求和及其简单应用的考查,主、客观题均会出现,常以等差、等比数列为载体,考查数列的通项、求和,难度中等. 热点题型分析 热点1等差、等比数列的基本运算及性质 1.等差(比)数列基本运算的解题策略 (1)设基本量a1和公差d(公比q); (2)列、解方程(组):把条件转化为关于a1和d(q)的方程(组),然后求解,注意整体计算,以减少运算量. 2.等差(比)数列性质问题的求解策略 (1)解题关键:抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解; (2)牢固掌握等差(比)数列的性质,可分为三类:①通项公式的变形;②等差(比)中项的变形;③前n项和公式的变形.比如:等差数列中,“若m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*)”;等比数列中,“若m+n=p+q,则a m·a n=a p·a q(m,n,p,q∈N*)”.

1.已知在公比不为1的等比数列{a n }中,a 2a 4=9,且2a 3为3a 2和a 4的等差中项,设数列{a n }的前n 项积为T n ,则T 8=( ) A.12×37-16 B .310 C.318 D .320 答案 D 解析 由题意得a 2a 4=a 23=9.设等比数列{a n }的公比为q ,由2a 3为3a 2和a 4 的等差中项可得4a 3=3a 2+a 4,即4a 3=3a 3 q +a 3q ,整理得q 2-4q +3=0,由公比 不为1,解得q =3.所以T 8=a 1·a 2·…·a 8=a 81q 28=(a 81q 16 )·q 12=(a 1q 2)8·q 12=a 83· q 12=94×312=320.故选D. 2.(2019·江苏高考)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5 +a 8=0,S 9=27,则S 8的值是________. 答案 16 解析 解法一:由S 9=27?9(a 1+a 9) 2=27?a 1+a 9=6?2a 5=6?2a 1+8d =6 且a 5=3.又a 2a 5+a 8=0?2a 1+5d =0, 解得a 1=-5,d =2.故S 8=8a 1+8×(8-1) 2d =16. 解法二:同解法一得a 5=3. 又a 2a 5+a 8=0?3a 2+a 8=0?2a 2+2a 5=0?a 2=-3. ∴d =a 5-a 2 3=2,a 1=a 2-d =-5. 故S 8=8a 1+8×(8-1) 2 d =16.

2011高考数学压轴题专题训练

2011高考数学压轴题专题训练--数列(36页WORD ) 第六章 数列 高考题 三、解答题 22.(2009全国卷Ⅰ理)在数列{}n a 中,1111 1,(1)2 n n n n a a a n ++==++ (I )设n n a b n = ,求数列{}n b 的通项公式 (II )求数列{}n a 的前n 项和n S 分析:(I )由已知有 1112n n n a a n n +=++11 2 n n n b b +∴-= 利用累差迭加即可求出数列{}n b 的通项公式: 1 122 n n b -=-(* n N ∈) (II )由(I )知1 22n n n a n -=- , ∴n S =11(2)2n k k k k -=-∑111(2)2n n k k k k k -===-∑∑ 而 1 (2)(1)n k k n n ==+∑,又11 2n k k k -=∑ 是一个典型的错位相减法模型, 易得 11 12 42 2n k n k k n --=+=-∑ ∴n S =(1)n n +1242n n -++- 评析:09年高考理科数学全国(一)试题将数列题前置,考查构造新数列和利用错位相减法求前n 项和,一改往年的将数列结合不等式放缩法问题作为押轴题的命题模式。具有让考生和一线教师重视教材和基础知识、基本方法基本技能,重视两纲的导向作用。也可看出命题人在有意识降低难度和求变的良苦用心。 23.(2009北京理)已知数集{}()1212,, 1,2n n A a a a a a a n =≤<<≥具有性质P ;对任意的 (),1i j i j n ≤≤≤,i j a a 与 j i a a 两数中至少有一个属于A . (Ⅰ)分别判断数集{}1,3,4与{}1,2,3,6是否具有性质P ,并说明理由;

2020年高考理科数学《数列》题型归纳与训练及参考答案

2020年高考理科数学《数列》题型归纳与训练 【题型归纳】 等差数列、等比数列的基本运算 题组一 等差数列基本量的计算 例1 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2?S n =36,则n = A .5 B .6 C .7 D .8 【答案】D 【解析】解法一:由题知()21(1) 2 1n S na d n n n n n n ==+-=-+,S n +2=(n +2)2,由S n +2?S n =36得,(n +2)2?n 2=4n +4=36,所以n =8. 解法二:S n +2?S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.所以选D . 【易错点】对S n +2?S n =36,解析为a n +2,发生错误。 题组二 等比数列基本量的计算 例2 在各项均为正数的等比数列{a n }中,若28641,2a a a a ==+,则a 6的值是________. 【答案】4 【解析】设公比为q (q ≠0),∵a 2=1,则由8642a a a =+得6422q q q =+,即42 20q q --=,解得q 2=2, ∴4 624a a q ==. 【易错点】忘了条件中的正数的等比数列. 【思维点拨】 等差(比)数列基本量的计算是解决等差(比)数列题型时的基础方法,在高考中常有所体现,多以选择题或填空题的形式呈现,有时也会出现在解答题的第一问中,属基础题.等差(比)数列基本运算的解题思路: (1)设基本量a 1和公差d (公比q ). (2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.

最新高考数学压轴题专题训练(共20题)[1]

1.已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

3.已知点A (-1,0),B (1,0),C (- 5712,0),D (5712 ,0),动点P (x , y )满足AP →·BP → =0,动点Q (x , y )满足|QC →|+|QD →|=10 3 ⑴求动点P 的轨迹方程C 0和动点Q 的轨迹方程C 1; ⑵是否存在与曲线C 0外切且与曲线C 1内接的平行四边形,若存在,请求出一个这样的平行四边形,若不存在,请说明理由; ⑶固定曲线C 0,在⑵的基础上提出一个一般性问题,使⑵成为⑶的特例,探究能得出相应结论(或加强结论)需满足的条件,并说明理由。 4.已知函数f (x )=m x 2+(m -3)x +1的图像与x 轴的交点至少有一个在原点右侧, ⑴求实数m 的取值范围; ⑵令t =-m +2,求[1 t ];(其中[t ]表示不超过t 的最大整数,例如:[1]=1, [2.5]=2, [-2.5]=-3) ⑶对⑵中的t ,求函数g (t )=t +1t [t ][1t ]+[t ]+[1t ]+1的值域。

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

高考理科数学《数列》题型归纳与训练

高考理科数学《数列》题型归纳与训练 【题型归纳】 等差数列、等比数列的基本运算 题组一 等差数列基本量的计算 例1 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2?S n =36,则n = A .5 B .6 C .7 D .8 【答案】D 【解析】解法一:由题知()21(1) 2 1n S na d n n n n n n ==+-=-+,S n +2=(n +2)2,由S n +2?S n =36得,(n +2)2?n 2=4n +4=36,所以n =8. 解法二:S n +2?S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.所以选D . 【易错点】对S n +2?S n =36,解析为a n +2,发生错误。 题组二 等比数列基本量的计算 例2 在各项均为正数的等比数列{a n }中,若28641,2a a a a ==+,则a 6的值是________. 【答案】4 【解析】设公比为q (q ≠0),∵a 2=1,则由8642a a a =+得6422q q q =+,即42 20q q --=,解得q 2=2, ∴4 624a a q ==. 【易错点】忘了条件中的正数的等比数列. 【思维点拨】 等差(比)数列基本量的计算是解决等差(比)数列题型时的基础方法,在高考中常有所体现,多以选择题或填空题的形式呈现,有时也会出现在解答题的第一问中,属基础题.等差(比)数列基本运算的解题思路: (1)设基本量a 1和公差d (公比q ). (2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.

2020年高考数学压轴题系列训练含答案及解析详解4

第 1 页 共 16 页 第 1 页 共 2020年高考数学压轴题系列训练含答案及解析详解4 1.(本小题满分14分) 已知f(x)= 2 22 +-x a x (x ∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)= x 1 的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范 围;若不存在,请说明理由. 本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨 论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分. 解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 2 22) 2() 2(2+---x ax x , ∵f(x)在[-1,1]上是增函数, ∴f '(x)≥0对x ∈[-1,1]恒成立, 即x 2-ax -2≤0对x ∈[-1,1]恒成立. ① 设?(x)=x 2-ax -2, 方法一: ?(1)=1-a -2≤0,

— 2 — ① ? ?-1≤a ≤1, ?(-1)=1+a -2≤0. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. 方法二: 2a ≥0, 2 a <0, ①? 或 ?(-1)=1+a -2≤0 ?(1)=1-a -2≤0 ? 0≤a ≤1 或 -1≤a ≤0 ? -1≤a ≤1. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. (Ⅱ)由 2 22 +-x a x =x 1,得x 2-ax -2=0, ∵△=a 2 +8>0 ∴x 1,x 2是方程x 2-ax -2=0的两非零实根, x 1+x 2=a ,

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

2014年高考数学真题分类汇编理科-数列(理科)

1.(2014 北京理 5)设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a ”为递增数列的( ). A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 2.(2014 大纲理 10)等比数列{}n a 中,4525a a ==,,则数列{}lg n a 的前8项和等于( ). A .6 B .5 C .4 D .3 3.(2014 福建理 3)等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ). A.8 B.10 C.12 D.14 4.(2014 辽宁理 8)设等差数列{}n a 的公差为d ,若数列{}12 n a a 为递减数列,则( ). A .0d < B .0d > C .10a d < D .10a d > 5.(2014 重庆理 2)对任意等比数列{}n a ,下列说法一定正确的是( ). A. 139,,a a a 成等比数列 B. 236,,a a a 成等比数列 C. 248,,a a a 成等比数列 D. 369,,a a a 成等比数列 二、 填空题 1.(2014 安徽理 12)数列{}n a 是等差数列,若11a +,33a +,55a +构成公比为q 的等比数列,则q = . 2.(2014 北京理 12)若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时,{}n a 的前n 项和最大. 3.(2014 广东理 13)若等比数列{}n a 的各项均为正数,且5 10119122e a a a a +=, 则1220ln ln ln a a a +++= . 4.(2014 江苏理 7)在各项均为正数的等比数列{}n a 中,21a =,8642a a a =+,则6a 的值是 . 5.(2014 天津理 11)设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和.若 124,,S S S 成等比数列,则1a 的值为__________.

(完整)2019-2020年高考数学压轴题集锦——数列(二)

2019-2020年高考数学压轴题集锦——数列(二) 1.数列{}n a 的前n 项和为n S , * 23()n n S a n n =-∈N . (1)证明数列{}3n a +是等比数列,求出数列{}n a 的通项公式. (2)设21 (3)3 n n n b a -= +,求数列{}n b 的前n 项和n T . (3)数列{}n b 中是否存在三项,它们可以构成等比数列?若存在,求出一组符合条件的项;若不存在,说明理由. 2.设数列{} n a 的前n 项和为n S ,若对于任意的正整数n ,总存在正整数m ,使得n n S a =, 则称{ }n a 是“H 数列”. (1)若数列{}n a 的前n 项和为*2()n n S n =∈N ,证明:{}n a 是“H 数列”. (2)设{}n a 是等差数列,其首项11a =,公差0d <,若{}n a 是“H 数列”,求d 的值.

3.已知点 (,)()n n a n ∈N * 在函数()22f x x =--的图象上,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,且n T 是6n S 与8n 的等差中项. (1)求数列{}n b 的通项公式. (2)设83n n c b n =++,数列{}n d 满足11d c =,()n n l d c n d +∈=N * .求数列{}n d 的前n 项和 n D . (3)在(2)的条件下,设()g x 是定义在正整数集上的函数,对于任意的正整数1x ,2x ,恒有121221()()()g x x x g x x g x =+成立,且(2)g a =(a 为常数,0a ≠),试判断数列121n n d g d ?+??? ?????????+?????? 是否为等差数列,并说明理由. 4.已知等比数列{}n a 的公比1q >,11a =,且1a ,3a ,214a +成等差数列,数列{}n b 满 足: 1122(1)31n n n a b a b a b n +++=-?+L ,*n ∈N . (Ⅰ)求数列{}n a 和{}n b 的通项公式. (Ⅱ)若8n n ma b -≥恒成立,求实数m 的最小值.

2019年高考理科数学分类汇编:数列(解析版)

题08 数列 1.【2019年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =- B . 310n a n =- C .2 28n S n n =- D .2 122 n S n n = - 【答案】A 【解析】由题知,415 144302 45d S a a a d ? =+??=???=+=?,解得132a d =-??=?,∴25n a n =-,2 4n S n n =-,故选A . 【名师点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,再适当计算即可做了判断. 2.【2019年高考全国III 卷理数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8 C .4 D .2 【答案】C 【解析】设正数的等比数列{a n }的公比为q ,则23111142 111 15 34a a q a q a q a q a q a ?+++=?=+?, 解得11,2 a q =??=?,2 314a a q ∴==,故选C . 【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 3.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2 +b ,n *∈N ,则 A . 当101 ,102 b a = > B . 当101 ,104 b a = > C . 当102,10b a =-> D . 当104,10b a =-> 【答案】A 【解析】①当b =0时,取a =0,则0,n a n * =∈N .

最新高考数学压轴题秒杀

秒杀压轴题第五章关于秒杀法的最难掌握的一层,便是对于高考数很多朋友留言说想掌握秒杀的最后一层。压轴题,各省的难度不一致,但毫无疑问,尤其是理科的,会难倒很多学压轴题的把握。很多很多人。出题人很怕很怕全省没多少做出来的,相反,压轴题并不是那般神秘难解,不过,明白么?他很怕。那种思想,在群里面我也说过,在这里就不多啰嗦了。想领悟、把握压轴题的思路,给大家推荐几道题目。 08的除山东的外我都没做过,所以不在推荐范围内)。09全是数学压轴题,且是理科(全国一07山东,08江西,07全国二,08全国一, 可脉络依然清晰。虽然一年过去了,做过之后,但这几道题,很 多题目都忘了,一年过去了,都是一些可以秒杀的典型压轴 题,望冲击清华北大的同学细细研究。记住,压轴题是出题人在微笑着和你对话。会在以后的视频里面讲以及怎么发挥和压榨 一道经典题目的最大价值,,”精“具体的题目的解的很清楚。 \ 不过,我还是要说一下数列压轴题这块大家应该会什么(难度以及要求依次增高)尤其推荐通项公式的求法(不甚解的去看一下以前的教案,或者问老师,这里必考。:1 )我押题的第一道 数列解答题。裂项相消(各种形式的都要会)、迭加、迭乘、错 位相减求和(这几个是最基本和简:2. 单的数列考察方式,一 般会在第二问考)数学归纳法、不等式缩放:3 基本所有题目都 是这几个的组合了,要做到每一类在脑中都至少有一道经典题想 对应才行哦。开始解答题了哦,先来一道最简单的。貌似北 京的大多挺简单的。意义在只能说不大。这道题意义在什么呢? 对于这道题在高考中出现的可能性我不做解释,于,提醒大家 四个字,必须必须必须谨记的四个字:分类讨论!!!!!!! 年山东高考的这道导数题,对分类讨论的考察尤为经典,很具参 考性,类似的题目07下面年高考题中见了很多。10、09、08在 )

2015-2019高考数学全国卷真题(不等式选讲)

2015-2019高考数学全国卷真题(不等式选讲) 2019-3-23.设,,,x y z R ∈且1x y z + +=. (1)求()()()222111x y z -++++的最小值; (2)()()()2221213x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-. 2019-2-23.已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围. 2019-1-23.已知a ,b ,c 为正数,且满足1=abc .证明: (1)22211 1 a b c a b c ++≤++; (2)333()()()24a b b c c a +++≥++. 2018-3-23.已知函数()211f x x x =++-. (1)画出()y f x =的图像; (2)当[)0,x ∈+∞时,()f x ax b ≤+,求a b +的最小值. 2018-2-23.设函数()5|||2|f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围. 2018-1-23.已知()|1||1|f x x ax =+--. (1)当1a =时,求不等式()1f x >的解集; (2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范. 2017-3-23.已知函数21)(--+=x x x f . (1)求不等式1)(≥x f 的解集; (2)若不等式m x x x f +-≥2)(的解集非空,求m 的取值范围.

2020高考数学理科数列训练题

08高考数学理科数列训练题 1.某数列{}n a 的前四项为 ①1(1)2n n a ??=+-?? ② n a = ③0 n a =?? )(n n 为奇数为偶数)( 其中可作为{}n a 的通项公式的是() A .① B .①② C .②③ D .①②③ 2.设函数()f x 满足()()212 f n n f n ++= ()n N *∈,且()12f =,则()20f =() A .95 B .97 C .105 D .192 3.已知数列中{}n a ,11a =,()111n n n n a a a --=+- ()2,n n N *≥∈,则35a a 的值是() A .1516 B .158 C .34 D .38 4.已知数列{}n a 的首项11a =,且121n n a a -=+ (2)n ≥,则5a 为() A .7 B .15 C .30 D .31 5.已知数列{}n a 是等差数列,且31150a a +=,又413a =,则2a 等于( ) A .1 B .4 C .5 D .6 6.若lg a 、lg b 、lg c 成等差数列,则( ) A .2a c b += B .()1lg lg 2 b a b =+ C .a 、 b 、 c 成等差数列 D .a 、 b 、 c 成等比数列 7.38,524-,748,980- … 一个通项公式是____ 8.已知{}n a 是递增数列,且对任意n N *∈都有2n a n n λ=+恒成立,则实数λ的取值范 围是____ 9.设等差数列{}n a 的公差为2-,且1479750a a a a +++???+=,则36999a a a a +++???+=______. 10.等比数列中{}n a ,公比1q ≠±,200100S =,则 4020 1S q =+______.

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案 一、2019年高考数学上海卷:(本题满分18分) 已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合 {}*|,n S x x b n N ==∈. (1)若120,3 a d π ==,求集合S ; (2)若12 a π = ,求d 使得集合S 恰好有两个元素; (3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的 值. 二、2019年高考数学浙江卷:(本小题满分15分) 已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34 a =-时,求函数()f x 的单调区间; (Ⅱ)对任意21[ ,)e x ∈+∞均有()2f x a ≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.

设2 *012(1),4,n n n x a a x a x a x n n +=+++ +∈N .已知2 3242a a a =. (1)求n 的值; (2)设(1n a =+*,a b ∈N ,求223a b -的值. 四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。 (1)设{}n a 是首项为1,公比为1 2 的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由; (2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ; (3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在 2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.

高考数学不等式解题方法技巧

不等式应试技巧总结 1、不等式的性质: (1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则 a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b > >(4)若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b >。 【例】(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若;②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若;④b a b a 11,0< <<则若;⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0;⑧11 ,a b a b >>若,则0,0a b ><。其中正确的命题是______(答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______(答:12,2? ?-- ?? ?) 2. 不等式大小比较的常用方法: (1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。 【例】(1)设0,10>≠>t a a 且,比较 21log log 21+t t a a 和的大小(答:当1a >时,11log log 22 a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,1 2 p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或4 3 x >时,1+3log x >2log 2x ;当 413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3log x =2log 2x ) 3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方 针。 【例】(1)下列命题中正确的是A 、1y x x =+的最小值是 2 B 、2y =的最小值是 2 C 、 423(0)y x x x =--> 的最大值是2- D 、4 23(0)y x x x =--> 的最小值是2-(答:C ); (2)若21x y +=,则24x y +的最小值是______ (答:; (3)正数,x y 满足21x y +=,则y x 1 1+的最小值为______ (答:3+; 4.常用不等式有:(1 2211 a b a b +≥≥+(根据目标不等式左右的运算结构选用) ; (2)a 、b 、c ∈R ,222 a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); (3)若0,0a b m >>>,则b b m a a m +<+(糖水的浓度问题)。 【例】如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)

【三年高考】(2016-2018)数学(理科)真题分类解析:专题14-与数列相关的综合问题(含答案)

专题14 与数列相关的综合问题 考纲解读明方向 分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等. 2018年高考全景展示 1.【2018年浙江卷】已知成等比数列,且.若, 则 A. B. C. D. 【答案】B 【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断. 详解:令则 ,令 得,所以当 时,,当 时, ,因此 , 若公比 ,则 ,不合题意;若公比 ,则 但 ,即

,不合题意;因此, ,选B. 点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如 2.【2018年浙江卷】已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________. 【答案】27 【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值. 点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如). 3.【2018年理数天津卷】设是等比数列,公比大于0,其前n项和为,是等差数 列.已知,,,. (I)求和的通项公式;

(II)设数列的前n项和为, (i)求; (ii)证明. 【答案】(Ⅰ),;(Ⅱ)(i).(ii)证明见解析. 【解析】分析:(I)由题意得到关于q的方程,解方程可得,则.结合等差数列通项公式可得(II)(i)由(I),有,则. (ii)因为,裂项求和可得. 详解:(I)设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得 从而故所以数列的通项公式为,数列的通项公式为 (II)(i)由(I),有,故 . (ii)因为, 所以. 点睛:本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力. 4.【2018年江苏卷】设,对1,2,···,n的一个排列,如果当s

相关主题
文本预览
相关文档 最新文档