当前位置:文档之家› 某预应力简支T梁毕业设计计算书

某预应力简支T梁毕业设计计算书

某预应力简支T梁毕业设计计算书
某预应力简支T梁毕业设计计算书

目录

摘要..........................................................................................................................................................................................I ABSTRA CT ......................................................................................................................................................................... I I 第1章设计内容及构造布置 (1)

1.1设计内容 (1)

1.2方案比选 (2)

1.3横截面布置 (4)

1.4横截面沿跨长的变化 (7)

1.5横隔梁的设置 (7)

第2章主梁内力计算 (7)

2.1恒载内力计算 (7)

2.2活载内力计算 (10)

2.3主梁内力组合 (18)

第3章预应力钢束的估算以及布置 (19)

3.1跨中截面钢束的估算与确定 (19)

3.2预应力钢束布置 (19)

3.3非预应力钢筋截面积估算及布置 (24)

第4章计算主梁截面几何特性 (24)

4.1主梁预制并张拉预应力钢筋 (25)

4.2灌浆封锚,主梁吊装就位并现浇300MM湿接缝 (25)

4.3桥面、栏杆施工和运营阶段 (26)

第5章钢束预应力损失计算 (27)

5.1预应力钢束与管道壁之间的摩擦引起的预应力损失 (27)

5.2由锚具变形、钢束回缩引起的损失 (28)

5.3混凝土弹性压缩引起的损失 (29)

5.4由钢束应力松弛引起的损失 (30)

5.5混凝土收缩和徐变引起的损失 (31)

5.6预应力内力计算及钢束预应力损失汇总 (32)

第6章主梁截面验算 (32)

6.1截面应力验算 (33)

6.2抗裂性验算 (37)

第7章锚固区局部承压验算 (39)

第8章主梁变形验算 (41)

8.1荷载短期效应作用下主梁挠度验算 (41)

8.2预加力引起的上拱度计算 (42)

8.3预拱度的设置 (43)

第9章横隔梁计算 (43)

9.1确定作用在跨中横隔梁上的计算荷载 (43)

9.2跨中横隔梁的内力影响 (44)

第10章行车道板计算 (47)

10.1悬臂板荷载效应计算(边梁) (47)

10.2铰接悬臂板荷载效应计算(中梁) (48)

参考文献 (52)

致谢 (53)

30m预应力简支T型梁桥设计

专业年级:土木05级道桥班学号:7011505030

姓名:熊虹娇指导教师:贾巧燕

摘要:目前,预应力混凝土被广泛的使用于各种中小跨度的桥梁中,而且大量采用预应力混凝土将是未来桥梁发展的趋势。在本次毕业设计中,对目前在公路桥梁中经常使用的预应力混凝土简支T型梁桥的设计做了全面的介绍,其中包括调研,外文资料的翻译,方案设计,结构计算以及施工图的绘制,并对预应力混凝土梁桥的特点做了详细的介绍。在确定方案时,根据调研及查阅大量的资料,在此桥位上布置了钢管混凝土桥,钢筋混凝土箱型拱桥及预应力混凝土简支T型梁桥三种设计方案,根据“安全,功能,经济,美观”的原则,对各种桥型的优缺点进行了比选,而预应力混凝土简支T型梁桥在此桥位上更具有竞争力,反映在工程造价比较低,施工工期短,施工技术成熟,因此,最终选择了预应力混凝土简支T梁桥为设计方案。结构计算着重进行了上部结构的计算,包括截面尺寸的拟定,内力计算(恒载内力,活载内力和附加内力的计算,内力组合以及影响线),配筋设计,施工阶段和使用阶段的应力验算,承载能力极限状态强度验算,刚度验算,变形验算。

通过本次毕业设计,进一步加深了我对桥梁以及预应力混凝土的认识。

关键词:预应力混凝土T型梁桥结构计算设计方案施工图

The design and calculation of Fantang Bridge

--the design of a T section pre-stressed

concrete beam with simply supported bridge in 30m span

specialty:civil engineering 053 number:7011505030

name:Xiong HongJiao teachers:Jia QiaoYan

Abstract: Nowdays, the pre-stressed concrete is extensively used in various kinds of bridges with medium and small span ,and it will be a development trend in future to adopt the bridge of the pre-stressed concrete in a large amount.In this paper,I made an overall introduction of the pre-stressed T-section concrete beam bridge which is ofen used among highway at present. Including investigation and research,translation,scheme design ,calculation of structure and drawing. According to the investigation, I give three schemes--the steel tube filled concrete,the reinforced concrete arch bridge and T-section beam with pre-stressed concrete bridge. According to the principle of “safe,capability,economical,artistic”, I choose the T-section beam bridge with pre-stressed concrete finally.The calculation of structure mainly includes the superstructure such as the size design of the section , the internal force calculation ,the steel bars calculation ,the stress and intensity and displacement.

Through this graduation design, my understanding of the pre-stressed concrete are strengthened further .

Keywords: pre-stressed concrete, T-section bridge ,steucture calculation ,construction design

第1章设计内容及构造布置

1.1设计内容

1.1.1设计标准

桥梁全长:34m

标准跨径:30.00m

主梁全长:29.96m

计算跨径:29.30m

设计车速:100 km/h

桥面净空:高速公路,分离式,半幅桥全宽12.75m

0.75+1+7.5+3+0.5=12.75m

设计荷载:公路I级

两侧栏杆的总重:10.65kN/m

1.1.2设计资料

1、上部结构

普通受力钢筋:采用R235和HRB335级钢筋;

预应力钢筋:采用抗拉强度标准值f pk=1860Mpa,公称直径d=15.2mm的低松弛高强度钢绞线;

混凝土:预制T梁、横隔梁、湿接缝、封锚端及桥面现浇混凝土均用C50,E c=3.45桥面铺装采用沥青混凝土;

锚具:预制T梁正弯矩钢束采用15——8型,15——9型和15——10型系列锚具及其配件,预应力管道采用圆形金属波纹管。

2、水文条件:水位随季节变化,不通航;两岸为微风化砂岩

3、其他:洪水频率1/100,地震峰值加速度:0.05g。

1.1.3设计依据

1、《公路桥涵设计通用规范》(JTG D60-2004)

2、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)

3、《公路桥涵设计手册》(桥梁上册)(人民交通出版社2004.3)

1.2方案比选

1.2.1比选的标准

比选的标准只要依据安全、功能、经济、与美观。其中以安全与经济为重。至于桥梁美观,要视经济与环境而定。

1、安全

安全的标准可以从行车安全、基础地质条件的安全与安全施工等几个方面考虑。行车安全主要通过桥面设置的布置来实现。基础地质条件应当真实,不要有虚假数据。

2、功能

桥梁的功能无非就是两个方面:一是跨越障碍(河流、山谷或线路),二是承受荷载。在方安中,应选择传力路线直接、简捷的结构形式,以保障结构功能的施工

3、经济

评价一坐桥梁可以从一下几个方面进行:造价、工期和养护维修。

造价包括材料费、人工费和机械设备费。

工期:一座桥梁建设工期的长短与造价有很大的关系,上下部构造的类型的桥梁,要求特种设备的新体系的工期也长;非就地取材的桥型,不仅造价高,而且工期长;采用脚手架施工的工期长。而且有水毁之虞。都需一一加以考虑。

在桥梁规定使用期限内经常维修费用的多少需要考虑,混凝土桥的养护和维护费用要比刚桥低的多。

4、美观

桥梁建筑是技术与艺术的结晶。一座美丽的桥梁,实际必须考虑本身造型的美观,还须与周遍环境相协调,使能成为当地优美的景点,受到人们的的欣赏。也可以成为当地的典型建筑标志。

5、施工

选择的桥型要能采用先进的施工方法。并考虑施工单位的施工能力和机械设备。在一般的情况下选择简便熟悉可靠的施工方案。有时如需要用新的技术,应对其优点和不足之处进行比较。

1.2.2方案

根据已知材料,可以初步拟定以下几种方案。

方案一:钢筋混凝土箱型拱桥

拱桥是我国公路上使用较广泛的一种桥型。拱桥与梁桥的区别不仅在于外形不同,更重要的是两者受力性能有较大的差别。由力学知,梁式桥结构在竖向荷载作用下,支撑处仅产生竖向支撑反力,而拱式结构在竖向荷载作用下,两端支撑处除了有竖向支撑反力外,还有水平推力,使拱内产生轴向压力,从而大大减小了拱圈的截面弯矩,使之成为偏心受压构件,截面上的应力分布与受弯的应力相比,较为均匀。因此拱式结构可以充分利用主孔截面材料强度,使跨越能力增大。拱桥上部结构由主孔圈和拱上建筑组成,主拱圈是拱桥的主要承重结构,拱桥的下部结构由桥墩、桥台及基础组成,用以支承桥跨结构,将桥跨结构的荷载传至地基。

钢筋混凝土箱型拱桥虽然造价最低,但是需要使用大量的木材,劳动力,工期也较长。拱的承载潜力大。但是伸缩缝多,养护较麻烦,纵坡较大,土方量较大。

方案二:钢管混凝土桥

钢管混凝土拱桥的受力特点:由于钢材在弹性工作阶段时,他的泊松比μs变动很小,在0.25~0.30之间,而混凝土的泊松比μc随着纵向力的增加从低应力的0.167左右逐渐增加到0.5接近破坏时,将超出0.5。因此内填混凝土型圆钢管混凝土随着轴向力N的增大。混凝土的泊松比μc迅速超过钢管的泊松比μs使的混凝土的径向变形受到钢管的约束而处于三向受力状态,其承载力大大提高。同时钢管的套箍作用大大提高了混凝土的塑性性能,使得混凝土,特别是高强混凝土脆性的弱点得到了克服。另一方面。混凝土填于钢管之内,增强了钢管的管壁稳定性刚度也远大于钢结构,使其整体稳定性也有了极大的提高。在施工方面,钢管混凝土中的钢管可作为劲性骨架甚至是模板,施工吊装轻,进度快,施工用钢量省,具有强度大、抗变形能力强的优点,结构轻巧、造型美观,但是这种结构的桥梁的施工技术复杂,制造和安装的精度要求高,施工,

施工要使用一些大型的机械,难度也比较大,因此这里不予采用。

方案三:预应力混凝土T型梁

预应力混凝土T型梁结构简单,受力明确,上部结构主要采用预制吊装法。构件由于是工厂生产,质量好。有利于保证构件的质量和尺寸的精度,并可能多的采用机械化施工;上下部可以平行施工作业。可以缩短现场工期;有效的利用了劳动力,这样就可以节约降低工程造价;施工速度快。由于构件制成后要存放一段时间,因此在安装是已经有了一定的期龄。可以减少预应力的收缩、徐变引起的变形。而且这种桥型与当地的环境、地理相适合,有可以就地取材,施工设备也可以容易实现,所以应当采取这种桥型,较为适宜。

从以上三种方案比较来看,综合“安全、经济、美观、适用”的原则,由于此桥是高速公路,对桥梁的承载能力要求较高,施工进度也要尽快完成,所以我选择了做单跨的预应力混凝土简支T形梁桥。

1.3横截面布置

1.3.1主梁间距与主梁片数

主梁间距通常应随梁高与跨径的增大而加宽为经济,同时加宽翼板对提高主梁截面效率指标很有效,故在许可条件下应适当加宽T梁翼板。以右半幅桥为例,主梁翼板宽度设计为2100mm,在桥宽的左右两边各加宽75mm,桥宽为:0.75m(中央分隔带)+1m(路缘带)+7.5m(行车道)+3m(硬路肩)+0.5(护栏)=12.75m。桥梁横向布置选用六片主梁(如图1所示)。

1/2支点断面1/2跨中断面

图1 横断面结构尺寸(尺寸单位:mm)

图2 半纵剖面结构尺寸图 (尺寸单位:mm )

1.3.2

主梁跨中截面主要尺寸拟定

1、 主梁高度

预应力混凝土简支梁桥的主梁高度与其跨径之比约在1/14~1/25之间,标准设计中高跨比约在1/18~1/19。当建筑高度不受限制时,增大梁高往往是较经济的方案,因为增大梁高可以节省预应力钢束用量,同时梁高加大一般只是腹板加高,而混凝土用量不多。综上所述,本设计中取用1900mm 的主梁高度是比较合适的。

2、 主梁截面细部尺寸

T 梁翼板的厚度主要取决于桥面板承受车轮局部荷载的要求,还应考虑能否满足主梁受弯时上翼板抗压强度的要求。本设计预制T 梁的翼板厚度取用150mm ,翼板根部加厚到250mm 以抵抗翼缘根部较大的弯矩。

在预应力混凝土梁中腹板内主拉应力应较小,腹板厚度一般由布置预制孔管的构造决定,同时从腹板本身的稳定要求出发,腹板厚度不宜小于其高度的1/15,且在180~200mm 之间。本设计腹板厚度取200m 。

马蹄尺寸基本由布置预应力钢束的需要确定,设计实践表明,马蹄面积占截面总面积的10%~20%为合适。考虑到主梁需要配置较多的钢束,将钢束按三层布置,一层最多排三束,初拟马蹄宽度为550mm ,高度250mm ,马蹄与腹板交

接处做三角过滤,高度150mm ,以减小局部应力。 图3 跨中截面尺寸图(尺寸单位mm )

按照以上拟定的外形尺寸,就可绘出预制梁的跨中截面布置图,如图3所示。

3、 计算截面几何特征

将主梁跨中截面划分成五个规则图形的小单元,截面几何特征性列表计算见表2。

注:大毛截面形心至上缘距离cm A

S

y i

i s 05.715

.8287588854==

=

∑∑; y b =190-71.05=118.95cm ;

小毛截面形心至上缘距离cm A

S y i

i s 80.785

.73875.582102==

=

∑∑; y b =190-78.80=111.2cm.。

4、 检验截面效率指标ρ(希望ρ在0.5以上) 上核心距:

cm 75.3971.05)-901(5.2878739182194.8k =?=

=

∑∑x

s Ay I

下核心距: cm 54.6605

.715.8287739182194.8=?=

=

∑∑s

x Ay

I k

截面效率指标: 56.0190

54

.6675.39k s =+=

+=

h

k x

ρ>0.5

表明以上初拟的主梁跨中截面尺寸是合理的。 1.4 横截面沿跨长的变化

如图2所示,本设计主梁采用等高形式,横截面的T 梁翼板厚度沿跨长不变,马蹄部分为配合钢束弯起而从跨径四分点附近开始向支点逐渐抬高。梁端部区段由于锚头集中力的作用而引起较大的局部应力,同时也为布置锚具的需要,在距梁端1830mm ~ 2330mm 范围内将腹板加厚到与马蹄同宽。变化点截面(腹板开始加厚处)到支点的距离为2000mm ,其中还设置一段长为500mm 的腹板加厚过滤段。 1.5 横隔梁的设置

模型试验结果表明,主梁在荷载作用位置的弯矩横向分布,在当该位置有横隔梁时比较均匀,否则主梁弯矩较大。为减小对主梁设计起主要控制作用的跨中弯矩,在跨中位置设置一道中横隔梁;当跨度较大时,还应在其他位置设置较多的横隔梁。本设计在桥跨中点、四分点和支点处共设置五道横隔梁,其间距为7.325m 。端横隔梁的高度与主梁同高,厚度为上部260mm ,下部240mm ;中横隔梁高度为1550mm ,厚度为上部180mm ,下部160mm 。详见图2所示。

第2章 主梁内力计算

根据上述梁跨结构纵、横截面的布置,并通过活载作用下的梁桥荷载横向分布计算,可分别求得主梁各控制截面(一般取跨中、四分点、变化点截面和支点截面)的恒载和最大活载内力,然后再进行主梁内力组合。 2.1 恒载内力计算 2.1.1

恒载集度

1、 预制梁自重

1) 按跨中截面计,主梁的恒载集度: g (1)=0.73875×26=18.47kN/m

2) 由于马蹄抬高形成四个横置的三棱柱,折算成恒载集度为: g (2)≈2()57.096.29/2625.056.5175.025.02

55

.06.0=?+????

?

?

?-+?kN/m

3)由于腹板加厚所增加的重量折算成恒载集度为:

g(3)≈2×(1.20863-0.73875)×(1.83+0.25)×26/29.96=1.63kN/m

4)边主梁的横隔梁

中横隔梁体积:

0.17×(1.5×0.65-0.5×0.1×0.5-0.5×0.15×0.175)=0.1593m3

端横隔梁体积:

0.25×(1.75×0.475-0.5×0.065×0.325)=0.2051m3

故:g(4)=(3×0.1593+2×0.2051)×26/29.96=0.74kN/m

5)预制梁恒载集度:

g1=18.47+0.57+1.63+0.74=21.41kN/m

2、二期恒载

1)现浇T梁翼板恒载集度:g(5)=0.15×0.6×26=2.25kN/m

2)边梁现浇部分横隔梁

每片中横隔梁(现浇部分)体积:0.17×0.3×1.5=0.0765m3

每片端横隔梁(现浇部分)体积:0.25×0.375×1.75=0.1641m3

故:g(6)=(3×0.0765+2×0.1641)×26/29.96=0.47kN/m

3)铺装

8cm混凝土铺装:0.08×11.5×26=23.92kN/m

10cm沥青铺装:0.10×11.5×24=27.60kN/m

若将桥面铺装均摊给六片主梁,则:

g(7)=(23.92+27.60)/6=8.59kN/m

4)栏杆:10.65kN/m

若将栏杆的重量均摊给六片主梁,则:

g(8)=10.65/6=1.78kN/m

5)边梁二期恒载集度:g2=2.25+0.47+8.59+1.78=13.09kN/m

2.1.2恒载内力

如图4所示,设x为计算截面离左支座的距离,并令α=x/l。

影响线

Q 影响线

M

A

g

图4 恒载内力计算图

主梁弯矩和剪力的计算公式分别为:

()g l M 212

1ααα-= ; ()lg 212

1

αα-=Q

恒载内力计算见表3。

1号梁恒载内力 表3

2.2 活载内力计算 2.2.1

冲击系数和车道折减系数

冲击系数:简支梁桥基频f 的计算公式为:

c

c m EI l

f 2

=

, g

G m c =

式中 l ——结构的计算跨径(m ); E ——结构材料的弹性模量(N/m 2); I c ——结构跨中截面的截面惯性矩(m 4

); m c ——结构跨中处的单位长度质量(kg/m ); G ——结构跨中处延米结构重力(kN/m ); g ——重力加速度,g=9.81(m/s 2)。

A=0.8287m 2;G=0.8287×25=20.72kN/m ;m c =G/g=20.72/9.81=2.11×103 Ns 2/m 2

; C50混凝土的弹性模量E=3.45×1010N/m ;l =29.3m ;I C =0.39182194m 4

; 63.410

11.239182194

.010

45.33

.29214.33

10

2

=????=

f Hz ,

1.5Hz ≤f ≤14Hz ,μ=0.1757=-0157.0ln f 0.2536 则:(1+μ)=1.2536

折减系数:横向布置车道数为2,双车道不折减,故ξ=1。由于桥梁的计算跨径小于150m ,不考虑计算荷载效应的纵向折减。因此,本桥梁的折减系数为 ξ=1。 2.2.2

计算主梁的荷载横向分布系数

1、 跨中的荷载横向分布系数m c

本桥梁跨内设三道横隔梁,具有可靠的横向联系,且承重结构的长宽比为:

230.275

.1230.29>==B l

所以可以按刚性横梁法来绘制横向影响线并计算横向分布系数m c

1) 计算主梁抗扭惯矩I T

对于T 形梁截面,抗扭惯矩可近似按下式计算:

I T =

=m

i i i i t b c 1

3

式中:b i 和t i ——相应为单个矩形截面的宽度和高度;

c i ——矩形截面抗扭刚度系数;

m ——梁截面划分成单个矩形截面的个数。 对于跨中截面,翼缘板的换算平均厚度;

cm t 6.17190

2

50105.0151901=???+?=

马蹄部分的换算平均厚度:cm t 5.322

40253=+=

t 3=325

图5 I T 计算图式(尺寸单位:mm )

I T 计 算 表

表4

2) 计算抗扭修正系数β

此设计中主梁的间距相同,同时将主梁近似看成等截面,则得:

∑∑+

=

i

i

T I a

E I Gl

i 22

1211

β

式中:G=0.425E ;l=29.30m ;∑I T =0.0109985×6=0.065991m 4

;a 1=3.15m;

a 2=2.10m ;a 3=1.05m ;a 4=-1.05m ;a 5=-2.10m ;a 6=-3.15m; I i =0.39182195 m 4。

计算得:β=0.8563。

3) 按刚性横梁法计算横向影响线竖坐标值:

∑=+=

5

1

21i i

j

i ij a

a a n β

η

式中:n=6;∑=5

1

2i i a =(

)2

2

2

05

.110

.215

.32++?=30.87m 2

计算所得的ηij 值列于表

5内。

4) 计算荷载横向分布系数

1号梁的横向影响线和最不利布载图式如图6所示。

0.5009

1号梁

0.3829

0.2886

0.2204

0.1257

2号梁

3号梁

0.1746

0.2271

0.2647

0.3174

0.3830

0.2420

0.2158

0.1968

0.1706

0.2747

图6 跨中的横向分布系数m c 计算图式(尺寸单位:mm )

m cq =

2

1(0.3829+0. 2886+0.2204+0.1257)=0.5088

故取汽车的横向分布系数为:m c =0.5088

2、 支点截面的荷载横向分布系数m c

如图6所示,按杠杆原理法绘制荷载横向分布影响线并进行最不利布置荷载,1号梁的活载横向分布系数可计算如下:

m o =

46.02

1 =0.23

图7 支点的横向分布系数m o计算图式(尺寸单位:mm)

3、横向分布系数汇总(见表6)

活载横向分布系数表6

2.2.3计算活载内力

在活载内力计算中,本设计对于横向分布系数的取值作如下考虑:计算主梁活载弯矩时,采用全跨统一的横向分布系数m c,鉴于跨中和四分点剪力影响线的较大坐标位于桥跨中部,故也不按m c来计算。求支点和变化点截面活载剪力时,由于主要荷重集中在支点附近而应考虑支承条件的影响,按横向分布系数沿桥跨的变化曲线取值,即从支点到L/4之间,横向分布系数用m o与m c值直线插入,其余区段均取m c值。

公路—I级车道荷载的均布荷载标准值为q k =10.5kN/m。集中荷载标准值随计算跨径而变,当计算跨径小于或等于5m时,为P k =180kN;计算跨径等于或大于50m时,为P k =360kN;计算跨径在5~50m之间时,值采用直线内插求得。

本设计的计算跨径为29.3m

因此:q k =10.5kN/m ;()

.2kN 7235

-5053.19180180P k =-?

+=

计算剪力时:kN 6.2842.2372.1P k =?=

对于汽车荷载,应将集中荷载直接布置在内力影响线数值最大的位置,其计算公式为:

()()i K i k c y P m A q m S ++=ξμ1

式中 S ——由汽车荷载产生的弯矩或剪力标准值; (1+μ)——汽车荷载的冲击系数;

ξ——汽车荷载横向分布系数,本设计为二车道布载控制设计,横向折减系数为1=ξ; P k ——汽车车道荷载中的集中荷载标准值; q k ——汽车车道荷载中,每延米均布荷载标准值; A ——弯矩、剪力影响线的面积;

m i ——沿桥跨纵向与集中荷载位置对应的横向分布系数; y i ——沿桥跨纵向与荷载位置对应的内力影响线坐标值。 1、跨中截面汽车荷载

M

L /2

L /2

V

L/4

图8 跨中截面汽车荷载内力影响线

如图8所示,M y =L 41=7.33m ;A M =

31.107412

1=??L L m 2 ; 5.012

1=?=

V y m ;66.32

12

121=??

=

L A V m 2 。

M

L /4

V

L /4

3L/16

图9 L/4截面汽车荷载内力影响线

如图9所示,49.54

143=?=L y M m ;48.80414321=??

?=

L L A M m 2

; 75.0143=?=

V y m ;=??-

??=

25.04

12

175.04321L L A V 7.33m 2

3、变化点截面汽车荷载

M 变化点

V

变化点

2000*(L -2000)/L

图10 变化点截面汽车荷载内力影响线

如图10所示,=?-=22L

L y M 1.86m ;=??=

L A M 86.12

127.25m 2;

=-=

L

L y V 20.93m ;()62.12207.02

1293.02

1=??-

-??=

L A V m 2

20m箱梁模板计算书

20米箱梁模计算书1.砼侧压力计算 最大侧压力可按下列二式计算,并取其最小值: F=0.22γ c t β 1 β 2 V1/2 F=γ c H 式中 F------新浇筑混凝土对模板的最大侧压力(KN/m2) γ c ---- 混凝土的重力密度(kN/m3)取26 kN/m3 t ------新浇混凝土的初凝时间(h),h=3.5小时。 V------混凝土的浇灌速度(m/h);取27方/h,即27/25/1=1.08 m H------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m);取1.4m β1------外加剂影响修正系数,不掺外加剂时取1; β2------混凝土塌落度影响系数,当塌落度小于30mm时,取0.85;50—90mm时,取1;110—150mm时,取1.15。此处取1.15, F=0.22γ c t β 1 β 2 V1/2 =0.22x26x3.5x1x1.15x1.081/2 =24kN/m2 F=γ c H =26x1.4=36.4kN/ m2 取二者中的较小值,F=24kN/ m2作为模板侧压力的标准值,并考虑倾倒混凝土产生的水平载荷标准值4 kN/ m2,分别取荷载分项系数1.2和1.4,则作用于模板的总荷载设计值为:F=24x1.2+4x1.4=34.4 kN/ m2,取为35 kN/ m2 有效压头高度:H0=35/26=1.35m 2.面板验算(6mm钢板) 最大跨距: l=300mm, 每米长度上的荷载:q=FD=35x0.9=31.5KN/m。D为背杠的间距 弯矩:Mmax=0.1ql2=0.1x31.5x0.32=0.2835KN.m

预应力混凝土连续箱梁计算书

工业大学本科毕业设计 1 初步设计 1.1 设计基本资料 1.1.1 设计标准 1)设计荷载:公路 I 级 2)桥面宽:净 2×(12.5+2×0.5)m 防撞墙 3)桥面横坡:1.5% 4)桥面纵坡:1.0% 5)竖曲线半径:桥梁围无竖曲线 6)平曲线半径:桥梁围无平曲线 7)温度:季节温差的计算值为-15℃和+20℃ 1.1.2 主要材料 1、混凝土 1)桥面沥青混凝土铺装 2)连续梁:C50 3)桩基、承台、桥墩、桥台、搭板:C50 2、钢筋 1)主筋:HRB335 2)辅助钢筋:II 级钢筋 3)预应力筋:箱梁纵向预应力束采用φj15.24 高强度低松弛预应力270K级钢绞线 ,ASTMA416-90a270 级标准,标准强度 Ry =1860MPa ,Ey=1.95×10 MPa。 3、预应力管道 预应力管道均采用镀锌金属波纹管。 4、伸缩缝 采用S SF80A 大变位伸缩缝。 5、支座 采用盆式橡胶支座。 1.1.3 相关参数 1. 相对温度75% 2. 管道摩擦系数u=0.25 3. 管道偏差系数λ=0.0025l/米 4. 钢筋回缩和锚具变形为4mm 1.1.4 预应力布置

箱梁采用O VM 型锚具及配套的设备。管道成孔采用波纹圆管,且要求钢波纹管的钢带厚度不小于 0.35mm。预应力拉采用引伸量和拉吨位双控。并以引伸量为主。引伸量误差不得超过-5%~10%。 1.1.5 施工方式 满堂支架 1.1.6 主要参考文献 1.公路桥涵设计通用规(JTG D60-2004) 2.公路钢筋混凝土及预应力混凝土桥涵设计规(JTG D62—2004) 3.公路桥涵地基与基础设计规(JTG D63-2007) 4.公路桥涵施工技术规(JTJ041—2000) 5.公路工程水文勘测设计规(JTG C30-2002) 6.桥涵水文 7.桥梁工程 8.预应力混凝土连续梁桥设计 9.结构设计原理 10.基础工程 11.桥隧施工技术 12.公路桥涵现行标准图 第三章上部结构设计 3.1 横截面和纵断面尺寸拟定: 1、纵截面 桥梁分孔关系到桥梁的造价。跨径和孔数不同时,上部结构和墩台的总造价是不同的。跨径愈大,孔数愈小,上部结构的孔数就愈大,而墩台的造价就愈小。最经济的跨径就是要使上部结构和墩台的总造价最低。因此当桥墩较高或地质不良,基础工程较复杂而造价较高时,桥梁跨径就可选的大一些。反之,当桥墩较矮或地基较好时,跨径就可以选的小一些。 由于桥位处地质情况为素填土或杂填土、圆砾、黏土、强风化岩,部分桥位处岩石裸露,海堤上地质情况为淤泥、黏土、中风化岩。地质状况不良,本桥位处桥长150米,拟采用预应力混凝土连续梁桥,所以设置为六跨连续梁较好。基础拟采用钻孔灌筑桩。 当桥梁总长度很大,当采用顶推或先简支后连续的施工方法时,则等跨结构受力性能较差所带来的欠缺完全可以从施工经济效益的提高而得到补偿。本桥桥长150米,对于连续体系,拟取30m。

30+45+30m预应力连续梁计算书

30+45+30米连续梁计算书 一、预应力钢筋砼上部结构纵向计算书 (一)工程概况: 本计算书是针对标段中的30+45+30米的预应力混凝土连续梁桥进行。桥宽为9.5m,采用单箱单室,单侧翼板长2.5米;梁高为1.6~2.3米,梁底按二次抛物线型变化。 箱梁腹板采用斜腹板,腹板的厚度随着剪力的增大而从跨中向支点逐渐加大,箱梁边腹板厚度为50~70cm。箱梁顶板厚22cm。为了满足支座布置及承受支点反力的需要,底板的厚度随着负弯矩的增大而逐渐从跨中向支点逐渐加大,厚度为22~35cm。其中跨跨中断面形式见图1.1,支承横梁边的截面形式见图1.2。结构支承形式见图1.3。主梁设纵向预应力。钢束采用?j15.24低松弛预应力钢绞线,标准强度为1860MPa,弹性模量为1.9X105 MPa,公称面积为140mm2。预应力钢束采用真空吸浆工艺,管道采用与其配套的镀锌金属波纹管。纵向钢束采用大吨位锚。钢束为19?s15.24的钢绞线,均为两端张拉,张拉控制应力为1339MPa。 图1.1 中跨跨中截面形式

图1.2 横梁边截面形式 图1.3 结构支承示意图 (二)设计荷载 结构重要性系数:1.0 设计荷载:桥宽9.5米,车道数为2,城-A汽车荷载。 人群荷载:没有人行道,所以未考虑人群荷载。 设计风载:按平均风压1000pa计, 地震荷载:按基本地震烈度7度设防, 温度变化:结构按整体温升200C,整体温降200C计,桥面板升温140C,降温70C。基础沉降:桩基础按下沉5mm计算组合。 其他荷载: (三)主要计算参数 材料:C50砼; 预应力钢束:高强度低松弛钢绞线,抗拉标准强度fpk=1860MPa,抗拉设计强度fpd=1260MPa,抗压设计强度fpd=390Mpa。

预应力简支t型梁桥毕业设计

预应力简支t型梁桥毕业设计

第一部分桥梁设计 第一章水文计算 1.1原始资料 1.1.1水文资料: 浑河发源于辽宁省新宾县的滚马苓,从东向西流过沈阳后,折向西南,至海城市三岔河与太子河相汇,而后汇入辽河。浑河干流长364公里,流域面积11085平方公里。本桥位上游45公里的大伙房水库,于1958年建成,该水库控制汇流面积5563平方公里,对沈阳地区的浑河洪峰流量起到很大的削减作用。根据水文部门的资料,建库前浑河的沈阳水文站百年一遇洪峰流量位11700立方米/秒,建库后百年一遇推算值为4780立方米/秒。浑河没年12月初开始结冰,次年3月开始化冻。汛期一般在7月初至9月上旬,河流无通航要求。桥为处河段属于平原区次稳定河段。 1.1.2设计流量 根据沈阳水文站资料,近50年的较大的洪峰流量如下: 大伙房水库建库前 1935年5550立方米/秒 1936年3700立方米/秒 1939年 3270立方米/秒 1942年 3070立方米/秒 1947年 2980立方米/秒 1950年 2360立方米/秒 1951年 2590立方米/秒 1953年 3600立方米/秒 1954年3030立方米/秒 大伙房水库建库后 1960年2650立方米/秒 1964年2090立方米/秒 1971年2090立方米/秒 1975年2200立方米/秒 1985年2160立方米/秒 根据1996年沈阳年鉴,浑河1995年最大洪峰流量4900立方米/秒(沈阳 水文站)为百年一遇大洪水。1995年洪水距今较近,现场洪痕清晰可见,根据实测洪水位,采用形态断面计算1995年洪峰流量为5095立方米/秒,与年鉴资料相差在5%之内。故1995年洪峰流量可作为百年一遇流量, 洪水比降采用浑河洪水比降0.0528%。 经计算确定设计流量为Qs=4976.00立方米/秒,设计水位16米。

30米箱梁张拉计算书

G3012喀什至疏勒段公路工程项目KS-1标段 (K0+000~K22+000) 30m预制箱梁张拉计算方案 编制: 审核: 审批: 中铁二十三局集团有限公司 G3012喀什至疏勒段公路项目KS-1标 项目经理部 二0一六年五月

目录 一、基础数据.............................................................................................................................. - 2 - 二、预应力钢束张拉力计算...................................................................................................... - 2 - 三、压力表读数计算.................................................................................................................. - 3 - 四、理论伸长量的复核计算...................................................................................................... - 6 - 五、张拉施工要点及注意事项.................................................................................................. - 8 -

用新规范计算预应力混凝土连续梁

用新规范计算预应力混凝土连续梁 谢宝来 【摘要】本文为用新规范进行桥梁结构设计的一个算例,其重点讨论了预应力混凝土构件纵向受力性能的计算方法和计算过程,以及对新规范的一些理解,其中包括汽车冲击系数、上下缘正负温差、翼缘有效宽度、极限承载能力(塑性)和应力(弹性)计算等,同时也说明了一些构造方面的要求。 【关键词】规范预应力混凝土冲击系数有效宽度 一、设计概况 该桥为京津高速公路跨越永定新河的一座特大桥,单幅桥宽16.5米,特大桥是因为长度超过了1000米,以永定新河的交角为45度,跨越河流时采用三联3x55米,用PZ造桥机施工的预应力混凝土连续箱梁,此处平曲线半径为5000米,当然小半径也可以采用此施工工艺。第一阶段施工为简支单悬臂,施工长度为55米简支加11米(悬臂为跨径的五分之一,此处弯矩最小,为施工缝的最加位置)悬臂,平移模板,第二阶段施工长度为44米加11米悬臂,最后施工剩下的44米。主要预应力钢束均为单向张拉,最大单向张拉长度为66米。按预应力砼A 类构件设计。 二、设计参数 (一)桥宽:16.5m(1+0.75+3x3.75+3+0.5); (二)跨径:3x55m; (三)梁高:3.0m; (四)荷载标准:公路-I级;计算车道数:3;横向折减系数:0.78; (五)二期荷载:100mm厚沥青混凝土;80mmC40防水混凝土;两侧栏杆20kN/m。 (六)采用的主要规范: 《公路桥涵设计通用规范》(JTG-D60-2004); 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG-D62-2004); (七)选用材料: ①混凝土C50:f cd =22.4MPa,f td =1.83MPa,E c =3.45x104MPa;

双向6车道大跨度预应力混凝土连续梁桥初步设计计算书

大跨度预应力混凝土连续梁桥(70m+112m+70m) 初步设计

第一章设计任务书 1.1 设计任务说明 一、设计的目的及意义 学生应通过本次毕业设计,综合运用所学过的基础理论知识,深入了解公路预应力混凝土桥梁在桥式方案比选、结构计算及施工架设等方面的设计规范、计算方法及设计思想等内容。为学生在毕业后从事桥梁技术工作打好基础。 二、设计的主要内容 1、根据已有的水文地质资料,确定不同的桥式方案并绘图。 2、进行桥式方案的比选和工程量的计算。 3、对基本尺寸的选择进行探讨(包括梁高、边跨与中跨长度及比 值等参数)。 4、对已确定的桥式方案进行结构设计及施工方案的确定。 5、运用常规的超静定混凝土桥梁分析程序计算结构内力及变形, 布置预应力钢筋,进行正常使用极限状态的截面设计与检核。 6、通过自己编制程序,计算结构在承载能力极限状态下的配筋, 并对结果进行校核。 7、梁的一般构造图及配筋图。 三、主要设计技术标准 1、设计荷载 ⑴汽车荷载:汽—超20,挂—120;

⑵特种荷载:特—300; ⑶人群荷载:3.5KN/㎡。 2、桥梁净空:总宽25m,双向6车道6×3.5m,人行道宽2×1.5m,栏杆2×0.5m。 3、坡度:纵坡1%,横坡2% 4、截面形式:变截面箱梁 5、材料: ⑴砼:上部结构采用 C50 下部结构采用 C25 ⑵钢筋:预应力钢筋采用9-7Φ5钢绞线(极限抗拉强度 1860Mpa) 普通钢筋采用Ⅱ级钢筋 6、设计规范: ·《公路桥涵设计通用规范》(JTJ 021-89) 中华人民共和国交通部,1985 ·《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ 023-85) 中华人民共和国交通部,1985 ·《公路桥涵地基与基础设计规范》(JTJ 024-85) 中华人民共和国交通部,1985 ·《公路桥位勘测设计规程》(JTJ 062-82) 中华人民共和国交通部,1982

30m预应力混凝土简支箱型梁桥设计

30m预应力混凝土简支箱型梁桥设计 1.1上部结构计算设计资料及构造布置 1.1.1 设计资料 1.桥梁跨径及桥宽 标准跨径:30m;主梁全长:29.96m;计算跨径:28.66m;桥面净宽:净—9+2× 1.5m。 2.设计荷载 车道荷载:公路—I级;人群荷载:3kN/㎡;每侧人行道栏杆的作用力:1.52kN/㎡;每侧人行道重:3.75kN/㎡。 3.桥梁处河道防洪标准为20年一遇设计,50年一遇校核,桥下通过流量1000/s时,落差不超过0.1m。 4.桥下净空取50年一遇洪水位以上0.3m。 5.材料及工艺 混凝土:主梁采用C50混凝土;钢绞线:预应力钢束采用Φ15.2钢绞线,每束6根,全梁配5束;钢筋:直径大于等于12mm的采用HRB335钢筋,直径小于12mm的采用R235钢筋。 采用后张法施工工艺制作主梁。预制时,预留孔道采用内径70mm、外径77mm的预埋金属波纹管成型,钢绞线采用T双作用千斤顶两端同时张拉,锚具采用夹片式群锚。主梁安装就位后现浇600mm宽的湿接缝,最后施工混凝土桥面铺装层。 6.基本计算数据 基本计算数据见表5-1 表5-1 材料及特性 名称项目符号单 位 数据 C40 混凝土立方强度 弹性模量 轴心抗压标准强度 轴心抗拉标准强度 轴心抗压设计强度 轴心抗拉标准强度 f cu,k E c f ck f tk f cd f td MP a MP a MP a MP a MP a 40.00 3.45 ×104 32.40 2.65 22.40 1.83

MP a 短暂状态容许压应力0.7f'ck MP a 20.72 容许拉应力0.7f'tk MP a 1.76 持久状态 标 准荷载 组合 容许压应 力 0.5f ck MP a 16.20 容许主压 应力 0.6f ck MP a 19.44 短 期效益 组合 容许拉应 力 σst - 0.85σpc MP a 0.00 容许主拉 应力 0.6f tk MP a 1.59 名称项目符号单 位 数据 Φ s15.2 钢绞线 标准强度f pk MP a 1860 弹性模量E p MP a 1.95 ×105抗拉设计强度f pd MP a 1260 最大控制应力σcon0.75f pk MP a 1395 持久状态应 力 标准荷载组合0.65f pk MP a 1209 普通钢筋HRB335 抗拉标准强度f sk MP a 335 抗拉设计强度f sd MP a 280 R235 抗拉标准强度f sk MP a 235 抗拉设计强度f sd MP a 195

30m箱梁模板计算书

中铁三局五公司右平项目 30m箱梁 模板计算书 山西昌宇工程设备制造有限公司 技术部 2015年11月21日

30米箱梁模计算书 本工程所用30m箱梁,梁底模板直接采用混凝土台座,不再另行配置底模板。 1.砼侧压力计算 最大侧压力可按下列二式计算,并取其最小值: F=0.22γ c t β 1 β 2 V1/2 F=γ c H 式中 F------新浇筑混凝土对模板的最大侧压力(KN/m2) γ c ---- 混凝土的重力密度(kN/m3)取26 kN/m3 t ------新浇混凝土的初凝时间(h),h=3.5小时。 V------混凝土的浇灌速度(m/h);取27方/h,即27/25/1=1.08 m H------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m);取1.4m β1------外加剂影响修正系数,不掺外加剂时取1; β2------混凝土塌落度影响系数,当塌落度小于30mm时,取0.85;50—90mm时,取1;110—150mm时,取1.15。此处取1.15, F=0.22γ c t β 1 β 2 V1/2 =0.22x26x3.5x1x1.15x1.081/2 =24kN/m2 F=γ c H =26x1.4=36.4kN/ m2 取二者中的较小值,F=24kN/ m2作为模板侧压力的标准值,并考虑倾倒混凝土产生的水平载荷标准值4 kN/ m2,分别取荷载分项系数1.2和1.4,则作用于模板的总荷载设计值为:F=24x1.2+4x1.4=34.4 kN/ m2,取为35 kN/ m2 有效压头高度:H0=35/26=1.35m 2.面板验算(6mm钢板) 最大跨距: l=300mm, 每米长度上的荷载:q=FD=35x0.8=28KN/m。D为背杠的间距

梁模板(扣件式)计算书预应力梁

梁模板(扣件式)计算书计算依据: 1、《建筑施工模板安全技术规范》JGJ162-2008 2、《建筑施工扣件式钢管脚手架安全技术规范》JGJ 130-2011 3、《混凝土结构设计规范》GB50010-2010 4、《建筑结构荷载规范》GB 50009-2012 5、《钢结构设计规范》GB 50017-2003 一、工程属性 二、荷载设计

平面图

立面图 四、面板验算 面板类型覆面木胶合板面板厚度(mm) 12 面板抗弯强度设计值[f](N/mm2) 15 面板弹性模量E(N/mm2) 10000

W=bh2/6=1000×12×12/6=24000mm3,I=bh3/12=1000×12×12×12/12=144000mm4 q1=γ0×max[1.2(G1k+(G2k+G3k)×h)+1.4Q2k, 1.35(G1k+(G2k+G3k)×h)+1.4ψc Q2k]×b=0.9×max[1.2×(0.1+(24+1.5)×0.9)+1.4×2, 1.35×(0.1+(24+1.5)×0.9)+1.4×0.7×2]×1=29.77kN/m q1静=0.9×1.35×[G1k+(G2k+G3k)×h]×b=0.9×1.35×[0.1+(24+1.5)×0.9]×1= 28.006kN/m q1活=0.9×1.4×0.7×Q2k×b=0.9×1.4×0.7×2×1=1.764kN/m q2=[G1k+(G2k+G3k)×h]×b=[0.1+(24+1.5)×0.9]×1=23.05kN/m 1、强度验算 M max=0.125q1L2=0.125q1l2=0.125×29.77×0.22=0.149kN·m σ=M max/W=0.149×106/24000=6.202N/mm2≤[f]=15N/mm2 满足要求! 2、挠度验算 νmax=0.521q2L4/(100EI)=0.521×23.05×2004/(100×10000×144000)=0.133mm≤[ν]=l/250=200/250=0.8mm 满足要求! 3、支座反力计算 设计值(承载能力极限状态) R1=R3=0.375 q1静l +0.437 q1活l=0.375×28.006×0.2+0.437×1.764×0.2=2.255kN R2=1.25q1l=1.25×29.77×0.2=7.442kN 标准值(正常使用极限状态) R1'=R3'=0.375 q2l=0.375×23.05×0.2=1.729kN R2'=1.25q2l=1.25×23.05×0.2=5.763kN 五、小梁验算

预应力混凝土连续梁桥设计 计算书

目录 第一章概述 (4) 1.1 地质条件 (4) 1.2 主要技术指标 (4) 1.3 设计规范及标准 (4) 第二章方案比选 (5) 2.1 概述 (5) 2.2 比选原则 (5) 2.3 比选方案 (5) 2.3.1 预应力混凝土连续梁桥 (5) 2.3.2 预应力混凝土连续刚桥桥 (7) 2.3.3 普通上承式拱桥 (8) 2.4 方案比较 (9) 第三章预应力混凝土连续梁桥总体布置 (12) 3.1 桥型布置 (12) 3.2 桥孔布置 (12) 3.3 桥梁上部结构尺寸拟定 (12) 3.4 桥梁下部结构尺寸拟定 (13) 3.5 本桥使用材料 (14) 3.6 毛界面几何特性计算 (14) 第四章荷载内力计算 (16) 4.1 模型简介 (16) 4.2 全桥结构单元的划分 (16) 4.2.1 划分单元原则 (16) 4.2.2 桥梁具体单元划分 (17) 4.3 全桥施工节段的划分 (17) 4.3.1 桥梁划分施工分段原则 (17) 4.3.2 施工分段划分 (17) 4.4 恒载、活载内力计算 (17) 4.4.1 恒载内力计算 (17) 4.4.2 悬臂浇筑阶段内力 (18) 4.4.3 边跨合龙阶段内力 (19)

4.4.4 中跨合龙阶段内力 (20) 4.4.5 活载内力计算 (21) 4.5 其他因素引起的内力计算 (23) 4.5.1 温度引起的内力计算 (23) 4.5.2 支座沉降引起的内力计算 (25) 4.5.3 收缩、徐变引起的内力计算 (26) 4.6 内力组合 (28) 4.6.1 正常使用极限状态的内力组合 (28) 4.6.2 承载能力极限状态的内力组合 (29) 第五章预应力钢束的估算与布置 (32) 5.1 钢束估算 (32) 5.1.1 按承载能力极限计算时满足正截面强度要求 (32) 5.1.2 按正常使用极限状态的应力要求计算 (33) 5.2 预应力钢束布置 (39) 5.3 预应力损失计算 (40) 5.3.1 预应力与管道壁间摩擦引起的应力损失 (40) 5.3.2 锚具变形、钢筋回缩和接缝压缩引起的应力损失 (41) 5.3.3 混凝土的弹性压缩引起的应力损失 (41) 5.3.4 钢筋松弛引起的应力损失 (42) 5.3.5 混凝土收缩徐变引起的应力损失 (42) 5.3.6 有效预应力计算 (44) 5.4 预应力计算 (45) 第六章强度验算 (48) 6.1 正截面承载能力验算 (48) 6.2 斜截面承载能力验算 (51) 第七章应力验算 (55) 7.1 短暂状况预应力混凝土受弯构件应力验算 (55) 7.1.1 压应力验算 (55) 7.1.2 拉应力验算 (55) 7.2 持久状况正常使用极限状态应力验算 (60) 7.2.1 持久状况(使用阶段)预应力混凝土受压区混凝土最大压应力验算 60 7.2.2 持久状况(使用阶段)混凝土的主压应力验算 (62) 7.2.3 持久状况(使用阶段)预应力钢筋拉应力验算 (65) 第八章抗裂验算 (68) 8.1 正截面抗裂验算 (68)

钢筋混凝土简支T型梁桥毕业设计论文

毕业设计(论文)

计(论文)题目:钢筋混凝土简支T型梁桥

毕业设计(论文)原创性声明和使用授权说明 原创性声明 人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 者签名:日期: 导教师签名:日期: 使用授权说明 人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 者签名:日期:年月日 师签名:日期:年月日

(参考资料)32m预制箱梁计算书

32m 预制箱梁计算书 1. 计算依据与基础资料 1.1. 标准及规范 1.1.1. 标准 ?跨径:桥梁标准跨径30m ; ?设计荷载:公路-I 级(城-A 级验算); ?桥面宽度:(路基宽26m ,城市主干路),半幅桥全宽13m ,0.5m (栏杆)12.25m (机动车道)+0.5/2m (中分带)=13m 。 ?桥梁安全等级为一级,环境类别一类。 1.1.2. 规范 《公路工程技术标准》JTG B01-2013 《公路桥涵设计通用规范》(JTGD60-2015);(简称《通规》) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004(简称《预规》) 《城市桥梁设计规范》(CJJ11-2011); 1.1.3. 参考资料 《公路桥涵设计手册》桥梁上册(人民交通出版社2004.3) 1.2. 主要材料 1)混凝土:预制梁及现浇湿接缝、横梁为C50、现浇调平层为C40; 2)预应力钢绞线:采用钢绞线15.2s φ,1860pk f MPa =,51.9510p E Mpa = × 3)普通钢筋:采用HRB400,400=sk f MPa ,5 2.010S E Mpa =× 1.3. 设计要点 1)预制组合箱梁按部分预应力砼A 类构件设计; 2)根据小箱梁横断面,采用刚性横梁法计算汽车荷载横向分布系数,将小箱梁简化为单片梁进行计算,荷载横向分配系数采用刚性横梁法计算。 3)预应力张拉控制应力值0.75σ=con pk f ,混凝土强度达到90%时才允许张拉预

应力钢束; 4)计算混凝土收缩、徐变引起的预应力损失时张拉锚固龄期为7d; 5)环境平均相对湿度RH=80%; 6)存梁时间不超过90d。 2.标准横断面布置 2.1.标准横断面布置图 2.2.跨中计算截面尺寸

梁侧模板计算书预应力梁

梁侧模板计算书计算依据: 1、《混凝土结构工程施工规范》GB50666-2011 2、《混凝土结构设计规范》GB50010-2010 3、《建筑结构荷载规范》GB 50009-2012 4、《钢结构设计规范》GB 50017-2003 一、工程属性 4k c0c min{0.28×24×4×0.9×21/2,24×0.9}=min{34.213,21.6}=21.6kN/m2 承载能力极限状态设计值S承=γ0[1.35×0.9×G4k+1.4×φc Q4k]= 1×[1.35×0.9×21.6+1.4×0.9×2]=28.764kN/m2 正常使用极限状态设计值S正=G4k=21.6 kN/m2 三、支撑体系设计

左右两侧小梁道数5,4 主梁间距(mm) 950 主梁合并根数 2 小梁最大悬挑长度(mm) 50 结构表面的要求结构表面外露 对拉螺栓水平向间距(mm) 950 梁左侧支撑距梁底距离依次为200,700 梁右侧支撑距梁底距离依次为200,700 模板设计剖面图 四、面板验算 面板类型覆面木胶合板面板厚度(mm) 12

面板抗弯强度设计值[f](N/mm2) 15 面板弹性模量E(N/mm2) 10000 bh3/12=1000×123/12=144000mm4。左、右两侧面板计算简图如下: 左侧面板计算简图 右侧面板计算简图 1、抗弯验算 q1=bS承=1×28.764=28.764kN/m q1静=γ0×1.35×0.9×G4k×b=1×1.35×0.9×21.6×1=26.244kN/m q1活=γ0×1.4×φc×Q4k×b=1×1.4×0.9×2×1=2.52kN/m M max=max[0.107q1静L左2+0.121q1活L左2,0.1q1静L右2+0.117q1活L右2=]=max[0.107×26.244×0.2252+0.121×2.52×0.2252, 0.1×26.244×0.262+0.117×2.52×0.262]=0.197kN·m σ=M max/W=0.197×106/24000=8.223N/mm2≤[f]=15N/mm2 满足要求!

连续梁 下部结构计算书

**公路二期工程*大桥 3×30m连续梁下部结构计算书 1.工程概况 桥梁上部为3×30m跨预应力混凝土连续梁,主梁总宽度为12m,梁高为1.6m。主梁采用单箱双室断面,其中主梁悬臂长 2.0m,标准断面箱室顶板厚0.22m,底板厚0.2m,腹板厚0.45m,中支点及边支点断面箱室顶板厚0.37m,底板厚0.32m,腹板厚0.65m,两断面间设长2.5m的渐变段。混凝土主梁采用C50混凝土现场浇注,封端采用C45混凝土。主梁中墩采用两根直径1.6m圆柱,下接直径1.8m桩基,左侧中墩高7m,右侧墩柱高8.5m。主梁边墩采用盖梁+直径1.6m双柱中墩,下接直径1.8m桩基形式;中、边墩横桥向中心距均为5.6m。 主梁边支点采用普通板式橡胶支座,中墩与主梁固结。 2.设计规范 《城市桥梁设计准则》(CJJ11—93); 《城市桥梁设计荷载标准》(CJJ77—98); 《公路工程技术标准》(JTGB01-2003); 《公路桥涵设计通用规范》(JTG D60-2004); 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)); 《公路桥涵地基与基础设计规范》(JTG D63—2007); 《公路桥梁抗震设计细则》(JTG/T B02-01-2008); 《公路桥涵施工技术规范》(JTJ041-2000); 3.静力计算 3.1 计算模型 由于主梁支撑中心与其中心线斜正交,且主梁平面基本为直线,因此建立平面杆系模型计算结构的内力及变形。桥梁内力及位移的计算均采用桥梁博士3.0有限元程序进行,其中边支点仅采用竖向支撑,中墩底部采用弹性支撑,其支撑刚度根据m法计算(m0=1.2×105kN/m4,K水平=2.4×106kN/m,K弯曲=1.1×107kN.m/rad)。 根据桥梁结构受力特点,其计算模型见下图。

多跨简支箱型梁桥设计计算说明-2019年文档资料

多跨简支箱型梁桥毕业设计计算说明书 第一章桥梁设计概况 1 、设计技术标准 (1)设计荷载:公路U级; (2)桥梁宽度:净-7m+ 2X 0.5m; ( 3)桥梁跨径:32+40+32; ( 4)路面横坡:2%; 2、结构形式:上部结构为预应力混凝土箱梁; 3、材料:混凝土采用C40以上混凝土;钢筋采用热轧R235 HRB235!卩HRB400钢筋;预应力混凝土构件中的箍筋应选用其中的带肋钢筋;按构造配置的钢筋网可采用冷轧带肋钢筋;预应力混凝土构件中的预应力钢筋应选用钢绞线,钢丝; 3、地震动参数:地震动峰值加速度0.05g; 4、桥址条件:桥址区内场地可划分为可进行建筑的一般地段,场地类别属 I类; 第二章桥跨布置方案比选及尺寸拟定 2.1 方案比选 本设计桥梁的形式可考虑拱桥、简支梁桥、连续梁桥三种形式。从实用、安全、经

济、美观、环保以及占地与工期多方面比选,最终确定桥梁形式。桥梁设计原则: (1)实用性。桥梁必须实用,要有足够的承载力。能保证行车的畅通、舒适和安全。既满足当前的需要,又要考虑今后的发展。要能满足交通运输本身的需要,也要考虑到支援农业等等。 (2)安全性。桥梁的设计要能满足施工及运营阶段的受力需要,能够保证其耐久性和稳定性以及在特定地区的抗震需求。 (3)经济性。在社会主义市场经济体制的今天,经济性是不得不考虑的重要因素。在能够满足桥两个方面需求的情况下要尽量考虑是否经济,是否以最少的投入获得最好的效果。 (4)美观性。在桥梁设计中应尽量考虑桥梁的美观性。桥梁的外形要优美,要与周围环境相适应,合理的轮廓是美观的主要因素。 (5)环保性。随着经济的发展,生活水平的不断提高,人们对环境保护提出了更高的要求,在建筑领域,一个工程的建设不能以牺牲环境作代价,在保证顺利工的前提下要尽量避免对环境的破坏以实现经济的可持续发展。应根据上述原则,对桥梁作出综合评估: (1)梁桥: 梁式桥是指其结构在垂直荷载的作用下,其支座仅产生垂直反力,而无水平推力的桥梁。预应力混凝土梁式桥受力明确,理论计算较简单,设计和施工的方法日臻完善和成熟。预应力混凝土梁式桥具有以下主要特征: (a)混凝土材料以砂、石为主,可就地取材,成本较低; (b )结构造型灵活,可模型好,可根据使用要求浇铸成各种形状的结构; (c)结构的耐久性和耐火性较好,建成后维修费用较少; (d)结构的整体性好,刚度较大,变性较小; (e)可采用预制方式建造,将桥梁的构件标准化,进而实现工业化生产;设计荷载的比重,既节省材料、增大其跨越能力,又提高其抗裂和抗疲劳的能力; (j )预应力混凝土梁式桥所采用的预应力技术为桥梁装配式结构提供了最有效的拼装手段,通过施加纵向、横向预应力,使装配式结构集成整体,进一步扩大了装配式结构的应用范围。 简支梁:简支梁可以降低梁高,节省工程数量,有利于争取桥下净空,并改善景观;其结构刚度大,具有良好的动力特性以及减震降噪作用,使行车平稳舒适,后期的维修养护工作也较少。从城市美学效果来看,连续梁造型轻巧、平整、线路流畅,将给城市争色不少。 连续梁:目前我国道路桥梁结构一般考虑简支梁和连续梁结构形式。简支梁受力明确, 因温度变化产生的附加力、特殊力的影响小,设计施工易标准化、简单化。 (2)拱桥:拱桥的静力特点是,在竖直何在作用下,拱的两端不仅有竖直反力,而且还有水平反力。由于水平反力的作用,拱的弯矩大大减少。如在均布荷载q 的作用下, 简直梁的跨中弯矩为ql2/8 ,全梁的弯矩图呈抛物线形,而设计得合理的拱轴,主要承受压力,弯矩、剪力均较小,故拱的跨越能力比梁大得多。由于拱是主要承受压力的结构,因而可以充分利用抗拉性能较差、抗压性能较好的石料,混凝土等来建造。石拱对石料的要求较高,石料加工、开采与砌筑费工,现在已很少采用。由墩、台承受水平推力的推力拱桥,要求支撑拱的墩台和地基必须承受拱端的强大推力,因而修建推力拱桥要求有良好的地基。对于多跨连续拱桥,为防止其中一跨破坏而影响全桥,还要采取特殊的措施,或设置单向推力墩以承受不平衡的推力。

30m简支箱梁计算书

30m预应力混凝土简支小箱梁计算书 一、主要设计标准 1、公路等级:城市支路,双向四车道 2、桥面宽度:3m人行道+0.25m路缘带+2x3.5m车行道+0.5m双黄线+2x3.5m 车行道+0.25m路缘带+3m人行道=21m 3、荷载等级:汽车-80级 4、设计时速:30Km/h 5、地震动峰值加速度0.2g 6、设计基准期:100年 二、计算依据、标准和规 1、《厂矿道路设计规》(GBJ22-87) 2、《公路桥涵设计通用规》(JTG D60-2004) 3、《公路钢筋混凝土及预应力混凝土桥涵设计规》(JTG D62-2004) 三、计算理论、荷载及方法 1、计算理论 桥梁纵向计算按照空间杆系理论,采用Midas Civil2012软件计算。 2、计算荷载 (1)自重:26KN/ m3 (2)桥面铺装:10cm沥青铺装层+8cm钢筋混凝土铺装 (3)人行道恒载:20KN/ m (4)预应力荷载:

采用4束5φs15.2和6束4φs15.2 fpk=1860MPa钢绞线,控应力1395MPa。(5)汽车荷载: 本桥由于是物流园区部道路,通行的重车较多,本次设计考虑《厂矿道路设计规》(GBJ22-87)汽车-80级,计算图示如下: 根据图示,汽车荷载全桥横桥向布置三辆车。 冲击系数按照《公路桥涵设计通用规》(JTG D60-2004)4.3.2条考虑。 (6)人群荷载:3.5 KN/ m2 (7)桥面梯度温度: 正温差:T1=14°,T2=5.5° 负温差:正温差效应乘以-0.5 3、计算方法

(1)将桥梁在纵横梁位置建立梁单元,然后采用虚拟梁考虑横向刚度,以此来建立模型。 (2)根据桥梁施工方法划分为四个施工阶段:架梁阶段、现浇横向湿接缝阶段、二期恒载阶段、收缩徐变阶段。 (3)进行荷载组合,求得构件在施工阶段和使用阶段时的应力、力和位移。(4)根据规规定的各项容许指标。按照A类构件验算是否满足规的各项规定。 四、计算模型 全桥采用空间梁单元建立模型,共划分为273节点和448个单元。全桥模型如下图: 全桥有限元模型图 五、计算结果 1、施工阶段法向压应力验算 (1)架梁阶段 架设阶段正截面上缘最小压应力为1.0MPa,最大压应力为2.7MPa;正截面下缘最小压应力为12.0MPa,最大压应力为13.7MPa。根据《公路钢筋混凝

推荐-预应力框架梁计算书 精品

预应力框架梁(YKL2)的计算书 1.设计资料 1. 混凝土强度等级:40C 219.1/c f N mm = 2 2.39/tk f N mm = 21.71/t f N mm = 240/cu f N mm = 42 3.2510/c E N mm =? 2. 钢筋 1).预应力筋采用低松弛(15.2)s φ钢绞线,每根钢筋截面面积为1 2139p A mm = 21860/ptk f N mm = 21320/py f N mm = 521.9510/p E N mm =? 2).非预应力纵向钢筋采用HRB335级钢筋: 2300/y f N mm = 52210/s E N mm =? 3).箍筋采用HPB235级钢筋: 2 210/y f N mm = 3. 锚具采用:柳州欧维姆机械股份有限公司的OVM.M15-14锚具 4. 预应力梁的计算跨度取两端柱子的中心线距离: 26200mm 2预应力框架梁的计算 2.1设计资料 图1:框架梁(YKL2)内力布置图 2.1.1梁的几何特性: 图2

框架梁为T 形截面, 111900262001871,1900,600, 3.1741515600 h h l mm h mm b mm b = =?=====<取120,12600121202040()f f f h mm b b h mm '''==+=+?= 几何特征值为: 522112040120 2.44810(),1900601840()A mm y mm =?=?=-= 52222600178010.6810(),1780/2890()A mm y mm =?=?== 555212 2.4481010.681013.12810()A A A mm =+=?+?=? 551122055 12 2.44810184010.68108901067()2.4481010.6810A y A y y mm A A +??+??===+?+? 111222I I A a I A a =+++ 332 2 114204012060017802040120(18401067)6001780(1067890)12124.6210() mm ??=+??-++??-=?2.1.2内力组合: 支座处: 弯矩设计值:38630.93476.7()M kN m =?=?(考虑次弯矩有利的影响) 短期效应组合:77430153789()s M kN m =+=? 长期效应组合:30157740.73556.8()l M kN m =+?=? 跨中: 弯矩设计值:8788 1.210653.6()M kN m =?=?(考虑次弯矩不利的影响) 短期效应组合:496011636123()s M kN m =+=? 长期效应组合:496011630.75774.1()l M kN m =+?=? 2.2预应力筋的估算: 混凝土强度等级:40C ,钢绞线(1X7):15.2s φ 222119.1/,1860/,1320/c ptk py f N mm f N mm f N mm α===

midas_连续梁计算书

第1章89#~92#预应力砼连续梁桥 1.1结构设计简述 本桥为27+27+25.94现浇连续箱梁,断面型式为弧形边腹板大悬臂断面,根据道路总体布置要求,主梁上下行为整体断面,变宽度32.713m -35m,单箱5室结构变截面。箱梁顶板厚度为0.22m,底板厚度0.2m;支点范围腹板厚度0.7m,跨中范围腹板厚度0.4m。主梁单侧悬臂长度为 4.85m,箱梁悬臂端部厚度为0.2m,悬臂沿弧线一直延伸至主梁底板。主梁两侧悬臂设置0.1m后浇带,与防撞护栏同期进行浇筑。 本桥平、立面构造及断面形式如图11.1.1和图11.1.2所示。 图11.1.1 箱梁构造图

图11.1.2 箱梁断面图 纵向预应力采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强f=1860MPa。中支点断面钢束布置如图11.1.3所示。 度 pk 图11.1.3 中支点断面钢束布置图 主要断面预应力钢束数量如下表 墩横梁预应力采用采用φs15-19,单向张拉,如下图。 1.2主要材料 1.2.1主要材料类型 (1) 混凝土:主梁采用C50砼;

(2) 普通钢筋:R235、HRB335钢筋; (3) 预应力体系:采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强度 f=1860MPa;预应力锚具采用符合GB/T14370-2002《预应力筋锚具、 pk 夹具和连接器》中Ⅰ类要求的优质锚具;波纹管采用符合JT/T529-2004标准的塑料波纹管。 1.2.2主要材料用量指标 本桥上部结构主要材料用量指标如表11.2.2-1所示,表中材料指标均为每平米桥面的用量。 表11.2.2-1 上部结构主要材料指标 1.3结构计算分析 1.3.1计算模型 结构计算模型如下图所示。 图11.3.1-1 结构模型图

相关主题
文本预览
相关文档 最新文档