当前位置:文档之家› 结构共振及对策研究

结构共振及对策研究

结构共振及对策研究
结构共振及对策研究

结构共振及对策研究

摘要:本文阐明了结构共振问题的概念和定义,通过分析基础有简谐振动的体系的振动反应说明共振的原理。提出了防止共振产生的一些措施。

关键词:共振;频率;措施;

1906年,在俄国彼得格勒的爱纪华特大桥上,走过一支沙皇军队,步伐整齐,咧咧作响,突然间一声巨响,大桥崩塌了,顿时马嘶人嚎,纷纷落水。经过调查,破坏者就是受害者,士兵整齐的正步走所产生的振动周期,与桥梁挠度的振动周期相同,共振导致了桥毁人亡。 当建筑物的自振周期与几个振源相同或接近时,建筑物自然会发生晃动。这些振源来自工厂机械的转动或振动、打桩机、爆破、车辆行进等,在城市中振源很多,可能单独作用,也可能共同作用,寻觅较困难。物理学告诉我们,凡是共振的两个物体,它们的固有频率相同或成简单的整数比,如l/l 、l/2、2/3等,都会发生共振现象。 1共振分析

共振是当振动体在周期性变化的外力作用下,若外力的频率与振动体固有频率很接近或相等时,振动的幅度就会急剧增大。 如图1所示,一基础有简谐振动的体系,设基础的振动方程为t sin Y y b b θ=,物体的质量为m ,弹簧刚度为K ,阻尼器的阻尼值为C 。取物体在静平衡位置的状态为初始状态。物体的运动方程为y (t )。以下分析物体在简谐振动荷载作用下的振动反应(物体的绝对位移反应)。

取隔离体如图2所示物体受到的弹性力、惯性力、阻尼力 分别为)y -K(y b s -=F 、)y -y C(b 。。-=C F 、。。

y m -=I F .

列平衡方程0=∑F 有t sin t cos y y y m b b θθθKY Y C K C +=++。。。

等式右边可以看做等效简谐荷载)(r t sin P *O +θ, 其中222b 222b *O 41K Y K C Y P ωθξθ+=+=, ω

θξθarctan2K C arctan r ==. )(αθ-=∴t Ysin y 其中βωθξ22

2b 41Y +=Y ,2212arctan r ωθωθ

ξ

α-+-= 21

222222

]41[-+-=ωθξωθβ)( 为便于直观理解,引入绝对位移传递系数T β,其中

22222222

2

T 4141ωθξωθωθξβ+-+=)(。 下面对T β进行讨论:(1)当

1<<ωθ时,T β=1,此时体系位移同基础位移。

(2)当2=ω

θ时,T β=1,此时T β与阻尼无关且静平衡位置

体系位移同基础位移。

(3)当

1≈ωθ时,T β>1,且有峰值,此种情况发生共振反应。

(4)当

2>ω

θ时,T β<1,此时物体振幅值小于基础振幅值。 当体系无阻尼时,动力系数22

11ωθβ-=,其图形如图3所示。

讨论:(1)

1<<ω

θ时,β=1,可将p (t )看作静载。 (2)10<<ω

θ时,β>1,动力系数随频率比增大而增大。 (3)1≈ωθ时,β趋于无穷大,共振。一般认为 1.250.75≤≤ωθ为共振区,工程设计中应避免。

(4)1>ω

θ时,动力系数的绝对值随频率比增大而减小。β为负时表示位移与荷载反向。

(5)1>>ωθ时,β趋于0。 2 减震原理

受迫振动的频率与荷载的变化频率相同时,动位移、惯性力以及体

系的动内力均与干扰力同时达到幅值。当ω

θ<时,动力系数β>0,动位移与干扰力方向相同。当ω

θ>时,动力系数β<0,动位移与干扰力方向相反。当ω

θ<<时,β趋于1,这种情况相当于静力作用。当ω

θ>>时,β趋于0,表明当干扰力频率远大于自振频率时,动位移趋于0。

共振现象的形成是能量聚集的过程,引起的振幅是由小渐大,所以在电机转动转速骤增通过共振区时,一般不会引起结构过大的变形。

在处理共振问题时,要区分共振前区和共振后区。在共振前区可采取刚性方案,例如增加梁的截面使刚度增加,从而也使自振频率增加。在共振后区可采取柔性方案,例如在满足强度要求的情况下通过减小梁的截面使自振频率减小。设计时一定要注意,不能盲目增加构件的尺寸。有时增大构件尺寸可能对结构动力响应不利。

3减震措施

从震灾害调查资料可以看出,建筑物固有频率与地震主频相接近,是造成结构共振破坏的主要原因。因此,在进行高层建筑抗展设计时,首先应测量建筑场地的脉动频率,据此估算该场地的地震主频,然后,在结构设计时,使结构固有频率避开地震主频。软弱场地土在远震作用下会激发长周期的振动,对高层建筑十分不利。故高层建筑的场地应避免选择在软弱场地上。

另外在多层及高层工业厂房中,由于工艺布置流程,一些设备在使用过程中会产生较大的往复振动,这些往复振动直接作用在楼层上,会导致楼盖产生竖向振动或水平振动。在竖向振动时由于设备的

自振频率和直接承受动力荷载的梁的自身频率相重叠,产生共振导致梁的竖向振幅叠加急剧增大,影响设备的正常使用,甚至危害承重构件的安全,这种情况在动力荷载较大时尤为明显。因此,在设计时应避免设备产生的竖向振动的频率与承重结构的自身频率产生共振。减震措施:

(1)刚性减振

刚性减振,就是提高支承结构(包括基础)的刚度和整体性,从而减小振源振动的输出。为了满足动力荷载作用下的结构强度受振结构通过动力分析,确定其必要的断面和刚度。此外,尚应避免降低结构垂直自振频率,造成与干扰频率接近或一致,而出现共振现象。除增加构件断面外,还可增设减小结构跨度的立柱或斜撑,从而提高支承结构的自振频率。对于基础,一般可采用硅化或灌注水泥浆胶结松散地基;在基础周边打桩;加大设备基础底面积;加深基础或加强地面与设备基础上部的整体联接:均能在一定程度上达到提高地基刚度的目的。

(2)隔离振源

隔离振源,就是采取积极隔振措施减少振源输出的振动能量。当设备因生产线流程的需要,无法改变位置,而增大支承结构刚度又不经济时,应对该设备基础采取柔性隔振。

4结论

在解决建筑结构中的异常振动问题时,首先应通过振动计算和振动测试,查明发生异常振动的原因,然后根据其产生的原因采取相应的

对策。在确定解决方案时,也应先通过试算确定方案中的各项参数,以找到经济、合理的解决办法。

结构振动控制中文

《结构振动控制》教学大纲 课程编号:1322009 英文名称:Control of Structural Vibration 课程类别:选修课学时:36 学分:2 适用专业:土木工程 预修课程:结构动力学、控制理论、随机振动 课程内容: 内容:主要介绍结构振动控制机理,各种减振控制装置,控制律设计中的重要问题以及智能控制。 预期目标:使学生掌握结构控制的原理,能针对不同的要求对结构采用不同的控制策略,提高学生解决实际问题的能力。 重点和难点:被动阻尼器的工作原理及实用设计方法;TMD的工作原理和设计方法;各种主动控制算法的计算步骤、优缺点和使用条件;结构振动的模糊控制和神经网络控制;结构振动控制设计中的模型降阶,溢出,传感器与作动器的定位,鲁棒性,时滞效应;结构半主动控制系统的原理和半主动控制算法;结构振动控制的Benchmark问题。 教材: 欧进萍.结构振动控制-主动、半主动和智能控制.科学出版社 参考书目: 1. 瞿伟廉 .高层建筑和高耸结构的风振控制设计.武汉测绘科技大学出版社 2. 顾仲权.振动主动控制.国防工业出版社 3. 吴波.李惠.建筑结构被动控制的理论与应用.哈尔滨工业大学出版社 4. T.T.Soong.Active Structural Control: Theory and Practice. Longman Scientific & Technical. 5. G.W.Housner.Structural Control: past, present and future.et al. ASCE Journal of Engineering Mechanics, 123(9): 897-971, 1997 考核方式与要求: 课程论文。

磁共振介绍

一、简介 磁共振扫描仪(MRI)是利用磁振造影的原理,将人体置于强大均匀的静磁场中,透过特定的无线电波脉冲来改变区域磁场,借此激发人体组织内的氢原子核产生共振现象,而发生磁矩变化讯号。因为身体中有不同的组织及成份,性质也各异,所以会产生大小不同的讯号,再经由计算机运算及变换为影像,将人体的剖面组织构造及病灶呈现为各种切面的断层影像。MRI的成像原理不同于X线检查及核医学检查,不依靠射线穿透人体成像,因而避免了射线辐射对人体的损害,属于无创性检查。 MRI的软组织分辨力高于CT,可以很好地区分脑的灰、白质,前列腺的外周带与中央带,子宫的内膜层与肌层等,并可使关节软骨、肌肉、韧带、椎间盘、半月板等直接显影。 MRI具有任意方位断层的能力,可在患者体位不变的情况下行横断位、矢状位、冠状位及任意角度断层扫描,无观察死角,显示病变全面、立体,可为诊断提供更多的信息。 MRI无需造影剂就可使心血管系统清楚显影,可与DSA(数字减影血管造影)媲美。免除了患者在插管和静脉注射造影剂时所承担的痛苦和危险。 MRI无骨性伪影,对于脑后颅窝的病变,CT常因有骨性伪影干扰而影响观察,MRI则无此忧虑,图像质量和对病变的诊断显著优于CT。 基于MRI的上述优点,MRI特别适合于中枢神经系统、心血管系统、关节软组织、盆腔脏器等病变的检查,对于头颈部、纵隔、腹腔实性脏器的检查也很优越。 磁共振成像MRI的 优点: 1、软组织分辨率高,明显优于CT。 2、成像参数多,图像变化多,提供信息量大。 3、可以多轴面直接成像,病变定位准确。 4、磁共振频谱(MRS)还可以反映组织的生化改变,弥散成像(Diffision)可反映 水分子布郎运动。 5、磁共振血管成像(MRA)可不用造影剂直接显示血管的影像,磁共振水成像(MRCP、 MRU、MRM)可不用造影剂显示胆管、输尿管、椎管。 6、可直接显示心肌和心腔各房室的情况。 7、颅底无骨伪影。 8、对人体无放射损伤。 缺点: 1.和CT一样,MRI也是影像诊断,很多病变单凭MRI仍难以确诊,不像内窥镜可同时获得影像和病理两方面的诊断; 2.对肺部的检查不优于X线或CT检查,对肝脏、胰腺、肾上腺、前列腺的检查不比CT优越,但费用要高昂得多; 3.对胃肠道的病变不如内窥镜检查; 4.体内留有金属物品者不宜接受MRI。 5. 危重病人不能做 6. 妊娠3个月内的 7. 带有心脏起搏器的

原子结构示意图大全

+19 2 8 8 1 钾K +20 2 8 8 2 钙Ca +21 2 8 9 2 钪Sc +22 2 8 10 2 钛Ti +23 2 8 11 2 钒V +24 2 8 13 1 铬Cr +25 2 8 13 2 锰Mn +26 2 8 14 2 铁Fe +27 2 8 15 2 钴Co +28 2 8 16 2 镍Ni +29 2 8 18 1 铜Cu +30 2 8 18 2 锌Zn +31 2 8 18 3 镓Ga +32 2 8 18 4 锗Ge +33 2 8 18 5 砷As +34 2 8 18 6 硒Se +35 2 8 18 7 溴Br +36 2 8 18 8 氪Kr +37 2 8 18 8 1 铷Rb +38 2 8 18 8 2 锶Sr +39 2 8 18 9 2 钇Y +40 2 8 18 10 2 锆Zr +41 2 8 18 12 1 铌Nb +42 2 8 18 13 1 钼Mo +43 2 8 18 13 2 锝Tc +44 2 8 18 15 1 钌Ru +45 2 8 18 16 1 铑Rh +46 2 8 18 18 钯Pd +47 2 8 18 18 1 银Ag +48 2 8 18 18 2 镉Cd +49 2 8 18 18 3 铟In +50 2 8 18 18 4 锡Sn +51 2 8 18 18 5 锑Sb +52 2 8 18 18 6 碲Te +53 2 8 18 18 7 碘I +54 2 8 18 18 8 氙Xe +55 2 8 18 18 8 1 铯Cs +56 2 8 18 18 8 2 钡Ba +57 2 8 18 18 9 2 镧La +58 2 8 18 19 9 2 铈Ce +59 2 8 18 21 8 2 镨Pr +60 2 8 18 22 8 2 钕Nd +61 2 8 18 23 8 2 钷Pm +62 2 8 18 24 8 2 钐Sm +63 2 8 18 25 8 2 铕Eu +64 2 8 18 25 9 2 钆Gd +65 2 8 18 27 8 2 铽Td +66 2 8 18 28 8 2 镝Dy +67 2 8 18 29 8 2 钬Ho +68 2 8 18 30 8 2 铒Er +69 2 8 18 31 8 2 铥Tm +70 2 8 18 32 8 2 镱Yb +71 2 8 18 32 9 2 镥Lu +72 2 8 18 32 10 2 铪Hf

共振论

共振论 存在着电子离域的体系包括分子、离子、自由基,用经典的路易斯结构式不能完全、准确地表示出 不能描述出其体系内电子云平均化,这个体系的真实结构和性质。例如,1,3-丁二烯用CH 2=CH-CH=CH2 C-C有部分双键的性质,C=C比正常C=C键长等。为了解决用经典的路易斯结构式表达复杂的电子离域体系的矛盾,鲍林在1931-1933年间提出了“共振论”。共振论是用经典的结构式表达电子离域体系,是价键理论的延伸。在有机化学中经常被使用,比较方便地解决了电子离域体系的表示,但有它的局限性。 一、共振论的基本概念 对于电子离域体系的化学物种,不能用一个经典结构式表示清楚其结构,可用几个可能的经典结构式表示,真实物种是这几个可能的经典结构的叠加——共振杂化体。 表示离域体系的可能的经典结构称做极限结构或共振结构,共振结构的叠加得到共振杂化体,共振杂化体才能较确切地代表真实物种的结构。 1,3-丁二烯可用一系列共振结构表示: 每个式子叫共振结构式或共振极限结构式,“<—>”双箭头符号表示共振结构之间的叠加或共振;合起来表示真实的1,3-丁二烯。表示共振结构的叠加关系,不同于互变异构体间表示互变关系。 共振杂化体是一单一物种,只有一个结构。极限结构式表示电子离域的极限度。 一个物种的极限结构式越多,电子离域的范围越大,体系能量越低,物种越稳定。 任何一个极限结构的能量都高于共振杂化体的能量,真实物种与最低能量的极限结构(最稳定的极限结构)的能量差称为共振能。它是由电子离域而获得的稳定化能,与共轭能是一致的。 每个极限结构对其共振杂体的贡献是不相等的。极限结构越稳定,对共振杂化体的贡献越大。相同的极限结构贡献相等。 例如,1,3-丁二烯的共轭能为14kJ·mol-1,可用下列极限结构表示: CH2=CH-CH=CH2是最稳定的极限结构,对杂化体贡献最大,它与真实分子的能量差为共振能;后面几个极限结构是不稳定的,能量较高,对共振杂化体的贡献小,有时可以不考虑; 和相同,对共振杂化体的贡献相等。 二、共振结构式书写规则 共振结构式书写应遵守几条规则:

原子结构示意图大全

+19 2 8 8 1 钾 K +20 2 8 8 2 钙 Ca +21 2 8 9 2 钪 Sc +22 2 8 10 2 钛 Ti +23 2 8 11 2 钒 V +24 2 8 13 1 铬 Cr +25 2 8 13 2 锰 Mn +26 2 8 14 2 铁 Fe +27 2 8 15 2 钴 Co +28 2 8 16 2 镍 Ni +29 2 8 18 1 铜 Cu +30 2 8 18 2 锌 Zn +31 2 8 18 3 镓 Ga +32 2 8 18 4 锗 Ge +33 2 8 18 5 砷 As +34 2 8 18 6 硒 Se +35 2 8 18 7 溴 Br +36 2 8 18 8 氪 Kr +37 2 8 18 8 1 铷 Rb +38 2 8 18 8 2 锶 Sr +39 2 8 18 9 2 钇 Y +40 2 8 18 10 2 锆 Zr +41 2 8 18 12 1 铌 Nb +42 2 8 18 13 1 钼 Mo +43 2 8 18 13 2 锝 Tc +44 2 8 18 15 1 钌 Ru +45 2 8 18 16 1 铑 Rh +46 2 8 18 18 钯 Pd +47 2 8 18 18 1 银 Ag +48 2 8 18 18 2 镉 Cd +49 2 8 18 18 3 铟 In +50 2 8 18 18 4 锡 Sn +51 2 8 18 18 5 锑 Sb +52 2 8 18 18 6 碲 Te +53 2 8 18 18 7 碘 I +54 2 8 18 18 8 氙 Xe +55 2 8 18 18 8 1 铯 Cs +56 2 8 18 18 8 2 钡 Ba +57 2 8 18 18 9 2 镧 La +58 2 8 18 19 9 2 铈 Ce +59 2 8 18 21 8 2 镨 Pr +60 2 8 18 22 8 2 钕 Nd +61 2 8 18 23 8 2 钷 Pm +62 2 8 18 24 8 2 钐 Sm +63 2 8 18 25 8 2 铕 Eu

结构振动控制的概念及分类

耗能方案 性能来抵御地震作用的,即由结构本身储存和消耗地震能量,以满足结构抗震设防标准,小震不坏,可能无法满足安全性的要求;另一方面,在满足设计要求的情况下,结构构件的尺寸可能需做得很大木工程领域新兴一种新型的抗震方式——结构振动控制,即对结构施加控制机构,由控制机构和结构 半主动控制和混合控制。 是由控制装置随结构一起振动变形而被动产生的。被动控制可分为基础隔震技术、耗能减震技术和吸是由控制装置按某种控制规律,利用外加能源主动施加的。主动控制系统由传感器、运算器和施力作术。主动控制有主动拉索系统(ATS)、主动支撑系统(ABS)、主动可变刚度系统(AVSS)、主动质期开始研究主动控制。目前,主动控制在土木工程中的应用已达30多项,如日本的Takenaka实验控制力虽也由控制装置自身的运动而被动的产生,但在控制过程中控制装置可以利用外加能源主动调置、半主动TMD、半主动力触动器、半主动变刚度装置和半主动变阻尼装置等。 主动控制,或者是同时应用不止一种的被动控制装置,从而充分发挥每一种控制形式和每一种控制装:同时采用AMD和TMD的混合控制系统、主动控制和基础隔震相结合的混合控制系统以及主动控制和

京的清水公司技术研究所。 ,但由于建筑结构体形巨大导致所需的外加能源较大,加之控制装置的控制的算法比较复杂,而且存好,容易实现,目前发展最快,应用最广,尤其是其中的基础隔震技术已相当成熟,并得到了一定程主动控制低廉,而且不需要较大的动力源,因此其具有广阔的应用和发展前景;混合控制综合了某几 和耗能减震技术。 置控制机构来隔离地震能量向上部结构传输,使结构振动减轻,防止地震破坏。目前研究开发的基础和混合隔震等。近年来,越来越多的国家开展了基础隔震技术的研究,因此,隔震技术也得到了飞速:日本94栋,美国21栋,中国46栋,意大利19栋,新西兰16栋,已采用了基础隔震技术。最近有 使结构的振动能量分散,即结构的振动能量在原结构和子结构之间重新分配,从而达到减小主结构振尼器(TLD);(3)质量泵;(4)液压—质量控制系统(HMS);(5)空气阻尼器。其中,应用最多两个重300吨的TMD,质量块在9米长的钢板上滑动,它很好地减小了大楼的风振反应,防止了玻璃幕nade桥的桥塔均安装了TMD,其减震效果均令人十分满意。日本的Yokohama海岸塔是一个高101米析表明,安装了TLD后塔的阻尼比由0.6%增加到4.5%,在强风作用下塔的加速度减小到原来的1/3 TLD以控制其风振反应。

飞利浦1.5T-MRI简介

飞利浦公司最新一代1.5T高磁场高分辨率磁共振机,为目前国内应用于临床最先进的磁共振机。该机采用无创伤性检查方法,具有高度的软组织分辨率,多参数成像,可较好区分正常与病变组织,并且显示病变特征,从而提高了MR 诊断的准确性;进行三维任意方向成像,使病变显示更清楚,定位更准确;MR 血管成像,不需造影剂,可获得完整的血管图象,以显示各种血管性疾病;该机可进行胆道梗阻性疾病;MR锥管造影可获得完整的锥管图象。该机能对人体各个部位进行多序列的扫描检查,并可显示任意方位的图像,不仅能显示人体的病理解剖改变,还能反映生理、生化变化。特别是对脑、脊髓、骨关节软组织和体部脏器的检查有独到之处。世界一流的磁共振检查舒适自如、噪音小、无痛苦、对人体无辐射损害,是一种先进的、无创检查技术。 飞利浦Intera Achieva 1.5T磁共振,该系统具有1.57米超短磁体,独有的线性全身双梯度系统,独有的32接受通道,8倍SENSE并行采集系统,最快的重建速度1200幅/秒,开创了磁共振成像的最高水平。它没有放射线损害,无骨性伪影,能多方面、多参数成像,有高度的软组织分辨能力。它的应用,能为患者带来更快速的检查,更广泛地适用于全身各系统的疾病,如肿瘤、炎症、创伤、退行性病变以及各种先天性疾病的检查。对颅脑、脊髓等疾病是当今最有效的影像诊断方法。同时,磁共振能清楚、全面的显示心腔、心肌、心包、及心内其它细小结构,是诊断各种心脏病以及心功能检查的可靠方法。

世界一流的PHILIPS 1.5T超导磁共振机,适应于全身各个部位检查。具有低场强磁共振机许多无法比拟的优势。如:清晰显示超急性期脑梗塞(发病1-2小时即可发现)。MRA技术无需造影剂即可显示血管情况。无创伤水成像技术清晰显示胆道、输尿管走形及肾盂情况。类PET清楚显示全身肿瘤转移情况。良好的压脂技术,可早期发现股骨头无菌坏死,早期骨转移,外伤引起的隐匿性骨折(骨挫伤)。可清晰显示关节软骨、韧带损伤情况。白质成像技术客观评价小儿脑发育情况。良好的分辨率可清晰显示脊髓细微病变,敏感显示颅内癫痫病的病变部位。动态扫描可明确显示垂体微腺瘤。正反相序列可清晰显示脂肪肝病变情况。无需增强即可鉴别肝癌、肝血管瘤,客观评价肝硬化情况,明确肝硬化结节。清晰显示前列腺肿瘤、增生等。清楚显示子宫、附件病变,客观评价宫颈癌及宫体癌的分期。 飞利浦Achieva 1.5T磁共振成像系统(Magnetic Resonnance Imaging MRI)磁共振是当今世界最先进的医学影像检查设备,具有组织分辨力高,显示病变敏感,无幅射危害,安全无痛苦,可以轴位、矢状位、冠状位及任意角度平面直接成像,也可在不使用对比剂的情况下显示血管、胰胆管、输尿管等许多优点。 我院1.5TMR是目前国际先进、最成熟的检查设备,不但具有一般磁共振设备的所有功能,而且配置有国际上新近开发的磁共振成像技术其图像质量明显提高,扫描成像时间明显加快、显示病变的能力明显提高。STIR、SPIR、SPAIR 等多种抑脂技术可根据诊断需要高质量控制脂肪信号,并行采集相控阵体部线圈结合表面线圈的高信噪比和大范围扫描视野,保证了胸部、腹部、盆腔等体部高分辨率成像,显著提高了图像质量,16通道并行采集神经血管专用线圈确保了头颈部扫描成像高质量,智能化实时透视减影造影剂跟踪血管造影通过三维实时透视显示造影剂到达的部位从而精确同步进行CE—MRA的采集成像,一次造影剂注射,2分钟完成腹主动脉以及全下肢血管造影成像。无缝连接图像自动生成技术可完整全脊柱、脊髓高质量成像,心脏成像软件可提供高质量的心脏电影成像,具有三个方向16个B值各向同性的弥散加权图像的计算以及在线的表现弥散系数图,可发现超早期的脑梗塞,快速扫描序列使磁共振多期增强扫描不再成为难事,明显提高了病变定性能力。可广泛用于全身各部位各系统,尤其适用于颅脑五官、脊椎与椎管、心脏与大血管、关节、腹部实质脏器

浅谈建筑结构振动控制

浅谈建筑结构振动控制 摘要:文章从不同角度对结构振动控制进行了分类,介绍了其发展与现状,并对近年来控制理论在结构控制方而的新进展给以综述,最后对有待进一步研究的问题进行了探讨,以促进结构振动控制的研究。 关键词:结构振动控制;自主控制;上木工程结构 abstract: this article from a different perspective on the structural vibration control classification, its development and status, and give summarized in the the structure controlling party and the new advances in control theory in recent years, last discussed the issue needs further study .to promote the study of the structural vibration control.key words: structural vibration control; self-control; engineering structures on wood 中图分类号:c935 文献标识码:a 文章编号:2095-2104(2012)结构振动控制是一个应用领域广泛的工程问题。所谓结构振动控制(以下称为结构控制)是指采用某种措施使结构在动力载荷作 用下的响应不超过某一限量,以满足工程要求。 结构控制问题是一种多学科交叉的理论与工程问题,其结构类型繁多、控制目标不同、实现手段多样。目前,国内外控制界对这类问题的研究十分重视,有大量的学术论文发表,其中不少新结果得到了实际工程应用。本文旨在对当前结构控制的一此新进展加以

原子结构示意图大全

+19 2 8 8 1 钾K+20 2 8 8 2 钙Ca+21 2 8 9 2 钪Sc +22 2 8 10 2 钛Ti+23 2 8 11 2 钒V+24 2 8 13 1 铬Cr +25 2 8 13 2 锰Mn+26 2 8 14 2 铁Fe+27 2 8 15 2 钴Co +28 2 8 16 2 镍Ni+29 2 8 18 1 铜Cu+30 2 8 18 2 锌Zn +31 2 8 18 3 镓Ga+32 2 8 18 4 锗Ge+33 2 8 18 5 砷As +34 2 8 18 6 硒Se+35 2 8 18 7 溴Br+36 2 8 18 8 氪Kr +37 2 8 18 8 1 铷Rb+38 2 8 18 8 2 锶Sr+39 2 8 18 9 2 钇Y +40 2 8 18 10 2 锆Zr+41 2 8 18 12 1 铌Nb+42 2 8 18 13 1 钼Mo +43 2 8 18 13 2 锝Tc+44 2 8 18 15 1 钌Ru+45 2 8 18 16 1 铑Rh +46 2 8 18 18钯Pd+47 2 8 18 18 1 银Ag+48 2 8 18 18 2 镉Cd +49 2 8 18 18 3 铟In+50 2 8 18 18 4 锡Sn+51 2 8 18 18 5 锑Sb +52 2 8 18 18 6 碲Te+53 2 8 18 18 7 碘I+54 2 8 18 18 8 氙Xe+55 2 8 18 18 8 1 铯Cs+56 2 8 18 18 8 2 钡Ba+57 2 8 18 18 9 2 镧La +58 2 8 18 19 9 2 铈Ce+59 2 8 18 21 8 2 镨Pr+60 2 8 18 22 8 2 钕Nd +61 2 8 18 23 8 2 钷Pm+62 2 8 18 24 8 2 钐Sm+63 2 8 18 25 8 2 铕Eu +64 2 8 18 25 9 2 钆Gd+65 2 8 18 27 8 2 铽Td+66 2 8 18 28 8 2 镝Dy +67 2 8 18 29 8 2 钬Ho+68 2 8 18 30 8 2 铒Er+69 2 8 18 31 8 2 铥Tm +70 2 8 18 32 8 2 镱Yb+71 2 8 18 32 9 2 镥Lu+72 2 8 18 32 10 2 铪Hf

浅谈建筑结构振动控制技术

龙源期刊网 https://www.doczj.com/doc/3114736990.html, 浅谈建筑结构振动控制技术 作者:翟永兵 来源:《智富时代》2018年第03期 【摘要】近年来,随着我国经济的飞速发展,人民生活水平的日益提高,同时也带动了 我国建筑工程的快速发展,而在建筑工程结构振动控制技术中,传统的抗震结构体系是通过加强结构本身的性能从而达到“抗御”地震的目的。土木工程结构振动控制有利于降低结构在地震、流水、海浪、风、车辆等动力作用下结构所造成的损伤,能够有效地将结构抗震防灾能力相对增强。结构控制引起了世界各国地震工程界的广泛重视,是一种新型的结构抗震技术。但这种方法的作用与安全性相对是较低的,所以在这种不确定性的地震作用下,结构的安全性能并不能得到充分的保障,最后产生倒塌或遭到严重破坏,造成人员伤亡与巨大的经济损失。本文就建筑工程结构振动控制技术进行分析,并对其的发展进行讨论。 【关键词】建筑工程;震动控制;发展 一、结构控制的特点、发展与现状 (一)按控制对能量需求来划分 从控制对外部能量需求的角度,结构控制可分为:被动结构控制、主动结构控制、混合结构控制、半主动结构控制。除被动控制外,其他三种控制方式中的控制力全部或部分地根据反馈信号按照某种事先设计的控制律实时产生。主动结构控制效果较好,对环境有较强的适应力,但完全依赖外部能源,闭环稳定性比其他方式差。在被动控制中,控制力不是由反馈产生的。其主要优点是;成本低、不消耗外部能量、不会影响结构的稳定性;缺点是:对环境变化的适应力与控制效果不如其他方案。混合控制是指用主动控制来补充和改善被动控制性能的方案。由于混合了被动控制,因此减小了全主动控制方案中对能量的要求。半主动控制中通常包含某种对能量需求很低的可控设备,如可变节流孔阻尼器等作用时所需的外部能量通常比主动控制小得多。因此初步研究表明混合控制与半主动控制的性能大大优于被动控制,甚至可达到或超过主动控制的性能,并在稳定性与适用性方面要优于后者,因此成为当前研究的一个热点。 (二)按结构特性划分 从被控结构的特性划分,结构控制可分为柔性结构控制与刚性结构控制。其中柔性结构包括大型柔性空间结构、大跨度桥梁等;刚性结构则包括武器系统中稳定平台、车辆悬挂系统、多刚体机器人等。对于两类结构控制所用的主动控制设备也不相同,如在柔性结构控制中传感器与执行器常用的智能材料是分布智能材料,如压电材料;而刚性结构控制中传感器与执行器常用的智能材料是电智能材料,如磁致伸缩材料。

土木工程结构振动控制技术及其应用研究.

万方数据

万方数据 万方数据 《6? 善s. 曼s. 蓑s. 辎4. 图6模拟结构阻尼比随TLMD频率比变化曲线 模拟结构阻尼比达到极值。频率比在0.96~0.98区间,即频率比在最优值附近改变±1%时,模拟结构阻尼比变化较为平缓且均在6%以上。

实桥通常采用多重TLMD(MTLMD进行减振,为此在室内进行了MTLMD减振性能试验。分别将1~4台频率和阻尼均调为优化值的减振器固定到上述模拟结构上进行试验,得到模拟结构阻尼比随TLMD总质量比变化的曲线如图7所示,按TMD 理论计算的相应曲线亦绘于图7。从图7可知,模拟结构的阻尼比随TLMD总质量比增加而增大,4台TLMD(质量比1.91%时,模拟结构阻尼比达到7.13%,抑振效果非常好。1~4台TLMD 的试验值与同质量比下的TMD理论计算值比较,模拟结构阻尼比分别提高27%、23%、35%和46%,说明新型TLMD双调谐减振器由于同时具有TLD 和TMD的抑振效能,抑振性能在TMD基础上有大幅提升。 图7MTLMD抑振性能的试验值与TMD理论僵对比3.1.3实桥试验 选取九江长江大桥三大拱中2根典型吊杆(C32A32和C10A10,对该新型减振器进行了减振性能实桥试验。在每根吊杆上安装4台活动质量均为10kg的减振器,如图8所示。首先撤下吊杆原有TMD减振器,分别进行激振并得到吊杆自身的自振特性;然后安装试验用新型减振器TLMD对吊杆激振,进行新型TLMD减振性能试验;最后对撤下的既有TMD减振器进行检修,使之恢复最佳状态,重新安装到吊杆上进行综合减振性能试验。试验结果如图9所示。 由图9可知,吊杆C32A32和C10A10在TLMD质量比分别为1.57%与1.56%的情形下, 图8新型TLMD实桥安装 图9实桥试验结果 目标振型阻尼比达到了5.09%和3.58%,阻尼分别提高了50.9倍和35.8倍。对非目标振型,结构阻尼比也有所提高。对比原TMD在质量比为1.9%时,目标振型阻尼比为3%左右,TLMD具有更好的减振效果。TLMD与TMD减振器共同工作时,目标振型的结构阻尼比进一步增加到5.47%和4.98%,非目标振型的结构阻尼比有更明显的提高。

共振论的基本概念

共振论的基本概念★★ 某些分子、离子或自由基不能用某个单一的结构来解释其某种性质(能量值、键长、化学性能)时,我们就用两个或两个以上的结构式来代替通常的单一结构式,这个过程叫共振。用共振符号双向箭头表示。 例如:甲酸根离子HCOO就不能用单一的结构式来表示。因为在上式中有C =O双键和C-O单键两种键,那么C-O单键键长应为143pm,C=O双键键长应为120pm,而实际测得甲酸根离子中的两个碳氧键键长都是126pm,即表明甲酸根离子中没有真正的C -O和C=O。所以只能用下面两个共振式来表示。 其意义是C-O键介于双键和单键之间的中间状态,负电荷被两个氧承担。 这些组合结构叫共振杂化体(resonance hybrid)或简称杂化体,也就是说Ⅰ和Ⅱ综合称共振杂化体,每个参与杂化的结构叫共振结构式(resonance structures)或极限结构式,也就是说Ⅰ和Ⅱ互称共振结构式。 但并不是说,甲酸根离子一会是极限结构式Ⅰ,一会是极限结构式Ⅱ,也不是说一半是Ⅰ,一半是Ⅱ,而是介于Ⅰ和Ⅱ之间,Ⅰ和Ⅱ都不能表示其真实结构,不能单独存在、独立表示,只能参与共振杂化体。L.Pauling的学生芝加哥大学的G.W.Wheland教授所作的生物杂化体的比喻是有启发性的。如把骡子看作是马和驴杂交后生下的动物,是生物杂化体。这并不是说骡子是几分之几的马和几分之几的驴,也不能说骡子有时候是马,有时候是驴,只能说骡子是与马和驴都有关系的动物。因而可用两种熟知的动物马和驴来很好地说明骡子。加利福尼亚工艺学院的J.D.Roberts教授的比喻就更恰当了,在中世纪,欧洲有一个旅行者

从印度回来,他把犀牛描绘成龙和独角兽的生物杂化体,用两种熟知的、但完全是想像中的动物来很好地描绘一种真实的动物。再如:1,3-丁二烯CH=CH—CH=CH,分子中C=C 双键的键长不是134pm,而是137pm,C-C单键的键长不是154pm,而是148pm,说明分子中不存在纯粹的单双键,所以不能用一个结构式表示,而应该用共振杂化体表示。 应写出上面六个共振结构式。因此:Ⅰ~Ⅵ各称共振结构式,Ⅰ~Ⅵ综合称共振杂化体,从Ⅰ~Ⅵ是靠可动电子云互相转变而成,哪一个也不是1,3-丁二烯的真实结构,不能单独表示、单纯存在,其真实结构介于Ⅰ~Ⅵ之间。 书写共振结构式遵循的基本原则★★

磁共振成像原理简介

磁共振成像原理简介 磁共振成像(Magnetic Resonance Imaging ,MRI )是利用原子核在磁场内共振所产生信号经重建成像的一种技术。在诞生之初被称为核磁共振, 但为了避免与核医学成像技术相混淆,并且为了突出这项技术 不会产生电离辐射的优点,因此将“核磁共振成像”简称为磁 共振成像。 核磁共振是自旋的原子核在磁场中与电磁波相互作用的 一种物理现象。 我们知道,原子由原子核和绕核运动的电子组成,其中, 原子核由质子和中子组成。电子带负电,质子带正电,中子不 带电。根据泡里不相容原理,原子核内成对的质子或中子的自 旋相互抵消,因此只有质子数和中子数不成对时,质子在旋转 中产生角动量,磁共振就是利用这个角动量来实现激发、信号采集和成像的。 用于人体磁共振成像的原子核为氢原子核(1H ),主要原因 如下:1、1H 是人体中最多的原子核,约占人体中总原子核数 的2/3以上。2、1H 的磁化率在人体磁性原子核中是最高的。 质子以一定频率绕轴高速旋转,称为自旋。自旋是MRI 的 基础。自旋产生环路电流,形成一个小磁场叫做磁矩。在无外 磁场情况下,人体中的质子自旋产生的小磁场是杂乱无章的, 每个质子产生的磁化矢量相互抵消,因此,人体在自然状态下 并无磁性,即没有宏观磁化矢量的产生。进入主磁场后,人体 中的质子产生的小磁场不在杂乱无章,呈有规律排列。一种是 与主磁场平行且方向相同,另一种与主磁场平行但方向相反, 处于平行同向的质子略多于平行反向的质子。从量子物理学角 度,平行同向的质子处于低能级,因此受主磁场的束缚,其磁化矢量的方向与主磁场的方向一致;而平行反向的质子处于高 能级,因此能够对抗主磁场的作用,其磁化矢量方向与主磁场相反。由于低能级质子略多于高能级质子,因此在进入主磁场后,人体产生了一个与主磁场方向一致的宏观纵向磁化矢量。 进入主磁场后,无论是处于高能级还是处于低能级的质子,其磁化矢量并非完全与主磁场方向平行,而总是与主磁场有一定的角度。质子除了自旋外,还绕着主磁场轴进行旋转摆动,这种旋转摆动称为进动。进动是磁性原子核自旋产生的小磁场与主磁场相互作用的结果。 图 1 自旋的原子核 图 3 进入主磁场前后人体的宏观核磁状态变化 图 2 质子自旋和进动示意图

结构振动控制技术的发展及存在的问题

结构振动控制技术的发展及存在的问题 郑瑞生 (福建省建筑科学研究院) 摘要:介绍了结构振动控制的概念和目前已有的结构振动控制的方法,即被动控制、主动控制等。介绍了各种控制方法的相关理论。概述了目前国内外结构振动控制的工程应用及发展现状,提出了结构振动控制今后有待进一步研究的课题,指出了目前我国结构振动控制应用中所面临的若干问题。 关键词:结构振动控制;被动控制;主动控制 中图分类号: 文献标识码: 文章编号: Development and some problems of structural vibration control ZHENG Ruisheng Abstract: The concept and existent type of structural vibration control are introduced, including passive control, active control, and et c. The correspondent control theories of these methods are then introduced. The practical application and the state-of-the-art of structural vibration control at home and abroad are summarized. The further research lessons of structural vibration control are presented from now on, and some problems in application of structural vibration control of our country now are pointed out. Key words: structural vibration control; passive control; active control 传统的抗震设计方法以概率理论为基础,提出三水准的设防要求,即小震不坏,中震可修,大震不倒,并通过两阶段设计来实现:第一阶段设计采用第一水准烈度的地震动参数,结构处于弹性状态,能够满足承载力和弹性变形的要求;第二阶段设计采用第三水准烈度的地震动参数,结构处于弹塑性状态,要求具有足够的弹塑性变形能力,但又不能超过变形限值,使建筑物“裂而不倒”。然而,结构物要终止在强震或大风作用下的震动反应(速度、加速度、位移),必然要进行能量转换或换散。传统抗震结构体系实际上是依靠结构及承重构件的损坏消耗大部分输入能量,往往导致结构构件严重破坏甚至倒塌,这在一定程度上是不合理的也是不安全的。为了克服传统抗震方法的缺陷,结构震动控制技术(简称结构控制)逐渐发展起来,并被认为是减轻结构地震和风振反应的有效手段。结构消能减震(又称消能减振)技术就是一种结构控制技术,《抗震规范》首次以国家标准的形式对房屋消能减震设计这种抗震设防新技术的设计要点做出了规定,标志着消能减震技术在我国已经由科学研究走向了推广应用阶段。 1 结构振动控制的概念 1972年美籍华裔学者姚治平(J.T.P.Yao )教授撰文第一次明确提出了土木工程结构控制的概念 ,近30年来,国内外学者在结构控制的理论、方法、试验和工程应用等方面取得了大量的研究成果。结构控制的概念可以简单表述为:通过对结构附加控制机构或装置,由控制机构或装置与结构共同承受震动作用,以协调和减轻结构的震动反应,使它在外界干扰作用下的各项反应值被控制在允许范围内。基于此定义,结构控制的减震机理,可简单地用一个结构动力方程予以说明: g []{()}[]{()}[]{()}()[]{}()M x t C x t K x t F t M I x t ++=- (1) 式中[]M 、[C ] 、[K ]—分别为结构的质量、阻尼和刚度矩阵; {I }—单位列向量; F (t)—外部作用(包括控制机构或装置施加的控制力、风或可能施加的其他外力)列向量; {}g x {(t)}x 、{(t)}x 、{()}x t —分别为结构在外部作用(或荷载)下的加速度、速度和位移反应列向量;

结构振动的主动控制技术

硕士研究生 非笔试课程考核报告 (以论文或调研报告等形式考核用) 2013 至 2014 学年 第 1 学期 考核课程: 防灾减灾学 提交日期: 2013 年 12月 20 日 姓 名 程伟伟 学 号 2012010305 年 级 研二 专 业 防灾减灾及防护工程 所在学院 土木工程学院 山东建筑大学研究生处制 考核成绩 考核人

结构振动的主动控制技术 程伟伟 (山东建筑大学土木工程学院,济南,250101) 摘要:主动控制是一项积极主动的智能化措施,是根据外界刺激和结构响应预估计所需的控制力,从而输入能量驱使作动器施加控制力或调节控制器性能参数,达到减震效果。对目前的主动控制技术的研究现状作了简要评述,阐述了振动主动控制中主要控制方法和策略及应用中存在的问题,并提出了振动主动控制技术的发展趋势。 Abstraction:Active Control is an intelligent proactive measures, are needed to control the pre-estimate based on external stimuli and response structures, thereby driving the input energy is applied to the actuator control or regulate the controller performance parameters to achieve the damping effect. The current research status of active control techniques are briefly reviewed, elaborated mainly active vibration control and application control methods and strategies for the problems and proposed active vibration control technology trends. 关键词:主动控制作动器与传感器控制方法 引言:主动控制是指在振动控制过程中,经过实时计算,进而驱动作动器对控制目标施加一定的影响,达到抑制或消除振动的目的。其控制效果好,适应性强,正越来越受到人们的重视。近几年,随着科学技术的发展,特别是在计算机技术和测控技术的推动下,振动主动控制有了长足进步。主动控制在越来越多的实际工程中应用的越来越多。 正文 地震给世界各国人民造成了巨大的灾害,土木工程结构振动控制是工程结构抗震领域的新课题。姚治平将振动控制与土木工程相结合,首次提出了土木工程结构振动控制的概念。对有效减轻地震灾害有着重要的现实意义。主动控制在声学中并不是一个新概念,早在20世纪30年代,Paul Lueg 就提出了利用主动噪声抵消发代替被动噪声控制,对低频噪声进行控制。由于振动传递远比声音的传递复杂得多,致使主动振动控制的研究共走进展相对较慢,直到二次世界大战后的军备竞赛才促使其迅速发展。纵观主动振动控制的发展过程,将其划分为重点突破、广泛探索和重点攻关三个阶段。从20世纪50年年代起,主动控制取得了三项突破,即实现了机翼颤振的主动阻尼没提高了飞机航速;主动振动控制提供了超静环境,保证惯导系统满足核潜艇和洲际导弹导航的进度要求;磁浮轴承控制离心机转子成功,创造出分离铀同位素的新工艺。20世纪50-60年代主动振动控制发展的重点突破阶段。上述成就迅速吸引了众多的专家研究这项技术。于是20世纪70年代变成为空广泛探索主动振动控制在各个工程领域应用的阶段。进入20世纪80年代,主动振动技术在几个工程领域的应用前景相当明朗,其中就有控制高挠性土木工程结构振动在、控制,于是,主动振动控制研究进入重点攻关阶段。目前,对主动控制的研究主要集中在:传感器、致动器、动力学建模及其振动控制、传感器/致动器的优化配置等几方面。控制技术分为主动、被动和半主动等类型。主动控制是指在振动控制过程中,根据所检测的振动信号,应用一定的控制策略,经过计算,进而驱动作动器为控制目标施加一定的影响,达到抑制或消除振动的目的。其控制效果好,适应性强,正越来越受到人们的重视。本文主要介绍主动控制技术的发展和展望。 主动控制是一种需要额外能量的控制技术,它与被动控制的根本区别是有无额外能量的消耗,是否具有完整的反馈控制回路。与被动控制相比,主动控制技术复杂、造价昂贵、维护要求高,但对于高层建筑或抗震设防要求高的建筑来说,主动控制具有更好的控制效果。主动控制装置大体上由仪器测量系统(传感器)、控制系统(控制器)、动力驱动系统(作动器)等组成。传感器测量姐欧股的动力响应或外部激励信息;控制器处理传感器测量的信息,实现所需的空置力,并输出作动器

原子结构示意图

原子结构示意图 排列规律: 1,核外电子是分层排列的,从里到外1,2,3,4,5,6,7。 2,每层最多排2×(n)^2个电子(n表示层数)。 3,第一层最多2个电子,第二层最多8个电子,当电子层达或超过到四层时,倒数第二层不超过18个电子,当电子层超过四层时,倒数第三层最多不超过32个电子,最外层不超过8个电子。 +11氢H +22氦He +321锂Li +422铍Be +523硼B +624碳C +725氮N +826氧O +927氟F +1028氖Ne +11281钠Na +12282镁Mg +13283铝Al +14284硅Si +15285磷P +16286硫S +17287氯Cl +18288氩Ar +192881钾K +202882钙Ca +212892钪Sc +2228102钛Ti +2328112钒V +2428131铬Cr +2528132锰Mn +2628142铁Fe +2728152钴Co +2828162镍Ni +2928181铜Cu +3028182锌Zn

+3128183镓 Ga +3228184锗Ge +3328185砷As +3428186硒Se +3528187溴Br +3628188氪Kr +37281881铷 Rb +38281882锶Sr +39281892钇Y +402818102锆 Zr +412818121铌Nb +422818131钼Mo +432818132锝Tc +442818151钌Ru +452818161铑Rh +46281818钯Pd +472818181银Ag +482818182镉Cd +492818183铟In +502818184锡Sn +512818185锑Sb +522818186碲Te +532818187碘I +542818188氙Xe +5528181881铯Cs +5628181882钡Ba +5728181892镧La +5828181992铈Ce +5928182182镨Pr +6028182282钕Nd +6128182382钷Pm +6228182482钐Sm +6328182582铕Eu +6428182592钆Gd +6528182782铽 Td+6628182882镝Dy +6728182982钬Ho +6828183082铒Er +6928183182铥Tm +7028183282镱Yb +7128183292镥Lu +72281832102铪Hf +73281832112钽Ta +74281832122钨W +75281832132铼Re +76281832142锇Os

基础无机:Lewis共价键理论和共振结构式

基础无机:Lewis共价键理论和共振结构式 作者:虹Rreflect_F 本文受众:高中以上 Lewis共价键理论是经典的共价键理论。当然,在MO,VB等面前可能不值一提。但是原始与简单也有它的好处,如果我们可以用一些更为简单的方法去解释一些分子结构给出的信息,何乐而不为呢?就如同在适合的时候没必要使用洛仑兹变换而使用伽利略变换一样。这个也是它在基础有机化学中应用十分广泛的原因。故在这里提及一些关于Lewis结构式的内容。 *注:在Lewis结构式里我们讨论的是分子或者是以共价键组成的离子,而且主要针对主族元素。副族元素的化合物置于配位化合物部分进行讨论。 一.Lewis结构式的书写 1.八隅律 中心原子通过电子共用达到周围8价电子的稳定结构(H为2电子)。 2. 几种Lewis结构的书写方法: 一种(左图)是高中所熟知的电子式,标准式(中间)是把电子式中共用电子对用短线代替,只需要标出孤对电子。还有一种(右图)是在孤对电子较多时可以弃去孤对电子来表示分子的结构。 3. 键数的计算: 有了八隅律作为规则就可以轻易的算出化合物中的键数n。 我们设分子中有a个重原子(除了氢原子以外的其他原子,在等电子体部分中有提及)b个氢原子,那么我们所拥有的价电子数可以通过计算得出设为c。那么我们达到理想结构每个原子都达到8电子的稳定结构,所总共的电子为8a+2b,很显然我们多算了电子,而这个多算的电子数目是8a+2b-c。 这些多的电子通过共用电子对来实现互补,2个电子一根键所以总键数就是4a+b-c/2。 以HCN为例n=4*2+1-(1+4+5)/2=4,所以共4根键。 4. 形式电荷 有时我们画出来的分子周围多了电子或者少了电子,这样就可以看作多了电子的原子丢掉一个(或

相关主题
文本预览
相关文档 最新文档