当前位置:文档之家› 平稳随机过程及其数字特征

平稳随机过程及其数字特征

平稳随机过程及其数字特征

平稳随机过程

粗略的说——随机过程的统计特征不随时间的推移而变化。一.严平稳随机过程

1. 定义设有随机过程{ X(t) , t ∈T},若对于任意n 和任意t1

12121212(,,...,;,,...,)

(,,...,;,,...,)

X n n X n n f x x x t t t f x x x t t t t t t =+Δ+Δ+Δ则称该过程为严平稳随机过程(或狭义平稳过程)。

因此:严平稳过程的二维数字特征仅是(时间差τ)的函数

综上所述:要按上述严平稳过程的定义来判断一个过程是否平稳?是很困难的。

a):一般在实用中,只要产生随机过程的主要物理条件,在时间

进程中不变化。则此过程就可以认为是平稳的。

例如:在电子管中由器件的颗粒效应引起的“散弹噪声”,由于产生此噪声的主要物理条件与时间无关,所以此噪声可以认为是平稳过程。

12121212

12

1

21212

2

2

2

(,)(,;)()

(,)()()(,;)()()(0)(0)[()]

X X X X X

X X X X X

X X X X R t t x x f x x dx dx R C t t x m

x m f x x dx dx C R m C R m D X t τττττσ=?==??==?=?==∫∫∫∫

∞<)]([2

t X E b):另一方面,对有些非平稳过程,可以根据需要,如果它在所观测的时间段内是平稳的,就可以视作这一时间段上的平稳过程来处理。即在观测的有限时间段内,认为是平稳过程。

因此,工程中平稳过程的定义如下:

二、宽平稳过程1、定义

若二阶矩过程( )X(t) 满足: E[X(t)]=m x ←常数

R x (t 1,t 2)=R x (τ) ←只与时间间隔(τ=t 2-t 1)有关

则称过程X(t)为“宽平稳随机过程”(广义平稳过程)。

可见:一个均方值有限的严平稳过程,一定是宽平稳过程。反之:一个宽平稳过程,则不一定是严平稳过程。

c):一般在工程中,通常只在相关理论的范围内讨论过程的平稳问题。即:讨论与过程的一、二阶矩有关的问题。

对于随机过程X(t)=αcos(ωot+?)而言,当?在(0,2 π)或(-π,π) 上均匀分布时,X( t )是平稳的。

当?在(0,π)上或?在(0,π/2) 上均匀分布时,X(t) 是非平稳过程。

因为当?在(0,π)上均匀分布时,E[X(t)]=(-2 α/ π)sin ωot≠常数

当?在(0,π/2) 上均匀分布时,E[X(t)]=2 α/ π(sin ωo t-cosωo t) ≠常数τ

第二章随机变量的分布和数字特征习题课

第二章 随机向量的分布和数字特征的习题课 一:选择题: 1. 若随机变量 21,X X 的分布函数为)(1x F 与)(2x F 则a ,b 取值为( )时,可使F(x)=a )(1x F -b )(2x F 为某随机变量的分布函数。 A.3/5,-2/5 B.2/3,2/3 C.-1/2,3/2 D.1/2,-3/2 分析:由分布函数在±∞的极限性质,不难知a,b 应满足a-b=1,只有选项A 正确。 [答案 选:A] 2. 设 X ~?(x ),且? (-x )= (x ),其分布函数为F (x ),则对任意实数a , F (-a )=( )。 A.1-?a x 0)(?d x B . 2 1 -?a x 0)(? d x C .F(a) D .2F(a)-1 分析:①是偶函数,可结合标准正态分布来考虑;②?a x 0)(? d x =F(a)-F(0);③F(0)=0.5;④F(a)+F(-a)=1 [答案 选:B] 3.设X ~N (μ,2σ),则随着σ的增大,P (|X -μ|<σ)( )。 A.单调增大 B.单调减少 C.保持不变 D.增减不定 [答案 选:C] 4.设随机变量X 与Y 均服从正态分布,X ~N(μ,16),Y ~N(μ,25), 记P{X ≤μ+4}=1p ,P{Y ≤μ+5}=2p ,则( )正确。 A.对任意实数μ,均有1p =2p B. 对任意实数μ,均有1p <2p C.只对个别的μ值才有 1p =2p D. 对任意实数μ,均有1p >2p [答案 选: A]

5. 设X 是随机变量且)0,()(,)(2>==σ μσμX D X E ,则对任意常数c , ( )成立。 222)(.c EX c X E A -=- 22)()(.μ-=-X E c X E B 22)()(.μ-<-X E c X E C 22)()(.μ-≥-X E c X E D 分析: [答案 选:D ] 由2 )(,)(σμ==X D X E ,得2222 )()(μσ+=+=EX X D EX )2()(222c cX X E c X E +-=-∴ 2 2 2 2 2 2 2) (22c c c c cEX EX -+=+-+=+-=μσμμσ )2()(222μμμ+-=-X X E X E 2 22222222σ μμμσμμ=+-+=+-=EX EX 显然2 2 )()(μ-≥-X E c X E 二:题空题 1. 设在每次伯努里试验中,事件A 发生的概率均为p,则在n 次伯努 里试验中,事件A 至少发生一次的概率为( ),至多发生一次的概率为( )。 [答案 填:(1-(1-p)n ); ((1-p)n +np(1-p)1-n )] 由伯努里概型的概率计算公式,,据题意可知, 事件A 至少发生一次的概率为k n k n k k n p p C -=-∑)1(1或n n p p C )1(100--, 事件 A 至多发生一次的概率为 k n k k K N p p C -=-∑)1(1 =n n p p C )1(00-+111)1(--n n p p C

第3章 平稳随机过程的谱分析

第3章 平稳随机过程的谱分析 付里叶变换是处理确定性信号的有效工具,它信号的频域内分析处理信号,常常使分析工作大为简化。 对于随机信号,是否也可以应用频域分析方法?付里叶变换是否可引入随机信号中? 3.1 随机过程的谱分析 3.1.1 回顾:确定性信号的谱分析 )(t f 是非周期实函数, )(t f 的付里叶变换存在的充要条件是: 1.)(t f 在),(∞-∞上满足狄利赫利条件; 2.)(t f 绝对可积: +∞

3.1.2 随机过程的功率谱密度 一、样本函数的平均功率 问题1:由于付里叶变换是针对确定性函数进行的,在处理随机过程)(t X 时,取 )(t X 的一个样本函数)(t x (在曲线族中取某一曲线)来进行付里叶分 析。 问题2:随机过程)(t X 的样本函数)(t x 一般不满足付里叶变换的条件,它的总能 量是无限的,需考虑平均功率。 若随机过程)(t X 的样本函数)(t x 满足 +∞<=? -∞→T T T dt t x T W 2 )(21 lim W 称为样本函数)(t x 的平均功率。 对于平稳过程,其样本函数的平均功率是有限的。 二、截取函数 对于)(t X 的一个样本函数)(t x ,在)(t x 中截取长为T 2的一段,记为)(t x T , 它满足: ???? ?≥<=T t T t t x t x T 0 ) ()( 称)(t x T 为)(t x 的截取函数。 三、截取函数的付里叶变换 0>T ,取定后,)(t x T 的付里叶变换一定存在: ??--+∞ ∞--==T T t j t j T T dt e t x dt e t x X ωωω)()()( 其付里叶逆变换为: ? +∞ ∞ -= ωωπ ωd e X t x t j T T )(21 )( 其帕塞瓦(Parseval )等式为 ? ? ? +∞ ∞ --+∞ ∞ -= =ωωπ d X dt t x dt t x T T T T 2 2 2 )(21 )()(

随机变量的数字特征

第四章随机变量的数字特征 【基本要求】理解随机变量的数学期望与方差的概念,掌握它们的性质与计算方法;掌握计算随机变量函数的数学期望方法;掌握二项分布、泊松分布、正态分布和指数分布的数学期望和方差;了解协方差、相关系数、矩的概念、性质及计算方法。 【本章重点】数学期望与方差的概念、性质与计算方法;求随机变量函数的数学期望的方法;二项分布、泊松分布、正态分布和指数分布的数学期望和方差。 【本章难点】数学期望与方差的概念计算方法;随机变量函数的数学期望的计算方法;协方差、相关系数、矩的概念、性质及计算方法 【学时分配】7-9学时 分布函数:) x F≤ =——全面描述随机变量X取值的统计规律。但是,在实际问题中 P X ) ( (x 分布函数的确定并不是一件容易的事,而且有时我们也不需要知道分布函数,只需知道随机变量的某些数字特征就够了。例如: 评价粮食产量,只关注平均产量; 研究水稻品种优劣,只关注每株平均粒数; 评价某班成绩,只关注平均分数、偏离程度; 评价射击水平,只关注平均命中环数、偏离程度。 描述变量的平均值的量——数学期望, 描述变量的离散程度的量——方差。 §4.1 数学期望 教学目的:使学生理解掌握随机变量的数学期望的实际意义及概念,会计算具体分布的数学期望; 使学生理解掌握随机变量函数的数学期望的计算及数学期望的性质。 教学重点、难点:数学期望的概念及其计算;随机变量函数的数学期望的计算及数学期望的性质。

教学过程: (一) 数学期望的概念 先看一个例子:一射手进行打靶练习,规定射入 区域2e 得2分, 射入区域1e 得1分,脱靶即射入 区域0e 得0分.设射手一次射击的得分数X 是一个 e 0 随机变量,而且X 的分布律为P{X=k}=k p ,k=0,1,2 现射击N 次,其中得0分0a 次,得1分1a 次,得2分2a 次,0a +1a +2a =N.则他射击N 次得分的总和为0a 0+ 1a 1+ 2a 2,他平均一次射击的得分数为 ∑==?+?+?2 210210k k N a k N a a a ,因为当N 充分大时, 频率k p 概率稳定值 ??→?N a k 。 所以当N 充分大时, 平均数∑=??→?2 k k k p x x 稳定值 。 显然,数值∑=2 k k k p x 完全由随机变量X 的概率分布确定,而与试验无关,它反映了平均数的大小。 定义: 1.离散型随机变量的数学期望:设离散型随机变量X 的分布律为{}k k P X x p ==,1,2,3k =…若级数1 k k k x p ∞ =∑绝对收敛,则称级数1 k k k x p ∞ =∑为随机变量X 的数学期望,记为()E X ,即()E X =1 k k k x p ∞ =∑。 2.连续型随机变量的数学期望:设连续型随机变量X 的密度函数为()f x ,若积分()xf x dx ∞ -∞ ?绝对 收敛,则称积分()xf x dx ∞-∞ ?的值为随机变量X 的数学期望,记为()E X 。即()E X =()xf x dx ∞ -∞ ?。 数学期望简称期望,又称为均值。 (二) 数学期望的计算 关键是:求出随机变量的分布律或者密度函数。 1、离散型——若 则()E X =1k k k x p ∞ =∑ (绝对收敛)

平稳随机过程的谱分析

第二章平稳随机过程的谱分析 本章要解决的问题: ●随机信号是否也可以应用频域分析方法? ●傅里叶变换能否应用于随机信号? ●相关函数与功率谱的关系 ●功率谱的应用 ●采样定理 ●白噪声的定义 2.1 随机过程的谱分析 2.1.1 预备知识 1、付氏变换: 对于一个确定性时间信号x(t),设x(t)是时间t的非周期实函数,且x(t) 满足狄利赫利条件(有限个极值,有限个断点,断点为有限值)且绝对可积,能量有限,则x(t)傅里叶变换存在。即: 满足上述三个条件的x(t)的傅里叶变换为:

其反变换为: 2、帕赛瓦等式 由上面式子可以得到: ——称为非周期性时间函数的帕塞瓦(Parseval)等式。 物理意义:若x(t)表示的是电压(或电流),则上式左边代表x(t)在时间(-∞,∞)区间的总能量(单位阻抗)。因此,等式右边的被积函数 2 ) (ωX X 表示了信号x(t)能量按频率分布的情况,故称 2 ) (ωX X 为 能量谱密度。 2.1.2、随机过程的功率谱密度 一个信号的付氏变换是否存在,需要满足三个条件,那么随机信号是否满足这三个条件从而存在付氏变换呢? 随机信号持续时间无限长,因此,对于非0的样本函数,它的能量

一般也是无限的,因此,其付氏变换不存在。 但是注意到它的平均功率是有限的,在特定的条件下,仍然可以利用博里叶变换这一工具。 为了将傅里叶变换方法应用于随机过程,必须对过程的样本函数做 某些限制,最简单的一种方法是应用截取函数。 x(t): 截取函数T 图2.1 x(t)及其截取函数 x(t)满足绝对可积条件。因此,当x(t)为有限值时,裁取函数T x(t)的傅里叶变换存在,有 T x(t)也应满足帕塞瓦等式,即:(注意积分区间和表达很明显,T 式的变化)

第十二章 平稳随机过程

第十二章 平稳随机过程 §1 基本概念 定义1:已给s.p t X t X {=,}T t ∈,若1≥?n ,即T 中任意的,,,21n t t t Λ与 h t h t h t n +++,,,21Λ,n 维r.v ),,(21n t t t X X X Λ与),,(21h t h t h t n X X X +++Λ有相同 的n 维d.f 。即 ) ,,,;,,(),,() ,,(),,,;,,,(2121212121212121n n n h t h t h t n t t t n n x x x h t h t h t F x X x X x X P x X x X x X P x x x t t t F n n ΛΛΛΛΛΛ+++=≤≤≤=≤≤≤=+++ 则称s.p t X 是一个严(强,狭义)平稳过程。 当t X ?n 维d.l 时,则有 ),,;,,,(),,;,,,(21212121n n n n x x x h t h t h t f x x x t t t f ΛΛΛΛ+++= 若取n =1,则有),(),(1111x h t f x t f +=,特别,当T ∈0,可取,1t h -=则有),0(),(111x f x t f =。此时平稳过程t X 的一维d.l 与1t (时间)无关。于是 X X m dx x xf t X E μ=== ?+∞ ∞ -),0()(1 即t X 的均值是一个与时间无关的常数。 其方差 ?∞ ∞ -=-=-=.),0()(][2 22 X X X t t dx x f m x m X E X D σ也与时间t 无关的 常数。 而且T X 的二维d.l 也只依赖于.21t t -=τ即当2t h -=时,有 ).,;(),;0,(),;,(2121212121x x f x x t t f x x t t f τ∧ =-= 所以t X 与τ+t X 之间自相关为 ??∞∞-∞ ∞ -+== =+).(),;(),(21212 1ττττX t t X R dx dx x x f x x X X E t t R 它只依赖于.τ类似地τ+t t X X ,之间协方差为

实验一平稳随机过程的数字特征

实验一 平稳随机过程的数字特征 一、实验目的 1、加深理解平稳随机过程数字特征的概念 2、掌握平稳随机序列期望、自相关序列的求解 3、分析平稳随机过程数字特征的特点 二、实验设备 计算机、Matlab 软件 三、实验内容和步骤 设随机电报信号X(n)(-∞m 时, m k k e k m I m n X n X P λλ-∞ =∑==+022 )!2()(})()({

m k k e k m I m n X n X P λλ-∞ =+∑+==+0122 )!12()(})()({ m e I m n X n X E m R λ22)]()([)(-=+= 五、实验要求 1、写出求期望和自相关序列的步骤; 2、分析自相关序列的特点; 3、打印相关序列和相关系数的图形; 4、附上程序和必要的注解。 六、实验过程 input('王斌欢迎您') I=input('输入I 的值'); a=0.5; %a 的值为P{X(n)=+I} b=0.5; %b 的值为P{X(n)=-I} EX=I*a+(-I)*b %EX 为期望的输出值 xuehao=21; %学号为21 k=1/xuehao; Ex=I*0.5+(-I)*0.5; m=-64:1:64; Rx=I*I*exp(-2*k*abs(m)); Cx=Rx-Ex*Ex; Cx0=I*I*exp(-2*k*abs(0))-Ex*Ex; rx=Cx/Cx0; figure(1); subplot(211);stem(EX);title('期望') %输出图像 subplot(212);stem(m,Rx);title('自相关序列'); figure(2); stem(m,rx);title('相关系数'); 七、实验结果及分析

平稳随机过程

平稳随机过程 ?严格平稳随机过程 ?广义平稳随机过程 ?平稳随机过程自相关函数性质?各态历经过程

1. 严格平稳(Strict Sense Stationary, SSS)随机过程定义: 随机过程X (t )的任意N 维统计特性与时间起点无关。 1111(,,,,,)(,,,,,) X N N X N N p x x t t t t p x x t t +?+?=如果X (t ) 是严格平稳的,则与t 无关。 (,)()X X p x t p x =即X(t)与X(t+?t)具有相同的统计特性。

二维概率密度 只依赖于τ,与t 1和t 2的具体取值无关。 12121212121221212 (,,,)(,,,) (,,,0)(,,) X X X X p x x t t p x x t t t t p x x t t t t p x x t t =+?+?=-?=-=ττ=-

如果X (t )是严格平稳随机过程, 则 121212121212 (,)(,,,)() X X X R t t x x p x x t t dx dx R t t ∞ -∞ ==ττ=-?()()X X X m t xp x dx m ∞ -∞==?22 2()()()X X X X t x m p x dx ∞ -∞σ=-=σ ?

100200300400500 -4-3-2-101234Stationay Gaussian Noise 0100200300400500 -4 -3 -2-101234Non-stationay Gaussian Noise

随机变量的数字特征(答案)

概率论与数理统计练习题 系 专业 班 姓名 学号 第四章 随机变量的数字特征(一) 一、选择题: 1.设随机变量X ,且()E X 存在,则()E X 是 [ B ] (A )X 的函数 (B )确定常数 (C )随机变量 (D )x 的函数 2.设X 的概率密度为910()9 00 x e x f x x -?≥?=??

平稳随机过程及其数字特征

平稳随机过程及其数字特征

平稳随机过程 粗略的说——随机过程的统计特征不随时间的推移而变化。一.严平稳随机过程 1. 定义设有随机过程{ X(t) , t ∈T},若对于任意n 和任意t1

因此:严平稳过程的二维数字特征仅是(时间差τ)的函数 综上所述:要按上述严平稳过程的定义来判断一个过程是否平稳?是很困难的。 a):一般在实用中,只要产生随机过程的主要物理条件,在时间 进程中不变化。则此过程就可以认为是平稳的。 例如:在电子管中由器件的颗粒效应引起的“散弹噪声”,由于产生此噪声的主要物理条件与时间无关,所以此噪声可以认为是平稳过程。 12121212 12 1 21212 2 2 2 (,)(,;)() (,)()()(,;)()()(0)(0)[()] X X X X X X X X X X X X X X R t t x x f x x dx dx R C t t x m x m f x x dx dx C R m C R m D X t τττττσ=?==??==?=?==∫∫∫∫

∞<)]([2 t X E b):另一方面,对有些非平稳过程,可以根据需要,如果它在所观测的时间段内是平稳的,就可以视作这一时间段上的平稳过程来处理。即在观测的有限时间段内,认为是平稳过程。 因此,工程中平稳过程的定义如下: 二、宽平稳过程1、定义 若二阶矩过程( )X(t) 满足: E[X(t)]=m x ←常数 R x (t 1,t 2)=R x (τ) ←只与时间间隔(τ=t 2-t 1)有关 则称过程X(t)为“宽平稳随机过程”(广义平稳过程)。 可见:一个均方值有限的严平稳过程,一定是宽平稳过程。反之:一个宽平稳过程,则不一定是严平稳过程。 c):一般在工程中,通常只在相关理论的范围内讨论过程的平稳问题。即:讨论与过程的一、二阶矩有关的问题。

随机变量的数字特征归纳

第四章 随机变量的数字特征 ㈠ 数学期望 表征随机变量取值的平均水平、“中心”位置或“集中”位置. 1、数学期望的定义 (1) 定义 离散型和连续型随机变量X 的数学期望定义为 {}?????==?∑∞ ∞ - d )( )()( , , 连续型离散型x x xf x X x X k k k P E 其中Σ表示对X 的一切可能值求和.对于离散型变量,若可能值个数无限,则要求级数绝对收敛;对于连续型变量,要求定义中的积分绝对收敛;否则认为数学期望不存在. ①常见的离散型随机变量的数学期望 1、离散型随机变量的数学期望 设离散型随机变量的概率分布为 ,若,则称级数为随 机变量 的数学期望(或称为均值),记为 , 即 2、两点分布的数学期望 设 服从0—1分布,则有 ,根据定义, 的数学期望为 . 3、二项分布的数学期望 设 服从以 为参数的二项分布, ,则 。 4、泊松分布的数学期望 设随机变量 服从参数为的泊松分布,即,从而有 。 ①常见的连续型随机变量的数学期望 1)均匀分布

设随机变量ξ服从均匀分布,ξ~U [a,b] (a0,- <μ<+ ) 则令得 ∴ E(ξ)=μ . 3)指数分布 设随机变量服从参数为的指数分布,的密度函数为 ,则. (2) 随机变量的函数的数学期望设)(x g y=为连续函数或分段连续函数,而X是任一随机变量,则随机变量) (X g Y=的数学期望可以通过随机变量X的概率分布直接来求,而不必先求出Y的概率分布再求其数学期望;对于二元函数) , (Y X g Z=,有类似的公式: (){} ? ? ? ? ?= = = ? ∑ ∞ ∞ . ; (连续型) 离散型 - d) ( ) ( ) ( ) ( x x f x g x X x g X g Y k k k P E E

随机过程的模拟与数字特征

实验二随机过程的模拟与数字特征 一、实验目的 1. 学习利用MATLAB模拟产生随机过程的方法。 2. 熟悉和掌握特征估计的基本方法及其MATLAB 实现。 二、实验原理 1.正态分布白噪声序列的产生 MATLAB提供了许多产生各种分布白噪声序列的函数,其中产生正态分布白噪声序列的函数为randn。 函数:randn 用法:x = randn(m,n) 功能:产生m×n 的标准正态分布随机数矩阵。 如果要产生服从N (,) 分布的随机序列,则可以由标准正态随机序列产生。如果X ~ N(0,1),则N (,)。 2.相关函数估计 MATLAB提供了函数xcorr用于自相关函数的估计。 函数:xcorr 用法:c= xcorr (x,y) c= xcorr (x)

c= xcorr (x,y ,'opition') c= xcorr (x, ,'opition') 功能:xcorr(x,y) 计算X (n ) 与Y (n)的互相关,xcorr(x)计算X (n )的自相关。 option 选项可以设定为: 'biased' 有偏估计。 'unbiased' 无偏估计。 'coeff' m = 0 时的相关函数值归一化为1。 'none' 不做归一化处理。 3.功率谱估计 对于平稳随机序列X(n),如果它的相关函数满足 (2.1) 那么它的功率谱定义为自相关函数R X(m)的傅里叶变换: (2.2) 功率谱表示随机信号频域的统计特性,有着重要的物理意义。我们实际所能得到的随机信号的长度总是有限的,用有限长度的信号所得的功率谱只是真实功率谱的估计,称为谱估计或谱分析。功率谱估计的方法有很多种,这里我们介绍基于傅里叶分析的两种通用谱估计方法。 (1)自相关法 先求自相关函数的估计X(m),然后对自相关函数做傅里叶变换 (2.3) 其中N 表示用于估计样本序列的样本个数。 (2)周期图法

随机信号分析报告实验:随机过程的模拟与数字特征

实验二 随机过程的模拟与数字特征 实验目的 1. 学习利用MATLAB 模拟产生随机过程的方法。 2. 熟悉和掌握特征估计的基本方法及其MATLAB 实现。 实验原理 1.正态分布白噪声序列的产生 MATLAB 提供了许多产生各种分布白噪声序列的函数,其中产生正态分布白噪声序列的函数为randn 。 函数:randn 用法:x = randn(m,n) 功能:产生m ×n 的标准正态分布随机数矩阵。 如果要产生服从),(2 σμN 分布的随机序列,则可以由标准正态随机序列产生。如果 )1,0(~N X ,则),(~σμσμN X +。 2.相关函数估计 MATLAB 提供了函数xcorr 用于自相关函数的估计。 函数:xcorr 用法:c = xcorr(x,y) c = xcorr(x) c = xcorr(x,y,'opition') c = xcorr(x,'opition') 功能:xcorr(x,y)计算)(n X 与)(n Y 的互相关,xcorr(x)计算)(n X 的自相关。 option 选项可以设定为: 'biased' 有偏估计。 'unbiased' 无偏估计。 'coeff' m = 0时的相关函数值归一化为1。 'none' 不做归一化处理。 3.功率谱估计 对于平稳随机序列)(n X ,如果它的相关函数满足

∞<∑+∞ -∞ =m X m R )( (2.1) 那么它的功率谱定义为自相关函数)(m R X 的傅里叶变换: ∑+∞ -∞ =-= m jm X X e m R S ωω)()( (2.2) 功率谱表示随机信号频域的统计特性,有着重要的物理意义。我们实际所能得到的随机信号的长度总是有限的,用有限长度的信号所得的功率谱只是真实功率谱的估计,称为谱估计或谱分析。功率谱估计的方法有很多种,这里我们介绍基于傅里叶分析的两种通用谱估计方法。 (1)自相关法 先求自相关函数的估计)(?m R X ,然后对自相关函数做傅里叶变换 ∑---=-=1 ) 1()(?)(?N N m jm X X e m R S ωω (2.3) 其中N 表示用于估计样本序列的样本个数。 (2)周期图法 先对样本序列)(n x 做傅里叶变换 ∑-=-=1 )()(N n n j e n x X ωω (2.4) 其中10-≤≤N n ,则功率谱估计为 2)(1)(?ωωX N S = (2.5) MATLAB 函数periodogram 实现了周期图法的功率谱估计。 函数:periodogram 用法:[Pxx,w] = periodogram(x) [Pxx,w] = periodogram(x,window) [Pxx,w] = periodogram(x,window,nfft) [Pxx,f] = periodogram(x,window,nfft,fs) periodogram(...) 功能:实现周期图法的功率谱估计。其中: Pxx 为输出的功率谱估计值; f 为频率向量; w 为归一化的频率向量;

2.9 严平稳随机过程

随机信号分析

目录 CONTENTS CONTENTS 严平稳随机过程平稳随机过程的基本概念

-2.5-2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 t1t2t3t4t5t6t7t8快艇航行噪声随时间变化的观测实验第1次观测第2次观测第3次观测 ()()x m t E X t =????随机过程的数学期望()1x m t ()4x m t () 5x m t 如果数学期望与时间无关,将简化分析和计算! ()x x m t m =

-2.5-2 -1.5-1 -0.5 0.5 1 1.5 2 2.5 3 t1t2t3t4t5t6t7t8快艇航行噪声随时间变化的观测实验第1次观测第2次观测第3次观测 随机过程的自相关函数????=?R t t E X t X t X ,1212)()()(R t t X ,23) (?=τt t 320R t t X ,56)(?=τt t 650如果自相关函数与观察起始时刻无关,只和观察的两个随机变量的时间差有关? ==?ττR t t R t t X X ,,1221)()(有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

严平稳随机过程 随机过程X t ,若它的n 维概率密度(或n 维分布函数) 不随时间起点选择的不同而改变 就是说,对任何n 和ε,随机过程X t 的n 维概率密度满足: +++=εεεf x x x t t f x x x t t X n n X n n ,,,;,,,t ,,,;,,,t 12121212)()(f x x x t t n n ,,,;,,,t 1212) (则称X t 为严(格)平稳过程,或称X t 为狭义平稳过程。 有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

随机过程的数字特征

第三节 随机过程的数字特征 定义6.3.1 设随机过程}),({T t t ∈ξ的一维分布函数为,我们称 );(x t F ());()]([x t dF x t E t ∫+∞ ∞ ?==ξμξ ()()∫+∞ ∞ ??==);(][)]([22 x t dF t x t D t ξξμξσ 分别为随机过程}),({T t t ∈ξ的均值函数和方差函数。 对离散型的随机过程,其均值函数和方差函数分别为: ()()∑===n i i i t p x t E t 1 )]([ξμξ ()()()()t p t x t t E t D t i n i i 21 2 2 ][])([)]([ξξξμμξξσ∑=?=?==其中:()n i x t P t p i i ,,1},)({"===ξ 对连续型的随机过程,其均值函数和相关函数分别为: ()dx x t xf t E t ∫+∞ ∞ ?= =);()]([ξμξ ()()()∫+∞∞ ??=?==dx x t f t x t t E t D t );(][])([)]([22 2 ξξξμμξξσ 均值函数和方差函数刻画了随机过程在不同时刻的统计特性,均值函数表示{)(t ξ}在各个不同时刻取值的摆动中心。方差函数表示{)(t ξ}在各个不同时刻取值的关于()t ξμ的平均偏离程度。但不能描述在不同时刻之间的相互关系,因此我们必须引入自相关函数和自协方差函数概念。 定义6.3.2 设随机过程}T t ),t ({∈ξ的二维分布函数为,我们称其自相关函数和自协方差函数分别为: ),;,(2121x x t t F

随机过程分析

随机过程分析 摘要随着科学的发展,数学在我们日常的通信体系中有着越来越重的地位,因为在科学研究中,只有借助于数学才能精确地描述一个现象的不同量之间的关系,从最简单的加减乘除,到复杂的建模思想等等。其中,随机过程作为数学的一个重要分支,更是在整个通信过程中发挥着不可小觑的作用。如何全面的对随机信号进行系统和理论的分析是现在通信的关键,也是今后通信业能否取得巨大进步的关 键。 关键字通信系统随机过程噪声 通信中很多需要进行分析的信号都是随机信号。随机变量、随机过程是随机分析的两个基本概念。实际上很多通信中需要处理或者需要分析的信号都可以看成是一个随机变量,利用在系统中每次需要传送的信源数据流,就可以看成是一个随机变量。例如,在一定时间内电话交换台收到的呼叫次数是一个随机变量。也就是说把随某个参量而变化的随机变量统称为随机函数;把以时间t为参变量的随机函数称为随机过程。随机过程包括随机信号和随进噪声。如果信号的某个或某几个参数不能预知或不能完全预知,这种信号就称为随机信号;在通信系统中不能预测的噪声就称为随机噪声。下面对随机过程进行分析。 一、随机过程的统计特性 1、数学期望:表示随机过程的n个样本函数曲线的摆动中心,

?∞ ∞-==11);()]([)(dx t x xp t X E t a 2、方差:表示随机过程在时刻t 对于均值a(t)的偏离程度。 即均方值与均值平方之差。 {}?∞∞--=-=-==112222);()]([)]()([))](()([)]([)(dx t x p t a x t a t X E t X E t X E t X D t δ 3、自协方差函数和相关函数: 衡量随机过程任意两个时刻上获得的随机变量的统计相关特性时,常用协方差函数和相关函数来表示。 (1)自协方差函数定义 {} )]()()][()([);(221121t a t X t a t X E t t C x --=??∞∞-∞ ∞---=2121212211),;,()]()][([dx dx t t x x p t a x t a x 式中t1与t2是任意的两个时刻;a (t1)与a(t2)为在t1及t2得到的数学期望; 用途:用协方差来判断同一随机过程的两个变量是否相关。 (2)自相关函数 ??∞∞-∞ ∞-==2121212212121),;,()]()([),(dx dx t t x x p x x t X t X E t t R X 用途:a 用来判断广义平稳; b 用来求解随机过程的功率谱密度及平均功率。 二、平稳随机过程 1、定义(广义与狭义): 则称X(t)是平稳随机过程。该平稳称为严格平稳,狭义平稳或

第2章随机过程习题与答案

第二章 随机过程分析 1.1 学习指导 1.1.1 要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2. 随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为 F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1) 如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 1111111 (,) (, ) (2 - 2)?=?F x t f x t x 对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率 {}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤ 称为随机过程x (t )的二维分布函数。如果 2212122121212 (,;,) (,;,) (2 - 4)F x x t t f x x t t x x ?=??? 存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程x (t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(),,() (2 - 5) =≤≤≤L L L F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程x (t )的n 维分布函数。如果 n n 12n 12n n 12n 12n 12n (x )() (2 - 6)?=???L L L L L F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,, 存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程x (t )的n 维概率密度函数。 3. 随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程x (t )在任意给定时刻t 的取值x (t )是一个随机变量,其均值为 []1()(, )d (2 - 7)E t xf x t x ξ∞ -∞ =?

随机过程的数字特征

随机过程的数字特征 ?均值函数与方差函数 ?自相关函数与自协方差函数?计算举例

1. 均值函数与方差函数 (1) 均值函数(Mean Function) (){()}(,)X X m t E X t xp x t dx +∞ -∞==?(2) 方差函数(Variance Function) 222 (){[()()]}[()](,)X X X X t E X t m t x m t p x t dx +∞-∞σ=-=-?2 22()[()]()X X t E X t m t σ=-

均值与方差的物理意义 X (t )-----单位电阻上的电压 X 2(t )/1-----消耗在单位电阻上的瞬时功率 [X (t )-m X (t )]2/1-----消耗在单位电阻上的瞬时交流功率 E{[X (t )-m X (t )]2/1}-----消耗在单位电阻上的瞬时交流功率 的统计平均值 222{()}()()X X E X t t m t =σ+表示消耗在 单位电阻上 的总的平均 功率。平均交流功率。平均直流功率。

2. 自相关函数与自协方差函数 自相关函数反映了随机过程在 两个不同的时刻取值的相关性。 121212121212 (,){()()} (,,,)X X R t t E X t X t x x p x x t t dx dx +∞ +∞-∞-∞==??自相关函数(Autocorrelation Function)的定义:

自相关函数可正可负,其绝对值越大,表示相关性越强。一般说来,时间相隔越远,相关性越弱,自相关函数的绝对值也越弱,当两个时刻重合时,其相关性应是最强的,所以R (t,t)最大。 X X t() X t () t t 相关性强,变化越缓慢

随机过程关于平稳过程中的各态历经性的综述

关于平稳过程中的各态历经性的综述 首先要介绍一下什么是平稳过程,平稳过程是一类统计特性不随时间推移而变化的过程。在实际中,有相当多的随机过程,不仅它现在的状态,而且它过去的状态,都对未来状态的发生有着很强的影响。有这样重要的一类随机过程,即所谓平稳随机过程,它的特点是:过程的统计特性不随时间的推移而变化。严格地说,如果对于任意的n (=1,2…),12,,t t t T ∈n …,和任意实数h,当 12,,n t h t h t h T +++∈…,时,n 维随机变量 (X(1t ),X(2t ),…,X(t n )) 和 (X (1t h +),X (2t h +),…,X (n t h +)) 具有相同的分布函数,则称随机过程{}X ∈(t ),t T 具有平稳性,并同时称此过程为平稳随机过程,或简称平稳过程。 在实际工作中,确定随机过程的均值函数和相关函数是很重要的。而要确定随机过程的数字特征一般来说需要知道过程的一﹑二维分布,这在实际问题中往往不易办到,因为这时要求对一个过程进行大量重复的实验,以便得到很多的样本函数。 但是由于平稳过程的统计特性不随时间的推移而变化,就会提出这样一个问题:能否从一个时间范围内观察到的样本函数或一个样本函数在某些时刻的取值来提取过程的数字特征呢?所谓各态历经,是指可以从过程的一个样本函数中获得它的各种统计特性;具有这一特性的随机过程称为具有各态历经性的随机过程,只要有一个样本函数就可以表示出它的数字特征。 定义 设X (t )是均方连续平稳随机过程,如果它沿整个时间上的平均值即时间平均值〈X (t )〉存在,即 〈X (t )〉=1lim ()2T T T X t dt T -→∞? 存在,而且〈X (t )〉=E {X (t )}=X μ依概率1相等。即〈X (t )〉依概率1等于X μ= E {X (t )}, X μ代表随机过程的集平均(或称统计平均),则称该过程的均值具有各态历经性。 定义 设X (t )是一均方连续平稳随机过程,且对于固定的τ,()X t X t τ(+)也是连续平稳随机过程,〈()X t X t τ(+)〉 代表()X t X t τ(+)沿整个时间轴的平均值,即 ()X t X t τ(+)=1lim (+)()2T T T X t X t dt T τ-→∞? 若〈()X t X t τ(+)〉存在,称〈()X t X t τ(+)〉为X (τ)的时间相关函数。又

第二章 随机数据的数字特征

2.1.随机过程的描述 1.随机过程的概念 随机过程:考察各测量样本固定时刻0t t 在0t时刻的值

)(01t x ,)(02t x ,……,)(0t x n 构成随机变量,具有自身的概率特性,记为)(0t X 。在数学上把所有已经得到的和未得到的而可能发生的样本总体)}({0t x i (t=1,2,3,……)称为随机过程,记为)(t X 。随机过程具有双向无穷特征,即在时间轴上无穷,又在样本数上无穷。 2. 随机过程的统计规律 (1). 一维概率分布特征 设一随机变量)(t X 在某一时刻i t 的随机变量)(i t X 的取值小于等于给定值x ()(t X x ),这一事件发生的概率定义为:

])([Pr );(1x t X ob t x F i i ≤=,)(t X x ∈ )(t X 的一维概率密度函数);(1i t x f 定义为);(1i t x F 对x 的一阶偏导数,即: x t x F t x f i i ??=);();(11 (2). 多维概率分布特征 二维概率分布特征随机过程)(t X 在i t 时刻的随机变量 i i x t X ≤)(;而且在j t 时刻的随机变量j j x t X ≤)(,这两件事同时发生 的概率定义为二维概率分布特征:

])(,)([Pr ),;,(2j j i i j i j i x t X x t X ob t t x x F ≤≤= 二维概率密度函数为对j i x x ,的二阶偏导数,即: j i j i j i j i j i x x t t x x F t t x x f ???=) ,;,(),;,(222 三维、四维,……直至n 维可以以此类推 实际应用中,要确定随机过程的各维概率分布函数及密度函数非常困难。 3. 随机过程的统计特征量 (1). 均值)(t m x

相关主题
文本预览
相关文档 最新文档