当前位置:文档之家› 结构概念设计

结构概念设计

结构概念设计
结构概念设计

一、概念设计

1.结构设计中为什么要强调概念设计?

我们在结构设计中强调概念设计,就是要求建筑师和结构工程师在建筑设计中应特别重视规范和规程中有关结构概念设计的各条规定,设计中不能陷入只凭计算的误区。若结构严重不规则,整体性差,则仅按目前的结构设计水平,难以保证结构的抗震和抗风性能,尤其是抗震性能。

而在高层建筑抗震设计中,更要非常重视概念设计。这是因为高层建筑结构的复杂性,发生地震时地震动的不规则性,人们对地震时结构响应认识的局限性以及其它不可预测的因素,致使设计计算结果可能和实际相差较大,甚至有些作用效应至今尚无法定量计算出来。

因此在设计中,虽然分析计算是必须的,也是设计的重要依据。但仅此往往不能满足结构安全性和可靠性的要求,不能达到预期的设计目标,还必须非常重视概念设计。从某种意义上讲,概念设计甚至比分析计算更为重要。概念设计是通过无数的事故分析,历年来国内外震害分析和模拟试验的定量定性分析以及长期以来国内外的设计与使用经验分析和归纳总结出来的。而概念设计所要求的原则、规定和方法,往往都是基础性、整体性和全局性以及关键性的,有些概念设计的要求,为整个设计设置了两道防线,保证了建筑物的安全可靠。

2.做好概念设计应掌握哪些方面知识?

概念设计是结构设计人员运用所掌握的知识和经验,从宏观上决定结构设计中的基本问题,要做好概念设计,应掌握以下各方面的内容:结构方案要根据建筑使用功能、房屋高度、地理环境、施工技术条件和材料供应情况、有无抗震设防等选择合理的结构类型;竖向荷载、风荷载及地震作用对不同结构体系的受力特点;竖向荷载、风荷载及地震作用的传递途径;结构破坏的机制和过程,以加强结构的关键部位和薄弱环节;建筑结构的整体性,承载力和刚度在平面内及沿高度均匀分布,避免突变和应力集中;预估和控制各类结构及构件塑性铰区可能出现的部位和范围;抗震房屋应设计成具有高延性的耗能结构并具有多道防线;地基变形对上部结构的影响,地基基础与上部结构协同工作的可能性;各类结构材料的特性及其受温度变化的影响;非结构性部件对主体结构抗震产生的有利和不利影响,要协调布置,并保证与主体结构连接构造的可靠性。

3.结构抗震概念设计的基本原则是什么?

结构抗震概念设计的目标是使整体结构能发挥耗散地震能量的作用,避免结构出现敏感的薄弱部位,地震能量的耗散如果仅集中在极少数的薄弱部位,将导致结构过早破坏。现

有抗震设计方法的前提之一是假定整个结构都能发挥耗散地震能量的作用,在此前提下,才能以多遇地震作用进行结构计算和构件设计并加以构造措施,或采用动力时程分析进行验算,试图达到罕遇地震作用下结构不倒塌的目标,所以结构抗震概念设计的基本原则是:(1)结构的简单性

结构简单是指结构在抗震作用下具有直接和明确的传力途径,结构的计算模型、内力和位移分析以及限制薄弱部位出现都易于把握,对结构抗震性能的估计也比较可靠。

(2)结构的规则性和均匀性

①沿建筑物竖向,建筑造型和结构布置比较均匀,避免刚度、承载能力和传力途径的突变,以限制结构在竖向某一楼层或极少数几个楼层出现敏感的薄弱部位,这些部分将产生过大的应力集中或过大的变形。容易导致结构过早的倒塌。

②建筑平面比较规则。平面内结构布置比较均匀,使建筑物分布质量产生的地震惯性力能以比较短和直接的途径传递并使质量分布与结构刚度分布协调,限制质量与刚度之间的偏心。建筑平面规则,结构布置均匀,有利于防止薄弱的子结构过早破坏和倒塌,使地震作用能在各子结构之间重分布,增加结构的自由度数量,发挥整个结构耗散地震能量的作用。

(3)结构的刚度和抗震能力

①水平地震作用是双向的,结构布置应使结构能抵抗任意方向的地震作用。通常可使结构沿平面上两个主轴方向具有足够的刚度和抗震能力。结构的抗震能力则是结构承载力及延性的综合反映。

②结构刚度选择时,虽可考虑场地特征,选择结构刚度,以减少地震作用效应,但也要注意控制结构变形的增大,过大的变形将会因P-△效应过大而导致结构破坏。

③结构除需要满足水平方向的刚度和抗震能力外,还应具有足够的抗扭刚度和抵抗扭转震动的能力。现有的抗震设计计算中不考虑地震地面运动的扭转分量。在概念设计中应注意提高结构的抗扭刚度和抵抗扭转震动的能力。

(4)结构的整体性

①在建筑结构中,楼盖对于结构的整体性起到了非常重要的作用,楼盖相当于水平隔板,它不仅聚集和传递惯性力到各个竖向抗侧力子结构,而且要使这些子结构能够协同承受地震力,特别是当竖向抗侧力子结构布置不均匀或布置复杂或各抗侧力子结构水平变形特征不同时,整个结构就要依靠楼盖使各抗侧力子结构能协同工作。楼盖体系最重要的作用是提供足够的平面内刚度和抗力,并与竖向各子结构有效连接,当结构空旷,平面狭长或平面凹凸不规则,或楼盖开大洞口时,更应特别注意。设计中不能误以为,在多遇地震作用计算中考虑了楼板平面内弹性变形影响后,就可削弱楼盖体系。

②结构基础的整体性尤其是高层结构基础的整体性以及基础与上部结构的可靠连接是结构整体性的重要保证。

4.结构抗震设计的基本要求是什么

(1)三水准设防要求

结构采用三个水准进行抗震设防,即"小震不坏,中震可修,大震不倒"

第一水准:当遭受低于本地区抗震设防烈度的多遇地震(重现期约50年)影响时,一般不受损坏或不需修理可继续使用。结构仍处于弹性状态,可以用弹性反应谱进行地震作用计算,按承载力要求进行截面设计,并控制结构弹性变形符合要求。

第二水准:当遭受相当于本地区抗震设防烈度的地震(重现期约475年)影响时,可能损坏,经一般修理或不需修理仍可继续使用。结构产生塑性变形,依靠塑性耗能能力,使结构保持稳定得以保存下来,此时结构抗震设计应按变形要求设计。

第三水准:当遭受高于本地区抗震设防烈度的预估的罕遇地震(重现期约1600~2400年)影响时,不致倒塌或发生危及生命的严重破坏。结构进入弹塑性大变形状态,此时应考虑防倒塌设计。

多遇地震:50年一遇,比抗震设防烈度约低1.55度。

罕遇地震:1600~2400年一遇,比抗震设防烈度约高1度。

抗震设防烈度:地震475年一遇。

(2)二阶段抗震设计要求

二阶段抗震设计是对三水准抗震设计的具体事实,通过二阶段设计中的第一阶段对构件截面承载力验算和第二阶段对弹塑性变形验算,并与构造措施相结合,从而实现"小震不坏,中震可修,大震不倒"的抗震要求。

①第一阶段设计

对于结构设计,首先应满足第一和第二水准的抗震要求,先按多遇地震的地震动参数设计地震作用,进行结构分析和地震内力计算,考虑各分析系数和荷载组合系数等进行荷载与地震作用产生内力的组合,进行截面、配筋计算以及结构弹性位移控制,并采取构造措施保证结构的延性,使之满足第二水准的变形能力,这样就实现了"小震不坏,中震可修"。这一阶段设计对所有抗震设计的建筑结构都必须进行。

②第二阶段设计

对地震时地震能力较弱或抗震要求较高的甲类建筑结构要进行薄弱层的塑性变形验算,并采取措施提高薄弱层的承载力和变形能力,这一阶段设计主要是针对甲类建筑和特别不规则的结构。

(3)结构延性要求

结构的延性好,吸收地震能量就大,有较好的抗震性能和耐震性能。多高层混凝土结构的延性要求为μ=4~8,从保证延性的重要性而言,抗震结构的构造措施比计算更重要。

(4)结构自振周期要求

结构自振周期应与地震动卓越周期错开,避免共振造成灾害。

结构自振周期参考值:

框架结构:T=0.085N

框-剪结构:T=0.065N

框-筒结构:T=0.06SN

剪力墙结构:T=0.05N

(5)结构抗震设防要求

抗震结构尽可能设置多道抗震防线,应采用具有联肢墙、壁式框架的剪力墙结构、框架-剪力墙结构、框架核心筒结构,筒中筒结构等多重抗侧力结构体系。高层结构避免采用框架结构。

(6)抗震结构的承载力和刚度要求

抗震结构的承载力和刚度要适应在地震作用下的动力要求,并应均匀连续分布。在一般静力设计中,任何部位的超强设计都不会影响结构的安全。而抗震设计中,某一部分结构的超强,就可能造成某些部位相对薄弱,因此在抗震设计中要严格遵循该强就强该弱就弱的设计原则,不得任意加强。在施工过程中,以大代小,以高强钢号代替低钢号改变配筋,应按钢筋承载力相等的原则进行换算。

(7)结构的塑性铰区要求

合理的控制结构的塑性铰区位置,掌握结构的屈服过程和屈服机制,要采取有效措施防止过早的混凝土剪切破坏、钢筋锚固滑移和混凝土压碎等脆性破坏。

为保证混凝土和钢筋共同工作,必须使钢筋有足够的锚固长度和混凝土饱和层厚度。在设计中无论柱、梁的纵向钢筋、墙的分布钢筋和楼板钢筋,直径宜细不宜粗,间距宜密不宜稀。

二.荷载作用

1.高层建筑和公共建筑的走廊、门厅、楼梯和楼面的均布活荷载标准值取2.5KN/㎡?

不可以。荷载规范中当人流密集时,其走廊、门厅、楼梯和楼面的均布活荷载标准值取3.5KN/㎡。

2.楼梯间是否按消防疏散楼梯楼面活荷载标准值取值?

这要根据建筑要求,是否是消防疏散楼梯,如果是,则按3.5KN/㎡取值,如果不是则按相应项取值。

3.消防车荷载如何确定?

荷载规范规定,消防车均布活荷载标准值,当单向板楼盖(板跨不小于2m)取3.5KN/㎡,双向板楼盖和无梁楼盖(柱网尺寸不小于6mx6m)取20KN/㎡。而实际上当楼

盖上方有较厚的地面作法及较厚的填土层时,取上述荷载是不确切的,应按当地使用的最大消防车轮压值及楼盖上覆盖层厚度确定,作用在结构面上的面积和重量,按此计算内力和配筋。而某些楼盖处地面作法较薄时,还应按轮压验算楼板的冲切及局部荷载作用下的内力和配筋。

4.框架结构设计时,是否考虑灵活布置的非固定隔墙荷载

这一问题,在设计时我们应征求甲方的意见,将其利弊和甲方说明白,利用框架结构的优点,便于以后进行不同用途的分隔。对这种荷载取每沿米墙重KN/m的1/3作为活荷载标准值(KN/㎡)加在楼面活荷载中,并加以说明。

5.地下室顶板是否考虑施工堆载?

地下室顶板设计应考虑施工过程中的材料堆放荷载,可取4.0KN/㎡,并在说明中加以注明。

6.在何种情况下采用永久荷载分享系数1.35?

根据荷载规范,对于基本组合

当由可变荷载效应控制的组合:S1=γGSGK+γQSQK(1)

γG--当其作用对结构不利时1.2,γQ=1.4

S1=1.2SGK+1.4SQK

当由永久荷载效应控制的组合:S2=1.35SGK+1.4x0.7SQK

S2> S1 则1.35SGK+1.4x0.7SQK>1.2SGK+1.4SQK

SGK>2.8SQK

则当永久荷载大于可变荷载2.8倍时,永久荷载分项系数取1.35。

7.怎样估算各类结构楼层单位面积的重量特征值?

钢筋混凝土多高层建筑,单位面积的重量标准值与结构类型、层数、使用性质、抗震设防烈度和填充墙材料等有关。根据实际工程的统计结果,下列数值可作为估算地基基础结构构件截面,结构底部总剪力的参考依据:

框架结构:11~14KN/㎡

框架-剪力墙结构:12~15 KN/㎡

剪力墙结构:13~16 KN/㎡

框架-核心筒结构:13~15 KN/㎡

当建筑物高度较高(大于20层)可取上限,较低时可取下限,地下室每层可按20 KN/㎡估算。

8.风荷载的基本风压怎样取值?

基本风压W0是以当地比较空旷平坦地面上离地面10米高平均最大风速为标准。荷载规范规定,基本风压应按规范附录中给出的50年(n=50)一遇风压采用,但不得小于0.3 KN/㎡,对于高层建筑、高耸结构以及对风荷载比较敏感的其他结构,基本风压应适当

提高,并应由有关的结构设计规范具体规定。

对于特别重要的高层建筑,目前尚无统一明确的定义,一般可根据《建筑结构可靠度设计统一标准》规定的设计使用年限和安全等级确定,设计使用年限为100年的或安全等级为一级的高层建筑可认为是特别重要的高层建筑。

对风荷载是否比较敏感,主要与高层建筑的自振特性有关,如结构的自振频率和振型等。对于前几阶振型频率比较密集和振型比较复杂的高层建筑结构,高振型影响不可忽视,因此应适当提高风压取值。为了便于执行,《高规》说明指出,一般情况下,房屋高度大于60m的高层建筑可取100年一遇的风压值;对于房屋高度不超过60m的高层建筑其风压值是否提高,根据结构的侧向刚度确定,侧向刚度较大的就不用提高。

对房屋相互间距较近的建筑群,由于旋涡的相互干扰,房屋的某些部位的局部风压会显著增大,设计时宜考虑其不利影响。群体效应情况比较复杂,荷载规范未给出具体计算方法,一般可将风荷载体型系数进行放大。

9.高层建筑的阳台栏板如何配筋?

根据荷载规范,垂直于建筑物表面上的风荷载标准值WK=ВZμSμZw0 ,对檐口、雨篷和遮阳板等突出构件,风压体型系数μS=-2。而由于建筑物高度大,μZ也相应很大。经计算WK值较大,如果阳台栏板钢筋仅沿内侧配置,满足不了风荷载的要求,所以这种情况阳台栏板应双侧配筋。

三.地震作用

1.计算地震作用时,建筑的重力荷载代表值如何取值?风荷载参与组合吗?

抗震规范将地震发生时恒载与其它重力荷载可能的组合结果总称为"抗震设计的重力荷载代表值",即永久荷载标准值GK和与重力有关的可变荷载组合值之和。可变荷载的组合值系数为:

(1)雪荷载取0.5;

(2)屋面积灰荷载取0.5;屋面活荷载不计入;

(3)楼面活荷载按实际情况计算取1.0;按等效均布活荷载计算时,藏书库和档案库取0.8,一般民用建筑取0.5,由此可见,计算结构重力荷载代表值时,只有各类结构构件和非结构构件的自重及竖向可变荷载参与组合,水平可变荷载和风荷载不参与组合。但在进行结构构件截面抗震验算时,地震作用效应与其它荷载效应的基本组合时,考虑风荷载的组合。当风荷载控制作用的高层建筑,风荷载组合值系数取为1.2,一般结构仍取0.0。

2.6度区的建筑结构是否进行地震作用计算和截面抗震验算?

抗震规范规定,6度时位于Ⅳ类场地土上的较高的高层建筑(高度大于40m的钢筋混凝土框架,以及高度大于60m的其他钢筋混凝土房屋)需要进行地震作用计算和截面抗震验算。

另外,对于钢筋混凝土房屋的抗震等级,四级以上的结构截面抗震验算涉及到内力调整,而位于6度区的钢筋混凝土房屋其框架和抗震墙的抗震等级有许多为三级和二级,所以也应进行地震作用计算和截面抗震验算。

还有一些不规则的结构,也需要进行地震作用效应的调整,这样看来,6度区的建筑结构,还是应该进行地震作用计算和截面抗震验算的。

3.突出屋面的屋顶间、女儿墙和烟囱等的抗震设计如何规定?

突出屋面的小结构明显存在刚度突变,其抗震设计应注意采取可靠措施。计算地震作用时,当采用底部剪力法时,突出屋面的屋顶间、女儿墙和烟囱等的地震作用效应,宜乘以增大系数3,采用振型分解法时,突出屋面部分可作为一个质点进行计算,同时还要根据计算结果加强构造措施。突出屋面的屋顶间应作为局部易损部件对待,其最大抗震横墙间距和宽度宜按一般楼层的1/3采用。

而对突出屋面的屋顶间定义为突出屋面的屋顶房间面积小于楼层面积的30%时,可按突出屋面的屋顶间计算。

对于广播、通信和电力调度等建筑物,由于其功能要求,常在主体建筑物的顶部再建一个细高的塔楼,塔高通常超过主体建筑物的1/4以上,其层数多,刚度小。塔楼的高振型影响很大。其地震作用比按底部剪力法的计算结果大很多,远远不止3倍,有些工程甚至大8~10倍,因此,一般情况下应采用振型分解法或时程分析法进行分析。求出其水平地震作用。

4.规范规定了楼层最小地震剪力系数,不满足时是否可以仅仅将地震作用按比例放大?

对于刚度较弱,周期较长的结构,地震发生时地面运动的长周期可能对结构的破坏具有更大的影响,但目前抗震规范所采用的振型分解反应谱法无法对此做出估计。现规范要求控制楼层地震作用的最小值,取地震剪力系数作为控制指标。

楼层最小地震剪力系数值

类别7度8度9度

扭转效应明显或基本周期小于3.5S 0.016(0.024)0.032(0.048)0.064 基本周期大于5.0S 0.012(0.018)0024(0.032)0.040 括号内数字用于设计基本地震加速度为0.15g和0.30g的地区

如果结构部分楼层实际计算的地震剪力系数与规范规定的相差较多,说明该结构整体刚度偏小,宜调整结构总体布置,增加结构刚度,如果部分楼层的地震剪力系数小于规定较多,说明结构存在明显的软弱层,对抗震不利,也应对于结构体系进行调整,增强这些软弱层的抗侧刚度,不能简单的采用地震作用增大系数的方法。

对于高层建筑的地下室,当嵌固部位在地下室顶板时,一般不要求单独核算地下室部分的楼层最小地震剪力系数。

四结构设计的基本规定

1.设计基准期和设计使用年限有何区别?

结构的设计基准期是指为确定可变作用及与时间有关的材料性能等取值而选用的时

间参数,它不等同于建筑结构的设计使用年限,也不等同于建筑结构的寿命。一般设计规范所采用的设计基准期为50年,即设计时所考虑荷载和作用的统计参数均是按此基准期确定的。

设计使用年限是指设计规定的结构或结构构件不需进行大修即可达到其预定目的的使用年限,即房屋建筑在正常设计、正常施工、正常使用和一般维护下所应达到的使用年限。当房屋建筑达到设计使用年限后,经过鉴定和维修,可继续使用。因而设计使用年限不同于建筑寿命,同一建筑中不同专业的设计使用年限可以不同,例如:保温、给排水管道、室内外装修和结构等均可有不同的设计使用年限。

在结构施工图总说明中应该写明设计使用年限,而不应写设计基准期。

2.混凝土结构环境类别的判定以及耐火性和受力钢筋保护层厚度是如何确定的?

混凝土规范规定,混凝土结构的耐久性应根据环境类别和设计使用年限进行设计。

(1)钢筋混凝土基础(基础埋深满足冻深要求),一般情况下,在非严寒和非寒冷地区其环境类别属二a类,当设计使用年限为50年时,其混凝土强度等级不应低于C25,其底筋混凝土保护层厚度不应小于40mm,当无垫层时不应小于70mm,在严寒和寒冷地区,其环境类别属二b类,其混凝土强度等级不应低于C30。而长春地区实际就属于寒冷地区,应采用C30,而根据长春地区的实际经验,可采用C25级。

(2)室外露天环境下的构件,如雨篷和遮阳板等,受大气及雨雪的交替作用,在严寒和寒冷地区,其环境类别属二b类,其混凝土强度等级不应低于C30,并相应选取受力钢筋混凝土保护层厚度。

(3)消防水池等构筑物,迎水面直接与无侵蚀性水接触,严寒地区其环境类别是二b,混凝土强度等级不低于C30,根据地下防水规范,迎水面受力钢筋保护层厚度应为50mm。

3.抗震设计时,框架结构的电梯筒墙体应选用什么材料?

有抗震设防的工程,在框架结构中电梯筒墙体宜做填充墙,使体系明确。如一定要做钢筋混凝土墙时,结构计算时要考虑墙体的作用,按框剪结构输入。不应按纯框架计算,施工图再加上混凝土墙的作法,因为地震作用过于集中在筒体周围,使与筒体相连的框架受力增大,而按纯框架考虑偏于不安全。

4.框架结构采用现浇空心板时,框架梁如何布置?

在框架结构中,楼板采用现浇空心板,框架梁应双向设置,保证双向抗侧力体系,不能用空心板中的暗梁代替框架梁,形成只单向有框架梁的体系,这时,应将该体系转化成板柱体系,又要加抗震墙。

5.在现有钢筋混凝土结构房屋上采用钢结构进行加层设计有何要求?

在现有钢筋混凝土结构房屋上加层,若采用钢结构可分为两种情况:

(1)当加层的结构体系为钢结构时,因抗震规范不包括下部为钢筋混凝土,上部为钢结构的有关规定,两种结构的阻尼比不同,上下两部分刚度存在突变,属于超规范和超规程设计,设计时应按国务院《建筑工程勘察设计管理条例》的要求执行,即需由省级以上有关部门组织的建设工程技术专家委员会进行审定。

(2)当仅屋盖部分采用钢结构时,整个结构抗侧力体系的竖向构件仍为钢筋混凝土,则按照抗震规范的有关规定进行抗震设计。此时尚应注意加层带来结构刚度突变等不利影响进行验算,必要时对原结构采取加固措施。

6.在砖混结构总高度和总层数已达到限值的情况下,若在其上再加一层轻钢结构房屋,此种结构形式应如何设计?

在这种情况下,因抗震规范无此种结构形式的有关要求,两种结构的阻尼比不同,上下部刚度存在突变,属于超规范和超规程设计,需要进行专门研究,还应按国务院《建筑工程勘察设计管理条例》的要求执行,即需由省级以上主管部门组织的建设工程技术专家委员会对设计进行审定。

7.房屋建筑改造时,如何执行抗震规范?

现行的抗震设计规范是针对新建工程而做的规定,房屋改造时,首先应进行结构安全性检测鉴定和抗震鉴定,依据鉴定结果进行设计。当新建部分与原有部分建造年代不同,且设置抗震缝分开,可分别执行不同版本的抗震设计规范。当新建部分和原有部分同属一个结构单元时,原有部分是否按现行的抗震设计规范进行复核和处理,可根据已经使用的年限和改造后预期后续使用的年限确定。一般情况下,后续使用年限50年的,按现行抗震设计规范执行,后续设计使用年限少于50年的,设计地震作用可相应做调整,抗震措施可按原版本抗震规范执行。

8.如何判断结构的不规则性?

根据抗震规范规则,把不规则分为平面不规则和竖向不规则,各有三种类型

平面不规则的类型

不规则类型定义

扭转不规则楼层的最大弹性水平位移大于该楼层两端弹性水平位移(或层间位移)平均值的1.2倍

凹凸不规则结构平面凹进的一侧尺寸,大于相应投影方向总尺寸的30%

楼板局部不连续楼板的尺寸和平面刚度急剧变化,例如,有效楼板宽度小于该层楼板典型宽度的50%,或开洞面积大于该楼面面积的30%,或较大的楼层错层

竖向不规则的类型

不规则类型定义

侧向刚度不规则该层的侧向刚度小于相邻上一层的70%,或小于其上相邻三个楼层侧向刚度平均值的80%;除顶层外,局部收进的水平向尺寸大于相邻下一层的25% 竖向抗侧力构件不连续竖向抗侧力构件(柱、抗震墙、抗震支撑)的内力由水平转换构件(梁、桁架等)向下传递

楼层承载力突变抗侧力结构的层间受剪承载力小于相邻上一楼层的80%

结构根据其不规则程度分为不规则、特别不规则和严重不规则。而具体区别如下:

不规则结构:指有一项或两项超过规范要求,且超过程度不大(不超过20%)时,为不规则结构。

特别不规则结构:指的是两项以上超过规定要求,或某项超过规定的指标较多,具有较明显的抗震薄弱部位,将会引起不良后果。

特别不规则结构包括以下几类:

(1)同时具有两种以上复杂类型的高层建筑。(带转换结构、带加强层结构、错层结构、连结构和多塔楼结构)

(2)转换层位置超过5层(7度区)

(3)单塔或多塔位置偏置过大的大底盘高层建筑

(4)厚板转换的高层建筑(7度和8度区)

(5)单跨框架高层建筑

严重不规则结构:指的是体型复杂,多项不规则指标值超过规定上限值,或某一项大大超过规定值,具有严重的抗震薄弱环节,将会导致地震破坏的严重后果者。

抗震设计中,不宜采用不规则结构,如必须采用,应按照抗震规范和高规有关规定执行,特别不规则结构应尽量避免,如必须采用,须报请抗震设防专项审查合格后方可进行设计,严重不规则结构不得采用。

9.如何判定结构是否属于扭转不规则以及不规则的程度?

在刚性楼板假定条件下,当计算小震作用的楼层最大弹性水平位移值(或层间位移)与该楼层两端弹性水平位移(或层间位移)平均值的比值大于1.2时,判断为扭转不规则,当比值接近1.5时,判断为特别不规则;当比值大于1.5时,一般判为严重不规则。此时,

计算的弹性水平位移(或层间位移)为代表值,当位移值小于规范限值的50%时,判断严重扭转不规则的比值可适当放松。

一般情况下,计算高层建筑结构的弹性水平位移(或层间位移)时,需要考虑偶然偏心的影响;偏心大小的取值,可根据具体情况确定,不一定取该方向总长度的5%,还需注意,最大值和平均值的计算,均取楼层中同一轴线两端的竖向构件计算,不考虑楼板中悬挑的端部。

有几种情况需要根据结构的特点区别对待,如:平面为长条形布置的建筑、钢筋混凝土多层框架结构和带有大底盘裙房的塔式高层建筑结构等,由于建筑平面端部的相对位移较大或按建筑长度的5%偏心距取值时,计算的扭转位移比经常不能满足上述要求,此时对位移比的限值要求可适当放松。但是当筒体结构的核心筒较小或开洞过大导致结构整体抗扭刚度偏低,使计算的扭转位移比不满足要求时,则应加强结构抗扭转刚度,而不能放松要求。

10.结构抗震设计时,若计算出的第一振型以扭转为主时应如何处理?

震害表明,平面不规则,质量和刚度偏心的结构,在水平地震作用下,将产生扭转效应,而且不同振型的地震效应会严重耦连,导致严重震害。模拟地震实验也表明,扭转效应会导致结构的严重破坏。结构进行抗震设计时,若计算出的第一振型为扭转为主的振型,或高层结构以扭转为主的第一自振周期Tr与平动为主的第一自振周期Th之比大于0.9(A级高度)或0.85(B级高度和复杂高层结构)时,说明结构的抗侧力构件布置不合理,导致结构楼层的刚心与质心偏移过大,抗侧力构件(一般体现为剪力墙)数量不足;或尽管平面对称,但核心筒断面太小,导致整体抗扭刚度偏小。此时应对结构方案进行调整,减小结构平面布置的不规则性,避免产生过大的偏心,或加强结构的抗扭刚度,必要时可设抗震缝,将不规则的平面划分为若干相对规则的平面。尽可能避免扭转振型成为第一振型。

11.结构抗震设计时,如何判别竖向不规则性?

结构竖向不规则有下列情况:因沿竖向刚度突变存在软弱层,因竖向抗侧力构件不连续存在转换层或因楼层承载力突变存在薄弱层时,地震中也会产生严重破坏。

当高层建筑带有大底盘裙房,计算裙房与其上塔楼的楼层刚度比时,不可取裙房的所有竖向抗侧力构件的刚度总和,可取其有效影响范围内的竖向构件。所谓有效影响可由塔楼与裙房交界处做45度向外斜线,取斜线范围内的竖向构件参与设计。

12.何时需要考虑双向地震作用?

地震观测表明,几乎所有地震作用都是多向性的,尤其是沿水平方向和竖向的振动作用。高规规定了考虑双向地震作用的情况,即质量与刚度分布明显不均匀,不对称的结构。这主要是看结构刚度和质量的分布情况以及结构扭转效应的大小,总体上是一种宏观判断,不同设计人的认识有一些差异,但不应产生质的差别。一般来说,可根据楼层最大位移与平均位移之比值判断,若该值超过扭转位移比下限1.2较多(A级高度高层大与1.4,B级高度高层大于1.3),则认为扭转明显,需考虑双向地震作用下的扭转效应计算。

13.如何分别计算单向地震作用和双向地震作用?

按照高规规定,单向地震作用计算时,应考虑质量偶然偏心的影响,质量与刚度分布明显不均匀,不对称的结构,应考虑双向地震作用计算。因此,质量偶然偏心和双向地震作用的影响不同时考虑。这样规定主要是考虑目前计算方法的近似性以及经济方面的因素。

至于单向地震作用考虑质量偶然偏心和考虑双向地震作用效应谁更不利,会随着具体工程而不同,或同一工程的不同部位而不同,不能一概而论。因此,应该考虑二者的不利情况进行结构设计。

14.单向与双向地震作用扭转效应有何区别?

对水平地震作用而言,只要结构的刚度中心和质量中心不重合,则必定有地震扭转效应。按高规的规定,无论单向还是双向地震作用,均应考虑扭转效应。

单向地震作用是指每次仅考虑一个方向地震输入,其作用和作用效应可采用非耦连或耦连的振型分解反应谱方法计算,前者主要适用于简单规则的结构。单向地震作用的非耦连计算,也应考虑扭转效应,但忽略了平动与扭转振型的耦连作用。单向地震作用的耦连计算,按高规计算包含了平扭耦连效应。

双向地震作用是考虑两个垂直的水平方向同时有地震输入时作用和作用效应计算,先按单向地震作用耦连计算作用效应,再按双向地震作用耦连计算作用效应,取两者的较大值。

15.如何判断分析软件计算结果的合理性?

抗震规范,混凝土规范和高规均明确要求,计算机计算软件的计算结果,应经分析判断,确认其合理和有效后方可作为工程设计的依据。因此,对计算结果的合理性、可靠性进行判断是十分必要的,也是结构设计最主要的任务之一,一般从结构总体和局部构件两个方面考虑。

对结构总体的分析判断包括:

(1)所选用的计算软件是否适用以及使用是否恰当?

(2)结构的振型、周期、位移形态和量值是否在合理的范围内?

(3)结构地震作用沿高度的分布是否合理?

(4)有效质量系数和剪重比的大小是否符合要求?

(5)总体和局部的力学平衡条件是否得到满足?判断力平衡条件时,应针对重力荷载、风荷载作用下的单工况内力进行。

对局部结构的分析判断包括:

(1)截面尺寸是否满足剪应力控制要求,配筋是否超筋?

(2)受力复杂的构件(如转换构件等),其内力或应力分析是否与力学概念,工作经验相一致?

五多高层钢筋混凝土结构

1.框-剪结构中,什么情况下其框架部分的抗震等级应按框架结构确定?

当框-剪结构有足够的抗震墙时,其框架部分是次要抗侧力构件,按框-剪结构中的框架确定框架的抗震等级。而在基本振型地震作用下,框架部分承受的地震倾覆力矩大于结构总地震倾覆力矩的50%时,其框架部分的抗震等级应按框架结构确定,而房屋的最大适用高度可比框架结构适当增加,增加部分不超过20%。这时框架部分不是第二道防线,抗震等级不能比抗震墙降低,但这样做不太经济,框架受力增加多。

2.高度小于60m的框架-核心筒结构可否按框-剪结构确定抗震等级?

框-筒结构是混凝土结构布置相对固定的一种形式,是框-剪结构的一种特例,其核心筒具有很强的空间工作能力,适应于高度比较高的情况,而一般框-剪结构,墙体的布置形式比较灵活。房屋高度适用范围比较宽(可少于60m)。因此,规范把框-剪结构按高度区分了不同的抗震等级,而框-筒结构没有按高度区分。实际上,当房屋高度大与60 m时,除6度区外,这两种结构的抗震等级是相同的。而当高度小于60 m时,若框-筒结构按框-剪结构确定抗震等级的话,应同时满足这两种结构的设计要求。

3 .框架结构的角柱有些特殊要求,是否转角处框架柱均按角柱对待?

考虑角柱承受双向地震作用,扭转效应对内力影响较大且受力复杂等因素,抗震设计中对其抗震措施和抗震构造措施有些专门的要求。抗震规范和高规中的角柱是指位于建筑角部,与柱的正交两个方向各只有一根框架梁与之连接的框架柱。因此,位于建筑平面凸角处的框架柱一般均为角柱,而位于建筑平面凹角处的框架柱,若柱的四边各有一根框架梁与其连接,则不按角柱对待。

4.框架结构中的次梁要不要考虑延性?其构造与框架梁有何区别?

框架梁、柱组成抗侧力结构,有抗震设计时应有足够的延性。框架结构中的次梁是楼板的组成部分;承受竖向荷载并传递给框架梁,有无抗震设计一样可不考虑延性,次梁箍筋按剪力确定,构造按非抗震时梁要求,没有135度弯钩及10倍直径直段的要求;次梁跨中上铁可设架力筋。

5.抗震规范及高规要求设置钢筋混凝土抗震墙底加强部位时,其高度是确定的?

设置抗震墙的底部加强部位,是指在抗震墙底部的一定高度内,适当提高承载力和加强抗震构造措施。弯曲型和弯剪型结构的抗震墙,塑性铰一般出现在墙肢底部,将塑性铰及其以上的一定高度范围作为加强部位,在此范围内采取增加边缘构件箍筋和墙体横向钢筋等加强措施,避免墙肢剪切破坏,改善整个结构的抗震性能。

规范规定了抗震墙底部加强部位的高度范围,有地下室的房屋,在设置抗震墙底部加强部位时,根据地下室顶板是否作为上部结构的嵌固部位,分成以下两种情况:(1)地下室顶板作为上部结构的嵌固部位

抗震墙底部加强部位的高度从首层向上算,按规定取值,同时将加强部位向地下室延伸一层,具有多层地下室的房屋仅向下延伸一层,地下二层以下可不按加强部位对待。

(2)地下室顶板不作为上部结构的嵌固部位

若地下室顶板无法满足嵌固要求时,通常地下一层底板处可满足,此时抗震墙底部加强部位的高度应从该处向上算,取墙肢高度的1/8及地下一层加首层的较大值,且不大于15m 。此时若有多层地下室,不必再向下延伸。

6.剪力墙结构中有较多的柱,此类结构设计需注意什么?

现在高层住宅建筑中因使用功能的需要在外墙或内墙结构布置有较多的柱,但尚未达到框架剪力墙结构的程度,对此类结构在规范中没有规定具体计算方法,如有此类结构可按下列方法处理:

(1)结构整体分析按框架-剪力墙结构,柱子楼层剪力相应进行调整。

(2)结构抗震等级按剪力墙结构确定。

(3)与柱子相关的梁按框架梁计算,按框架梁构造设置;

(4)剪力墙按剪力墙结构的有关规定设计构造。

7.抗震规范对剪力墙结构的抗震墙厚度做了规定,而该类结构的电梯井筒壁及筒内隔墙是否服从此规定?剪力墙结构方案对抗震墙应注意哪些内容?

规范规定一级和二级抗震等级的剪力墙厚度不小于160mm,且不应小于层高的1/20,底部加强部位不宜小于200mm且不宜小于层高的1/25,一般来说,底部的层高较上部大,按此规定,电梯井筒壁厚及井筒内隔墙相对较大,考虑此位置的墙体数量多而长度不大,两端嵌固较好,在满足抗震验算的情况下其墙厚可适当减小。但其作为抗侧力构件,应保证有足够的刚度和延性,也不宜太薄,而当其不作为抗侧力构件时,可按高规要求设置,但也不宜小于160mm。

剪力墙结构墙肢较多较长时,刚度较大,计算的地震作用也较大,为了降低其抗震作用,一般在考虑方案时应做"减法",减少和减短墙肢,但不宜大薄,以保证地震作用下墙板的稳定。

8.剪力墙结构中,连梁超筋时如何处理?

剪力墙结构中连梁超筋是一种常见现象,处理办法如下:

(1)减小连梁截面刚度;

(2)抗震设计中连梁内力进行调幅;

(3)将连梁进行铰接处理或考虑在大震中该连梁不参与工作,将墙肢分开计算;

应注意经过上述调整后的计算结果和结构层间位移应满足规范要求,或相差不应太大。

六.砌体结构和底框架结构

1.砌体结构伸缩缝间距最大可做多长?

根据砌体规范要求,砌体结构中的伸缩缝最大间距为50米,当有实践经验并采取有效措施时,可适当放大。但最大不可超过20%,即最长不超过60米。

2.抗震设计时多层砌体房屋的层数和高度如何控制?

抗震规范规定了多层砌体房屋的层数和总高度,设计中不应突破,出现超层和超高现象,主要是下面几种原因造成:

(1)地下室嵌固不好,作为一层计算;

(2)带阁楼层面积超过标准层的30%,作为一层计算;

(3)错层高度大于600mm算一层;

以上几方面的因素都可通过局部调整满足规范要求。另外,有些住宅均采用错半层的作法,增加了一倍的结构层数,楼板也不连续,抗震设防地区不应采用。

3.多层砌体房屋结构体系如何要求?

多层砌体房屋的结构体系一般分为横墙承重结构体系、纵墙承重结构体系和纵横墙混合承重结构体系。抗震规范要求:

(1)应优先采用横墙承重或纵横墙承重的结构体系;

(2)纵横墙的布置宜采用均匀对称,沿平面内宜对齐,沿竖向应上下对齐贯通,不应单纯理解为必须轴线和轴线完全对齐,实际上墙体作为抗侧力构件承担水平地震作用时,首先通过水平楼屋盖的传递,才逐层到达基础。因此,墙体的对齐贯通还与楼盖的结构型式有关。

现浇楼盖中,两段横向墙体相对错位在500mm左右时,可以认为是连续贯通的;在预制楼盖中,相对错位在300mm左右时,也可以认为是连续贯通的,而这时,为了增强楼盖的局部传递水平荷载的能力,应当在稍有错位的两墙段之间的楼板内增设暗梁。纵向墙体的道数一般较少,通常为三至四道,个别情况也有两道外墙的,但是,纵向墙体一般较长,因此要求每道纵墙都连续贯通有时比较困难。

纵墙的破坏并不完全是整个墙长上的剪切破坏,地震时纵墙的破坏先是从其薄弱部位开始的,即先在纵墙上门窗洞口过梁处开裂,然后在其中的部分墙段中出现对角斜裂缝,继而发生剪切破坏。设计时容许将纵墙均匀地分为若干段墙,分段对齐,应尽量使各纵墙长度大致接近,以避免侧向刚度上的过大差异导致受力不均,各个击破。

4.住宅工程顶层为坡屋面,屋顶是否需设水平楼板?顶层为坡屋顶时层高有无限制?总高度应如何计算?

住宅的坡屋顶如不利用时,檐口标高处不一定设水平楼板。关于屋顶为坡屋顶时层高的计算,规范未做具体规定,由设计人员根据具体情况而定,但该层的计算高度不应超过3.6m.。

檐口标高处不设水平楼板时,按2001规范7.1.2条的规定,总高度可以算至檐口(此

处檐口指结构外墙体和屋面结构板交界处的屋面结构板顶)。

当檐口标高附近有水平楼板,且坡屋顶不是轻型装饰屋顶时,上面三角形部分为阁楼。计算时此阁楼应作为一个质点考虑,高度可取至山尖墙的一半处,即对带阁楼的坡屋面应算至山尖墙的二分之一高度处。

但阁楼的设置比较复杂,需要区别对待:

有的阁楼层高不高,不住人,不设置固定楼梯,只是作为屋架内的一个空间,在房屋高度和层数控制时,此阁楼可不作为一层考虑。

有的阁楼层空间较高,设计作为居室的一部分,这样的阁楼当然应作为一层考虑,高度算至山尖墙的一半。

有的阁楼在顶层屋面上,只占一部分面积,即只有部分阁楼作为居住或活动场所。此时阁楼层是否应作为一层考虑,应具体分析。如考虑阁楼层占总的顶层面积的百分比,阁楼层的结构形式,阁楼层高度等,根据具体情况区别对待。

5.多层砌体房屋存在错层时,结构抗震设计时应注意哪些问题?

具有错层的结构,在错层部位受力十分复杂。错层的混凝土结构的振动台实验表明:平面规则的错层结构,竖向刚度不规则,对抗震不利;平面布置不规则、扭转效应显著的错层结构,则破坏十分严重。错层的砌体结构的抗震性能比混凝土结构更差,设计时应注意避免。

当平面规则的多层砌体房屋错层高度超过梁高(一般指楼板高差杂500mm以上)时,不仅结构计算应按两个楼层对待,房屋总层数相应增加后不得超过规范对总层数的限制,而且错层楼板之间的砌体墙体应采取特殊措施解决平面内局部受剪和平面外受弯问题。

当错层高度不超过梁高时,该部位的圈梁或大梁应考虑两侧上下楼板水平地震力形成的扭矩,采取抗扭措施,必要时进行抗扭验算,楼板的水平地震力,可按规范第13章关于非结构构件地震作用的等效侧力法计算。

6.带阁楼的多层砌体房屋的构造柱如何设置?

结构计算时,不论是否住人,阁楼层均应作为一个质点考虑。带阁楼的多层砌体房屋设置构造柱时,呆板阁楼层的屋面剖面形式确定:当剖面形式为三角形,即檐口处无砖墙时,可按房屋实际层数按2001规范表7.3.1的要求设置构造柱并适当加强;剖面形式为屋行,即檐口处有砖墙时,按房屋实际层数增加一层后的层数对待。

特别应注意不论是三角形或屋形,坡屋顶山尖墙部位均需沿山尖墙顶设置卧梁、屋盖处设置圈梁和在山脊处设置构造柱。

7.2001规范中7.1.8条第1款要求底部框架-抗震墙房屋的结构布置,上部砌体抗震墙与底部框架或抗震墙对齐或基本对齐,在定量上如何把握?

底框房屋由于结构沿竖向刚度突变,是一种不利于抗震的结构类型,历次地震中均产生比较严重的破坏。为提高其抗震性能。2001规范7.1.8条第1款要求,上部砌体抗震墙

与底部的框架梁或抗震墙的轴线对齐或基本对齐,即大部分砌体抗震墙右下部的框架主梁或钢筋混凝土抗震墙支承,每单元砌体抗震墙最多有两道可以不落在框架主梁或钢筋混凝土抗震墙上,而由次梁支承(二次转换)。

次梁转换的设计应注意下列要求:

(1)托墙的次梁自身应符合托墙梁的构造要求,其计算模型为两端弹性支承,不同于主梁,可否考虑及如何考虑上部墙体与托梁的共同工作,目前规范还没有规定,设计人员应自行解决;

(2)托梁的次梁应按3.4.3条考虑地震作用的计算和内力调整;

(3)次梁的重力和弯矩应作为主梁的集中力和集中扭矩,并应传递到主梁两端的竖向支承构件,形成加的地震作用效应;这个传递过程要按照抗震规范强制性条文3.5.2条的要求,有明确的传力途径;

(4)主梁如何计算集中的地震扭矩作用下的受扭承载力,目前混凝土规范等还没有规定,也需要设计人员自行解决;

(5)主梁两端的竖向支承构件,应考虑主梁平面外的加内力,构造上也应相应加强。

建议在上部结构减少无法上下对齐的抗震墙数量,改为由次梁支承的非抗震隔墙。

概念结构设计和逻辑结构设计

概念结构设计和逻辑结构设计 一.系统概述 本系统通过调查从事医药产品的零售,批发等工作的企业,根据其具体情况设计医药销售管理系统。医药管理系统的设计和制作需要建立在调查的数据基础上,系统完成后预期希望实现药品基本信息的处理,辅助个部门工作人员工作并记录一些信息,一便于药品的销售和管理。通过此系统的功能,从事药品零售和批发等部门可以实现一些功能,如:基础信息管理,进货管理,库房管理,销售管理,财务统计,系统维护等。 二.概念结构设计 1.员工属性 2.药品属性 3.客户属性 4.供应商属性 5.医药销售管理系统E--R 图 三.逻辑结构设计 该设计概念以概念结构设计中的E--R 图为主要依据,设计出相关的整体逻辑结构,具体关系模型如下:(加下划线的表示为主码) 药品信息(药品编号,药品名称,药品类别,规格,售价,进价,有效期,生产日期,产地,备注) 供应商信息(供应商编号,供应商名称,负责人,) 员工 姓名 家庭地址 E-maill 电话 员工 编号 年龄 帐号

四.系统各功能模块如何现(数据流实图);1.基本信息管理子系统 基本信息管理子系统 药品信息员工信息客户信息供应商信息2.库存管理子系统 库存管理子系 统 库存查询库存信息出入库登记库存报表3.销售管理子系统 销售管理 销售登记销售退货销售查询 4.信息预警子系统 信息预警 报废预警库存预警 5.财务统计子系统 财务统计 统计销售额打印报表 6.系统管理子系统

系统管理 权限管理修改密码系统帮助 五.数据库设计(E-R图,数据库表结构) 1.药品基本信息表 列名字段数据类型可否为空说明药品编号 药品名称 药品类别 规格 进价 有效期 生产日期 售价 产地 备注 2.员工基本信息表 列名字段数据类型可否为空说明员工编号 性别 身份证号 员工年龄

高层建筑结构设计试题及复习资料

高层建筑结构设计 名词解释 1. 高层建筑:10层及10层以上或房屋高度大于28m 的建筑物。 2. 房屋高度:自室外地面至房屋主要屋面的高度。 3. 框架结构:由梁和柱为主要构件组成的承受竖向和水平作用的结构。 4. 剪力墙结构:由剪力墙组成的承受竖向和水平作用的结构。 5. 框架—剪力墙结构:由框架和剪力墙共同承受竖向和水平作用的结构。 6. 转换结构构件:完成上部楼层到下部楼层的结构型式转变或上部楼层到下部楼层结构布置改变而 设置的结构构件,包括转换梁、转换桁架、转换板等。 7. 结构转换层:不同功能的楼层需要不同的空间划分,因而上下层之间就需要结构形式和结构布置 轴线的改变,这就需要在上下层之间设置一种结构楼层,以完成结构布置密集、墙柱较多的上层向结构布置较稀疏、墙术较少的下层转换,这种结构层就称为结构转换层。(或说转换结构构件所在的楼层) 8. 剪重比:楼层地震剪力系数,即某层地震剪力与该层以上各层重力荷载代表值之和的比值。 9. 刚重比:结构的刚度和重力荷载之比。是影响重力?-P 效应的主要参数。 10. 抗推刚度(D ):是使柱子产生单位水平位移所施加的水平力。 11. 结构刚度中心:各抗侧力结构刚度的中心。 12. 主轴:抗侧力结构在平面内为斜向布置时,设层间剪力通过刚度中心作用于某个方向,若结构产 生的层间位移与层间剪力作用的方向一致,则这个方向称为主轴方向。 13. 剪切变形:下部层间变形(侧移)大,上部层间变形小,是由梁柱弯曲变形产生的。框架结构的 变形特征是呈剪切型的。 14. 剪力滞后:在水平力作用下,框筒结构中除腹板框架抵抗倾复力矩外,翼缘框架主要是通过承受 轴力抵抗倾复力矩,同时梁柱都有在翼缘框架平面内的弯矩和剪力。由于翼缘框架中横梁的弯曲和剪切变形,使翼缘框架中各柱轴力向中心逐渐递减,这种现象称为剪力滞后。 15. 延性结构:在中等地震作用下,允许结构某些部位进入屈服状态,形成塑性铰,这时结构进入弹 塑性状态。在这个阶段结构刚度降低,地震惯性力不会很大,但结构变形加大,结构是通过塑性变形来耗散地震能量的。具有上述性能的结构,称为延性结构。 16. 弯矩二次分配法:就是将各节点的不平衡弯矩,同时作分配和传递,第一次按梁柱线刚度分配固 端弯矩,将分配弯矩传递一次(传递系数C=1/2),再作一次分配即结束。 第一章 概论 (一)填空题 1、我国《高层建筑混凝土结构技术规程》(JGJ3—2002)规定:把10层及10层以上或房屋高度大于28m 的建筑物称为高层建筑,此处房屋高度是指室外地面到房屋主要屋面的高度。 2.高层建筑设计时应该遵循的原则是安全适用,技术先进,经济合理,方便施工。 3.复杂高层结构包括带转换层的高层结构,带加强层的高层结构,错层结构,多塔楼结构。

结构概念设计三

结构概念设计(三) 3.抗震结构体系的优化配置 (1)多道抗震防线 一次巨大的地震产生的地面运动,能造成建筑物破坏的强震持续时间少则几秒,多则几十秒,有时甚至更长(汶川地震强震持续时间80秒以上),一个接一个强脉 冲对房屋往复式冲击,造成积累式的破坏。如果建筑物采用仅有一道防线的结构体 系,一旦该防线破坏后,在后续地面运动的作用下,就会倒塌;特别是当建筑物自 振周期与地震动卓越周期相近时,建筑物会发生类共振,更加速倒塌过程。如果采 用多重抗侧力体系,第一道防线破坏后,第二道、第三道防线抗侧力立即发挥作用, 接替挡抗住后续的冲击,避免倒塌。在遇到建筑的基本周期与地震动卓越周期相近 时,多道防线就显出良好性能,当第一道防线因共振破坏后,第二道防线接替工作, 自振周期大幅变化错开了地震动卓越周期,避开出现持续的类共振,从而减轻地震 的破坏作用,因此设置合理的多道防线是提高抗震能力、减轻破坏的必要手段。 例如,在框架-剪力墙结构中,延性的抗震墙是第一道防线,令其承担全部地震力,延性框架是第二道防线,要其承担墙体开裂后转移到框架的部分地震剪力。 对于单层厂房,柱间支撑是第一道防线,承担了厂房纵向的大部分地震力,未设支撑的开间柱则承担因支撑损坏而转移的地震力。 (2)足够的侧向刚度 但“刚一些好”还是“柔一些好”应结合结构的具体高度、体系和场地条件进行综合判断。 根据结构反应谱分析理论,结构越柔周期越长,结构在地震作用下的加速度反应越小,即地震影响系数越小,结构所受到的地震作用就越小。但是,是否就可以 设计得柔一些减小结构的地震作用呢? 国内外地震表明一般性高层建筑还是刚比柔好。采用刚性结构方案的高层建筑不仅主体结构破坏轻,而且由于地震对结构变形小,隔墙、围护墙等非结构构件受 到保护,破坏也轻。 正是基于上述原因,目前世界各国的抗震规范对结构的抗侧刚度提出明确要求。 我国《抗规》规定了各类结构多遇地震和罕遇地震下的变形限值要求(见《抗规》 表5.5.1及表5.5.5)。 此外,结构振动和变形的大小不仅与结构刚度有关,还与场地土有关。当结构自振周期与场地土的卓越周期接近时,建筑物地震反应会加大,变形和地震力都会 加大。因此,还应根据场地条件来设计结构,硬土地基上的结构可柔一些,软土地 基上的结构可刚一些,通过改变结构刚度调整结构自振周期,使其偏离场地的卓越 周期。较理想的结构是自振周期比场地卓越周期更长,如果不可能,则应使其比卓 越周期短得较多,因为在结 构出现少量裂缝后,周期会 加长,要考虑结构进入弹塑 性状态时结构自振周期加长 后与场地卓越周期的关系, 如果有可能发生类共振,则 应采取有效的措施,因此在 进行较高的高层建筑设计前, 应取得场地土动力特性的勘

混凝土结构设计原理试题与答案

一、概念选择题(均为单选题,答案请填写在答题卡上,每小题1分,总共40分) 1.如果混凝土的强度等级为C50,则以下说法正确的是:()A.抗压强度设计值f c=50MP a;B.抗压强度标准值f ck=50MP a; C.立方体抗压强度标准值f cu,k=50MP a;D.抗拉强度标准值f tk=50MP a。2.混凝土强度等级是根据150mm×150 mm×150 mm的立方体抗压试验,按:( ) A.平均值μf cu确定;B.μf cu-1.645σ确定;C.μf cu-2σ确定;D.μf cu-σ确定。3.减少混凝土徐变可采用的措施有:()A.增加水泥用量; B 蒸汽养护混凝土; C 提早混凝土的加荷龄期; D 增加水用量。4.以下关于混凝土收缩,正确的说法是:()(1)收缩随时间而增长(2)水泥用量愈小,水灰比愈大,收缩愈大 (3)骨料弹性模量大级配好,收缩愈小(4)环境湿度愈小,收缩也愈小 (5)混凝土收缩会导致应力重分布 A.(1)、(3)、(5);B.(1)、(4);C.(1)~(5);D.(1)、(5)。 5. 高碳钢筋采用条件屈服强度,以σ0.2表示,即:() A.取极限强度的20 %;B.取应变为0.002 时的应力; C.取应变为0.2 时的应力;D.取残余应变为0.002 时的应力。 6.检验软钢性能的指标有:()(1)屈服强度(2)抗拉强度(3)伸长率(4)冷弯性能 A.(1)~(4);B.(1)~(3);C.(2)~(3);D.(2)~(4)。7.对于热轧钢筋(如HRB335),其强度标准值取值的依据是:()A.弹性极限强度;B.屈服极限强度;C.极限抗拉强度;D.断裂强度。8.钢筋与混凝土这两种性质不同的材料能有效共同工作的主要原因是:()A.混凝土能够承受压力,钢筋能够承受拉力; B.两者温度线膨系数接近; C.混凝土对钢筋的保护; D.混凝土硬化后,钢筋与混凝土之间产生了良好的粘结力,且两者温度线膨系数接近 9.关于设计值和标准值,以下说法正确的是:()A.材料强度设计值大于其标准值,荷载设计值小于其标准值; B.材料强度设计值小于其标准值,荷载设计值大于其标准值; C.材料强度设计值等于其标准值,荷载设计值等于其标准值;

结构设计入门——概念设计

结构设计入门——概念设计 在不断的结构设计研究与实践中,人们积累了大量有益的经验,并体现在设计规范、设计手册、标准图集等等。随着计算机技术和计算方法的发展,计算机及其结构程序在结构工程中得到大量地应用,每个设计单位都在为彻底甩掉图板而做努力。结果给部分结构工程师造成一种错觉,觉得结构设计很简单,只需遵循规范、手册、图集,等待建筑师给一个空间形成的方案,使用计算机,然后设法去完成它,自己只不过是一个东拼西凑的计算机画图匠而已。这不仅不能有效地运用他们的知识、精力和时间,而且还会与建筑师的交流中产生分歧与矛盾。 我国结构计算理论经历了经验估算,容许应力法,破损阶段计算,极限状态计算,到目前普遍采用的概率极限状态理论等阶段。现行的《建筑结构设计统一标准》(GBJ68-84)则采用以概率理论为基础的结构极限状态设计准则,以使建筑结构的设计得以符合技术先进、经济合理、安全适用。概率极限状态设计法更科学、更合理。但该法在运算过程中还带有一定程度的近似,只能视作近似概率法。并且光凭极限状态设计也很难估计建筑物的真正承载力的。事实上,建筑物是一个空间结构,各种构件以相当复杂的方式共同工作,且都并非是脱离总的结构体系的单独构件。目前,人们在具

体的空间结构体系整体研究上还有一定的局限性,在设计过程中采用了许多假定与简化。作为结构工程师不应盲目的照搬照抄规范,应该把它作为一种指南、参考,并在实际设计项目中作出正确的选择。这就要求结构工程师对整体结构体系与各基本分体系之间的力学关系有透彻的认识,把概念设计应用到实际工作中去。 所谓的概念设计一般指不经数值计算,尤其在一些难以作出精确理性分析或在规范中难以规定的问题中,依据整体结构体系与分体系之间的力学关系、结构破坏机理、震害、试验现象和工程经验所获得的基本设计原则和设计思想,从整体的角度来确定建筑结构的总体布置和抗震细部措施的宏观控制。运用概念性近似估算方法,可以在建筑设计的方案阶段迅速、有效地对结构体系进行构思、比较与选择,易于手算。所得方案往往概念清晰、定性正确,避免后期设计阶段一些不必要的繁琐运算,具有较好的的经济可靠性能。同时,也是判断计算机内力分析输出数据可靠与否的主要依据。 比如,有的设计人员用多、高层结构三维空间分析程序来计算底层框架,还人为的布置一些抗震墙,即不能满足楼层间的合理刚度比,也不能正确地反映底层框架在地震时受力状态。问题在于结构概念不明确,没考虑这两种结构体系的差异。软件的选择和使用不当,造成危害是不容忽视的。

结构设计师试题

1、结构设计师材料选用的主要依据是什么? 答:在设计和制造工程结构和机构零件时,考虑材料的使用性能、材料的工艺性能和经济性。 (1) 根据材料的使用性能选材:使用性能是零件工作过程中所应具备的性能(包括力学性能、物理性能、化学性能),它是选材最主要的依据。在选材时,首先必须准确地判断零件所要求的使用性能,然后再确定所选材料的主要性能指标及具体数值并进行选材。具体方法如下: a. 分析零件的工作条件,确定使用性能 b. 进行失效分析,确定零件的主要使用性能 c. 根据零件使用性能要求提出对材料性能(力学性能、物理性能、化学性能)的要求。通过分析、计算转化成某此可测量的实验室性能指标和具体数值,按这些性能指标数据查找手册中各类材料的性能数据和大致应用范围进行选材。 (2)根据材料的工艺性能选材:工艺性能表示材料加工的难易程序。所以材料应具有良好的工艺性能,即工艺简单,加工成形容易,能源消耗少,材料利用率高,产品质量好。主要应考虑以下工艺性: a. 金属铸造性能 b. 金属压力加工性能 c. 金属机械加工性能 d. 金属焊接性能 e. 金属热处理工艺性能 (3)根据材料的经济性选材:选材必须考虑经济性,使生产零件的总成本降低。零件的总成本包括制造成本(材料价格、零件自重、零件的加工费、试验研究费)和附加成本(零件寿命,即更换零件和停机损失费及维修费等)。 2.什么是陶瓷材料?陶瓷材料有哪此特点? 答:陶瓷是无机非金属材料,是用粉状氧化物,碳化物等,通过成型和高温烧结而制成。陶瓷材料是多相多晶材料,结构中同进存在着晶体相、玻璃相和气相,各组成相的结构、数量、形态、大小和颁均对陶瓷性能有显著影响。陶瓷材料具有高硬度(>1500HV)、耐高温(溶点>2000℃)、抗氧化(在1000℃高温下不氧化)、耐腐蚀(对酸、碱、盐有良好的耐蚀性)以主其他优良的物理、化学性能(优于金属的高温强度和高温蠕变能力,热膨胀系数小。热导率低,电阻率高,是良好的绝缘体,化学稳定性高等)。陶瓷材料是脆性材料,故其抗冲击韧度和断裂韧度都很低。陶瓷材料的抗压强度比其抗拉强度大得多(约为抗拉强度的10~40倍),大多数工序陶瓷材料的弹性模量都比金属高。由于工程陶瓷材料硬度高,常采用洛式硬度HRA、HT45N、小负荷维氏硬度或洛氏硬度表示。

(建筑工程管理)建筑结构设计应具备的概念

(建筑工程管理)建筑结构设计应具备的概念

1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,在剪力墙的轴压比计算中,轴力取重力荷载代表设计值,和柱子的不壹样。 2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,见抗规5.2.5。 3、侧向刚度比:主要为控制结构竖向规则性。 4、位移比:主要为控制结构平面规则性,以免形成扭转,对结构产生不利影响。控制比例为1.5。见抗规3.4.2、3.4.3。 5、周期比:主要为控制结构扭转效应,减小扭转对结构产生的不利影响,要求见高规4.3.5。 6、刚重比:主要为控制结构的稳定性,以免结构产生滑移和倾覆,要求见高规。 7、剪跨比:梁的剪跨比,剪力的位置a和h0的比值。剪跨比影响了剪应力和正应力之间的相对关系,因此也决定了主应力的大小和方向,也影响着梁的斜截面受剪承载力和破坏的方式;同时也反映在受剪承载力的公式上。柱的剪跨比,若反弯点在柱子层高范围内,可取柱子的剪跨比小于2时,需要全长加密,见混凝土规范11.4.12、11.4.17。 8、剪压比(梁柱截面上的名义剪应力V/bh0和混凝土轴心抗压强度设计值的比值):梁塑性铰区的截面剪压比对梁的延性、耗能能力及保持梁的强度、刚度有明显的影响,当剪压比大于0.15的时候,梁的强度和刚度有明显的退化现象,此时再增加箍筋用量,也不能发挥作用,因此对梁柱的截面尺寸有所要求。 9、轴压比:轴压比是指有地震作用组合的柱组合轴压力设计值和柱的全截面面积和砼轴心受压抗压强度设计值乘积的比值,是影响柱子破坏形态和延性的主要因素之壹。轴压比限值的依据是理论分析和试验研究且参照国外的类似条件确定的,其基准值是对称配筋柱大小偏心受压状态的轴压比分界值。 10、跨高比:梁的跨高比(梁的净跨和梁截面高度的比值)对梁的抗震性能有明显的影响。梁(非剪力墙的连梁)的跨高比小于5和深梁都按照深受弯构件进行计算的。 11、延性比:延性比即为弹塑性位移增大系数。延性是指材料、构件、结构在初始强度没有明显退化的情况下的非弹性变形能力。延性比主要分为三个层面,即截面的延性比、构件的延性比和结构的延性比。结构的延性比多指框架或者剪力墙等结构的水平荷载-顶层水平位移(P-delta)、水平荷载-层间位移等曲线。结构的屈服位移有等能量方法、几何做图法等 12、薄弱层:该楼层的层间受剪承载力小于相邻上壹楼层的80%;薄弱层主要是针对大震而言的;屈强系数小于0.5的结构层、在大震下楼层塑性变形大于规范要求的大震下的允许值的结构层。 所谓的薄弱层,是指在强烈地地震作用下,结构首先发生屈服且产生较大弹塑性变形的部位。是指该楼层的层间受剪承载力小于向邻上壹楼层的80%,能够认为,是从结构强度的角度来判断。高规中说明竖向不规则结构形成薄弱部位,而薄弱部位有三种情况,壹是刚度不连续形成的柔软层,壹是强度不连续形成的薄弱层,仍有壹种就是有水平转换体系的竖向构件不连续的结构.因此2楼和5楼说的都是柔软层.但实际我见很多地方所说的薄弱层就是指薄弱部位的意思,且没区分的很仔细 位置在下列情况确定: 1)楼层屈服强度系数沿房屋高度分布均匀的结构,可取底层; 2)楼层屈服强度系数沿房屋高度分布不均匀的结构,可取该系数最小的楼层(部位)和相对较小的楼层,壹般不超过2-3处; 3)单层厂房,可取上层; 薄弱层指强度,软弱层指刚度。壹个是刚度比,另壹个是承载力比,二者不满足规范要求均是薄弱层。请见见高规条文说明 4.4.2“正常设计的高层建筑下部楼层刚度宜大于上部楼层的侧向刚度,否则变形会集中于刚度小的下部楼层而形成结构薄弱层”由此可推断出只要是刚度小于上层的楼层都应当算作薄弱层。按照高规5.1.14“对于竖向不规则的高层建筑结构,小于

7.3 概念结构设计(S)

7.3 概念结构设计 将需求分析得到的用户需求抽象为信息结构即概念模型的过程就是概念结构设计。它是整个数据库设计的关键。(概念结构是对用户需求的客观反映,不涉及到软硬件环境,也不能直接在数据库管理系统DBMS上实现,是现实世界与机器世界的中介。这一阶段所产生的工作结果一般表现为E-R图的形式,它不仅能够充分反映客观世界,而且易于非计算机人员理解,易于向关系、网状、层次等各种数据模型转换。) 7.3.1 概念结构 在需求分析阶段所得到的应用需求应该首先抽象为信息世界的结构,才能更好地、更准确地用某一DBMS实现这些需求。 概念结构的主要特点是: (1) 能真实、充分地反映现实世界,包括事物和事物之间的联系,能满足用户对数据的处理要求。是对现实世界的一个真实模型。 (2) 易于理解,从而可以用它和不熟悉计算机的用户交换意见,用户的积极参与是数据库的设计成功的关键。 (3) 易于更改,当应用环境和应用要求改变时,容易对概念模型修改和扩充。 (4) 易于向关系、网状、层次等各种数据模型转换。 概念结构是各种数据模型的共同基础,它比数据模型更独立于机器、更抽象,从而更加稳定。 描述概念模型的有力工具是E-R模型。有关E-R模型的基本概念已在第一章介绍。下面将用E-R模型来描述概念结构。 7.3.2 概念结构设计的方法与步骤 设计概念结构通常有四类方法: ·自顶向下。即首先定义全局概念结构的框架,然后逐步细化,如图7.7(a)所示。 ·自底向上。即首先定义各局部应用的概念结构,然后将它们集成起来,得到全局概念结构,如图7.7(b)所示。 ·逐步扩张。首先定义最重要的核心概念结构,然后向外扩充,以滚雪球的方式逐步生成其他概念结构,直至总体概念结构,如图7.7(c)所示。 ·混合策略。即将自顶向下和自底向上相结合,用自顶向下策略设计一个全局概念结构的框架,以它为骨架集成由自底向上策略中设计的各局部概念结构。 其中最经常采用的策略是自底向上方法。即自顶向下地进行需求分析,然后再自底向上地设计概念结构。如图7.8所示。这里只介绍自底向上设计概念结构的方法。它通常分为两步:第1步是抽象数据并设计局部视图,第2步是集成局部视图,得到全局的概念结构,如图7.9所示。

建筑结构设计试题及答案

建筑结构设计 一、选择题(每小题1分,共20分) 1、单层厂房下柱柱间支撑设置在伸缩缝区段的( )。 A 、两端,与上柱柱间支撑相对应的柱间 B 、中间,与屋盖横向支撑对应的柱间 C 、两端,与屋盖支撑横向水平支撑对应的柱间 D 、中间,与上柱柱间支撑相对应的柱间 2、在一般单阶柱的厂房中,柱的( )截面为内力组合的控制截面。 A 、上柱底部、下柱的底部与顶部 B 、上柱顶部、下柱的顶部与底部 C 、上柱顶部与底部、下柱的底部 D 、上柱顶部与底部、下柱顶部与底部 3、单层厂房柱牛腿的弯压破坏多发生在( )情况下。 A 、0.751.0 C 无论何时 q γ=1.4 D 作用在挡土墙上q γ=1.4 12、与b ξξ≤意义相同的表达式为()

建筑概念设计和结构概念设计

建筑概念设计和结构概念设计 摘要:从城市建设和管理的角度看,建筑物向高空延伸,可以缩小城市的平面规模,为人们提供更多的生活工作空间,缩短城市道路和各种公共管线长度,从而节省城市建设与管理的投资,高层建筑设计成为城市建筑的发展趋势,随着经济和社会的发展,新的建筑形式层出不穷,给设计师提出了更高的要求。关键词:高层建筑结构设计浅析在高层设计中,建筑和结构是关系最密切的专业。建筑师往往根据建筑的使用功能和美学要求处理建筑体型,包括平面和立面;而结构师则根据受力的合理性进行结构设计,其中结构形式和结构体系的选择,结构总体布置等对结构的受力性能优劣性起决定性作用。结构的总体布置与结构体型密切相关,简单的体型易于得到规则和受力合理的结构总体布置,可使结构具有良好的抗震性能;反之,过于复杂的建筑平面和立面体型,将增加结构设计的困难,造成结构布置的不规则性。因此优秀的设计是建筑和结构的完美结合,需建筑师和结构师密切合作。在方案设计阶段,就应根据建筑物的高度、抗震设防烈度等具体条件合理选用结构形式和结构体系。 1 结构设计的任务 结构设计应根据建筑物的重要性等级、建筑使用功能或

生产需要所确定的荷载、抗震要求、设防标准等,对结构基本构件和整体进行设计,以保证基本构件的强度、变形、裂缝满足设计要求,同时保证结构体系的整体安全性、稳定性、变形性能,保证在突发事件发生时,结构保持一定的整体性,使人们的生命安全得以保证;保证合理用材,方便施工,同时尽可能降低建筑造价。总之,结构设计的核心是解决两个问题:一是满足建筑结构功能要求;二是经济问题。 2 概念设计 概念设计是根据理论与实验研究结果及工程经验等形成的基本设计原则和设计思想,进行结构的总体布置,并正确确定细部构造的过程,需要遵循相应规范条文进行合理的平面设计、竖向设计、基础设计等。 概念设计包括两个方面。建筑概念设计是对满足建筑使用功能、造型优美、技术先进的总建筑方案的确定;结构概念设计是在特定的建筑空间中用整体的概念来完成结构总体方案的设计。结构概念设计旨在有意识地处理构件与结构、结构与结构的关系,满足结构的功能要求和建筑功能的需要,以及技术经济可能的设计原则,确定最优的结构体系,选择适用的建筑材料和合理的关键部位构造、结合适宜的施工及合理的效益达到房屋设计的统一。 3 高层建筑抗震概念设计若干原则 建筑抗震性能是概念设计的决定因素,概念设计应遵循

结构设计中的概念设计与结构措施一

1.概念设计的重要性 概念设计是展现先进设计思想的关键,一个结构工程师的主要任务就是在特定的建筑空间中用整体的概念来完成结构总体方案的设计,并能有意识地处理构件与结构、结构与结构的关系。一般认为,概念设计做得好的结构工程师,随着他的不懈追求,其结构概念将随他的年龄与实践的增长而越来越丰富,设计成果也越来越创新、完善。遗憾的是,随着社会分工的细化,大部分结构工程师只会依赖规范、设计手册、计算机程序做习惯性传统设计,缺乏创新,更不愿(不敢)创新,有的甚至拒绝对新技术、新工艺的采纳(害怕承担创新的责任)。大部分工程师在一体化计算机结构程序设计全面应用的今天,对计算机结果明显不合理、甚至错误而不能及时发现。随着年龄的增长,导致他们在大学学的那些孤立的概念都被逐渐忘却,更谈不上设计成果的不断创新。 强调概念设计的重要,主要还因为现行的结构设计理论与计算理论存在许多缺陷或不可计算性,比如对混凝土结构设计,内力计算是基于弹性理论的计算方法,而截面设计却是基于塑性理论的极限状态设计方法,这一矛盾使计算结果与结构的实际受力状态差之甚远,为了弥补这类计算理论的缺陷,或者实现对实际存在的大量无法计算的结构构件的设计,都需要优秀的概念设计与结构措施来满足结构设计的目的。同时计算机结果的高精度特点,往往给结构设计人员带来对结构工作性能的误解,结构工程师只有加强结构概念的培养,才能比较客观、真实地理解结构的工作性能。 概念设计之所以重要,还在于在方案设计阶段,初步设计过程是不能借助于计算机来实现的。这就需要结构工程师综合运用其掌握的结构概念,选择效果最好、造价最低的结构方案,为此,需要工程师不断地丰富自己的结构概念,深入、深刻了解各类结构的性能,并能有意识地、灵活地运用它们。 2.协同工作与结构体系 协同工作的概念广泛存在于工业产品的设计和制造中,对于任一个工业产品,我们均不希望其在远未达到其设计寿命(负荷、功能)时,它的某些部件(或零件)即出现破坏。对于建筑结构,协同工作的概念即是要求结构内部的各个构件相互配合,共同工作。这不仅要求结构构件在承载能力极限状态能共同受力,协同工作,同时达到极限状态,还要求他们能有共同的耐久寿命。结构的协同工作表现在基础与上部结构的关系上,必须视基础与上部结构为一个有机的整体,不能把两者割裂开来处理。举例而言,对砖混结构,必须依靠圈梁和构造柱将上部结构与基础连接成一个整体,而不能单纯依靠基础自身的刚度来抵御不均匀沉降,所有圈梁和构造柱的设置,都必须围绕这个中心。 对协同工作的理解,还在于当结构受力时,结构中的各个构件能同时达到较高的应力水平。在多高层结构设计时,应尽可能避免短柱,其主要的目的是使同层各柱在相同的水平位移时,能同时达到最大承载能力,但随着建筑物的高度与层数的加大,巨大的竖向和水平荷载使底层柱截面越来越大,从而造成高层建筑的底部数层出现大量短柱,为了避免这种现象的出现,对于大截面柱,可以通过对柱截面开竖槽,使矩形柱成为田形柱,从而增大长细比,避免短柱的出现,这样就能使同层的抗侧力结构在相近的水平位移下,达到最大的水平承载力;而对于梁的跨高比的限制,一般还没有充分认识到。实际上与长短柱混杂的效果一样,长、短梁在同一榀框架中并存,也是极为不利的,短跨梁在水平力的作用下,剪力很

浅谈对结构概念设计的认识

浅谈对结构概念设计优化的认识 产品中心 设计一部杨英瑜 0 前言 建业网校登载的“结构成本控制的管理思路和技术方法”,仔细阅读,觉得对成本控制,确实很有帮助,但文章只给出思路及若干值得关注的工程结构问题,然而没有答案;对这些问题,如果进行结构优化设计,是可以较为完满解决的,但房地产行业的实际情况,往往是立项后,建筑方案一确定,希望施工图立等可取,这样,要想进行优化设计,设计周期及工期,都有困难,因为商机不等人,故想从结构概念设计优化的角度,先从一些影响较大的局部问题,进行概念设计优化分析,对控制结构成本,比孤立地对单个问题的分析[1],也许会更有好处;本文将结合以往的工程实践,对某些项目的基础工程案例,进行分析,以求对开发新项目时,能起点借鉴作用。 一、结构设计优化的前景 2006年6月份,我国召开“首届全国建筑结构技术交流会”,工程院江 欢成院士在他的报告中指出[2] : “我国优化设计工作方兴未艾,大有可为。…它符合可持续发展和科教兴国伟大战略,是科学发展观在建筑行业中的落实”。然而在比较讲究经济效益的房地产行业,并没有得到广泛推广,可能有技术层面的原因,文献[3]指出:建筑结构构件的断面尺寸是离散量,规范中的一些要求、实际设计时的约束和约定,很难用显式表达,一个稍大的工程结构,设计变量及约束条件都很多,……凡此种种,都要求要有很实用和方便的软件工具,这可能是妨碍结构设计优化普遍推广的原因;目前从事这方面工作的单位也不少,文献[2][3]的单位就在这方面做了不少工作,有很多经验值得借鉴;文献[2]介绍,经他们优化过的工程,在实物工程量上,可节约5%~10%,甚至更大,而在建筑空间和平面使用方面,带来的效益更大;作为有十五年开发经历的建业集团,年开发量200万㎡(见建业网集团简介),要想结构成本,有较大幅度的降低,开展结构设计优化,应该是提到日程上来的时侯了。 二、目前结构设计优化的一些具体做法 1)、复核性的优化 文献[2]介绍的案例中,很多是在既有施工图的基础上进行优化,笔者把这种做法称为复核性的优化,因为甲方认为建筑、结构不尽合理或配筋过多不经济,委托在原有基础上进行优化,以求克服某些缺陷或降低成本,这种做法,不是全面、全过程的优化,往往带有原设计的弱点,但经过优化后,建筑、结构的使用功能得到相当大的改善,优化设计的周期较短,直接经济效益,也很可观,故甲方很容易接受这种做法。 这种做法也有实际问题,如修改设计的费用、责任问题,文献[2]的作者江院士还坦言:“好朋友劝我不要搞,因为得罪人,特别是得罪同行,得罪老朋友”。虽如此,江院士还是以高度的社会责任感,继续从事这方面的工作;但毕竟是要面对的实际问题。 2)、全面优化 工程建设是一个系统工程,应该说从立项、建筑结构方案、施工图设计、施工阶段、交付使用,每一个环节都有定位及需要优化的问题,目前房地产行业,全过程、全

结构设计题库15-2-10

结构设计题库15-2-10

问题: [单选]圈梁的高度不应小于() A.60mm B.120mm C.180mm D.300mm 构造要求,见《砌体结构设计规范》第7.1.5条。

问题: [单选]墙梁设计时,正确的概念是下述哪几条?Ⅰ.施工阶段,托梁应按偏心受拉构件计算Ⅱ.使用阶段,托梁支座截面应按钢筋混凝土受弯构件计算Ⅲ.使用阶段,托梁斜截面抗剪承载力应按钢筋混凝土受弯构件计算Ⅳ.承重墙梁的支座处应设置落地翼墙() A.Ⅰ、Ⅱ、Ⅲ B.Ⅰ、Ⅱ、Ⅲ、Ⅳ C.Ⅱ、Ⅲ、Ⅳ D.Ⅰ、Ⅲ、Ⅳ 《砌体结构设计规范》规定:使用阶段,托梁跨中截面应按钢筋混凝土偏心受拉构件计算,托梁支座正截面和托梁斜截面应按钢筋混凝土受弯构件计算;施工阶段,托梁应按钢筋混凝土受弯构件进行抗弯、抗剪承载力验算。

问题: [单选]墙梁计算高度范围内的墙体,在不加设临时支撑的条件下,每天砌筑高度不应超过多少()? A.1.2m B.1.5m C.2m D.l0/3(l0为墙梁计算跨度) 构造要求,见《砌体结构设计规范》第7.3.12条。 (女士护肤品 https://www.doczj.com/doc/3a14270922.html,/)

问题: [单选]作用在过梁上的荷载有砌体自重和过梁计算高度范围内的梁板荷载,但可以不考虑高于ln(ln 为过梁净跨)的墙体自重及高度大于ln以上的梁板荷载,这是因为考虑了下述哪种作用()? A.应力重分布 B.起拱而产生的卸载 C.梁与墙之间的相互作用 D.应力扩散

问题: [单选]砖砌体墙上有1.2m宽的门洞,门洞上设钢筋砖过梁,若梁上墙高为1.5m,则计算过梁上的墙重时,应取墙高为:() A.0.4m B.0.5m C.1.2m D.0.6m

荷载与结构设计方法重点概念总结

荷载与作用 荷载—由各种环境因素产生的直接作用在结构上的各种力。 如重力、土压力、水压力、风压力。 作用—能使结构产生效应的各种因素总称为作用。 效应—结构的内力、变形, 应力、应变, 速度、加速度等。 作用:直接作用—(狭义)荷载:广义荷载 间接作用 直接作用——直接作用在结构上的各种荷载 间接作用——能引起结构内力、变形等效应的非直接作用因素 如地震、温度变化、地基不均匀沉降等。 作用的分类: 1.按随时间的变异分类。 (1)永久作用:在结构设计基准期内其值不随时间变化,或其变化与平均值相比可以忽略不计。 (2)可变作用:在结构设计基准期内其值随时间变化,且其变化与平均值相比不可忽略的作用。 (3)偶然作用:在结构设计基准期内不一定出现,而一旦出现其量值很大且持续时间很短的作用。如地震、爆破。 2.按随空间位置的变异性分类 (1)固定作用:在结构空间位置上具有固定的分布。如结构自重、固定设备的荷载等。(2)可动作用:在结构空间位置上的一定范围内可以任意分布。如房屋中的人员、家具荷载,桥梁上的车辆荷载等。 3.按结构的反应分类 (1)静态作用:对结构或构件不产生加速度或其加速度可以忽略不计。 如结构自重、土压力、温度变化等。 (2)动态作用:对结构或构件产生不可忽略的加速度。 如地震、风、冲击和爆炸等。 重力 1结构自重 自重——由地球引力产生的组成结构的材料的重力。 2土的自重应力 土是由土颗粒、水和气组成的三相非连续介质。 土的自重应力为自身有效重力在土体中引起的应力。 雪荷载 1雪压:单位地面上积雪的自重。 2基本雪压:当地空旷平坦地面上根据气象记录资料经统计得到的在结构使用期间可能出现的最大雪压值。 2.影响屋面雪压的因素。 (1)风对屋面的影响—漂积作用。 (2)屋面坡度对积雪的影响。 (3)屋面温度对积雪的影响。

结构概念设计的几点基本思想

结构设计初期,根据建筑、地质勘探等特点,预先选择适当的结构尺寸、基础形式、荷载假定、计算模型等,形成概念上的整体模型,即结构概念设计的基本思想。概念设计合理与否,将直接决定了最终整个结构设计的卓越或平庸甚至失败。本文从结构设计的角度,对概念设计的基本思想做了较为全面的理解和探讨。 几个基本的结构概念 1构件受力状态 一般结构构件主要有四种基本的受力状态:受拉、受压、弯剪、受扭。结构设计的一个基本的内容就是优化结构体系,进行合理的结构布臵和适当的刚度分布,使得结构内部各构件尽量处于最合理的受力状态,充分发挥材料强度。各种受力状态具有明显不同的特点。 受拉轴向受拉的构件,荷载通过构件截面中心,截面上各点受力均匀,材料强度可以充分利用。对于适合受拉的材料如钢材等,这是一种最为经济合理的受力状态;对混凝土等材料,由于本身的抗拉强度远低于抗压强度,应尽量避免出现这种受力状态。 受压理论上来讲,这应该是一种最合理的受力状态。一般材料抗压强度均不低于抗拉强度,外荷载通过构件截面中心,截面上各点受力均匀。但这仅仅是一种理论的受力状态,实际受压构件由于种种原因存在偏心,或者承受侧向荷载作用,使得承载力与构件的长细比有关,长细比越大,构件的承载力越低。增大截面回转半径、加强构件边界条件等可以减小构件长细比,但这需要以建筑空间和工程费用作为代价。 考虑偏心情况,相同计算长度和边界条件的受压构件,以环形截面最为合理,圆形及正方形截面次之。通过改变截面尺寸、增加适当的侧向支撑等措施达到两个方向回转半径近似相同的工字形型钢、角钢或组合截面也能做成比较经济合理的受压构件。 弯剪实际构件受弯受剪往往同时发生。受弯作用产生的正应力在离中和轴最远处最大,中和轴附近则比较小,受力不均匀;剪应力在截面中和轴附近最大,离中和轴最远处则降为零。另外,在整个构件的计算长度内,受弯受剪引起的应力分布也很不均匀。以矩形截面简支梁为例,在均布荷载作用下,跨中弯距M最大,剪力V为零,支座处剪力V最大,弯距M为零,最终结果是,整段梁内各截面的受力状态以及同一截面上各点的受力状态均不相同,使得材料强度远不能充分利用。 对于钢筋混凝土构件的改进措施:采用适当形式的纵筋和箍筋承剪,合理布臵纵向受力钢筋;减小中和轴附近的截面尺寸,如采用工字形、T形、空腹桁架等截面形式,圆形及环形截面则极不合理;增大跨中截面高度,如鱼腹式变截面梁等。 受扭构件受扭时,截面上会产生成对的剪应力形成力偶对来抵抗扭矩。截面中间部分的应力小,力臂也

结构设计原理复习题Word版

《结构设计原理》复习题 一、填空 1.按加工方式不同,钢筋分为()、()、()、()四种。 2.()与()通常称为圬工结构。 3.梁内钢筋主要有()、()、()、()等。 4.随着柱的长细比不同,其破坏型式有()、()两种。 5.根据张拉预应力筋与浇筑混凝土构件之间的先后顺序,预应力混凝土分为()、()两类。 6.钢筋与混凝土之间的粘结力主要有以下三项组成()、()、()。 7.按照配筋多少的不同,梁可分为()、()、()三种。 8.钢筋混凝土受弯构件主要有()和()两种形式。 9.梁内钢筋主要有()、()、()、()等。 10.()、()、()称为结构的可靠性。 11.钢筋的冷加工方法有()、()、()三种。 12.结构的极限状态,根据结构的功能要求分为()、()两类。 13.T形截面梁的计算,按()的不同分为两种类型。 14.在预应力混凝土中,对预应力有如下的要求()、()、()。 15.钢筋混凝土梁一般有()、()、()三种不同的剪切破坏形式。 16.预应力钢筋可分为()、()、()三种。 二、判断题:(正确的打√,错误的打×。) 1.混凝土在长期荷载作用下,其变形随时间延长而增大的现象称为徐变。() 2.抗裂性计算的基础是第Ⅱ阶段。() 3.超筋梁的破坏属于脆性破坏,而少筋梁的破坏属于塑性破坏。() 4.增大粘结力、采用合理的构造和高质量的施工、采用预应力技术可以减小裂缝宽度。() 5.当剪跨比在[1, 3]时,截面发生斜压破坏。. () 6.预应力损失是可以避免的。() 7.整个结构或结构的一部分,超过某一特定状态时,就不能满足结构功能的要求,这种特殊状态称为结构的极限状态。()8.箍筋的作用主要是与纵筋组成钢筋骨架,防止纵筋受力后压屈向外凸出。() 9.采用预应力技术可杜绝裂缝的发生或有效减少裂缝开展宽度。()10.为了保证正截面的抗弯刚度,纵筋的始弯点必须位于按正截面的抗弯计算该纵筋的强度全部被发挥的截面以内,并使抵抗弯矩

结构概念设计课程论文

仿生结构设计------自然与建筑结构的交融式设计 摘要:大自然处处存在天然的美感与协调,而城市的快速发展则是在一定的程度上破坏了这种美感和协调性,城市建筑异军突起,看似千姿百态实则形态单一,如何设计切合自然美感,功能,环保的建筑结构是新世纪建筑师与结构师们必须面对的问题,而在21世纪初,随着仿生学理论的建立与逐步发展,将仿生学应用于结构概念设计中,使更多的城市建筑结构与自然相协调,且能同时满足功能需求,美观,环保且易于建造。 实体的仿生,是从自然界中选取研究对象,将对象的形态,结构转化为可以利用在技术领域的抽象功能,考虑用不同的材料和工艺手段进行创造新的形态和结构,具有科技性,时代性和标志性。 关键词:结构概念,仿生建筑,美观,协调性,功能与环保 结构设计案例:北京水立方游泳中心 一·建筑结构功能和目标 水立方的设计灵感来源于肥皂泡,主体结构采用钢结构,内部空间巨大,同时设立了多个大型的游泳池,不仅能够完全胜任比赛的要求,平时生活中也可以继续使用,不像有的奥运场馆,奥运会结束后出了纪念价值之外就没有了其他作用,也带不来经济收益。 方形是中国古代城市建筑最基本的形态,它体现的是中国文化中以纲常伦理为代表的社会生活规则。“天圆地方”的设计哲学催生了“水立方”,而这个“方盒子”又能够最佳体现国家游泳中心的多功能要求。传统文化与建筑功能就这样实现了完美结合。在中国文化里,水是一种重要的自然元素,并激发起人们欢乐的情绪。国家游泳中心赛后将成为北京最大的水上乐园,所以设计者针对各个年龄层次的人,探寻水可以提供的各种娱乐方式,开发出水的各种不同的用途,他们将这种设计理念称作“水立方”。 肥皂泡式的膜结构具有很好的透光作用,不需要过多的灯光来供应照明,因此节约了能源,体现了环保的意识,而08年的奥运会目标,“绿色”,“环保”就是其中的主题,和自然界像协调,同国家奥运中心,另一个仿生建筑“鸟巢”相互呼应。 在全球化的语境下,地域性就显得很重要了,而一个地方地域性的特色表示,很多时候往往会采取地标性建筑来担当这个角色,因此仿生建筑有了新的要求,需要融入更多的历史文化,人文观念等进去,而对中国来说,水具有极为深刻的文化代表性,上善若水,是古代哲学家的人文情怀的体现,也是对后人的告诫,因此水立方的设计,不仅仅是给奥运会提供了一处比赛的场地,也向世界展现出了中国的特色,传达了中国人的理念。 水立方水泡式的膜结构 二,结构方案的选择 结构是决定一座建筑是否能够修建的最主要因素,选择什么样的结构,直接决定了建筑功能与外形会是什么样的,一幢建筑,在兼顾可施工性的情况下还得考虑多种结构方案,从

浅谈概念设计及结构设计

浅谈概念设计及结构设计 发表时间:2018-09-05T17:01:37.933Z 来源:《防护工程》2018年第9期作者:于丽妲 [导读] 从而促进整个建筑业的快速高效发展,最终将惠及人民大众,实现经济效益和社会效益的双赢。在设计工程中引入概念设计理念,会极大的简化设计流程,避免因为计算机软件的过分应用产生的数据脱节现象。 于丽妲 方舟国际设计有限公司 摘要:强调概念设计在建筑结构设计中的应用必将为建筑业注入新的血液,从而促进整个建筑业的快速高效发展,最终将惠及人民大众,实现经济效益和社会效益的双赢。在设计工程中引入概念设计理念,会极大的简化设计流程,避免因为计算机软件的过分应用产生的数据脱节现象。 关键词:概念设计;结构设计;开展 前言:概念设计必须有理论基础知识作为行动准则,离开理论基础知识的指导,结构设计就不会客观,而变成主观设计。同时也要依靠先进的设计工具,多方面的分析设计方案的合理性,并与理论基础知识结合并用,让结构总体系与各个分体系的工作原理和力学性质及构造处理原则相互融合。概念设计不仅可以发挥建筑师的主动性和创造性,创新建筑结构设计理念,而且可以从实质上保证乃至提升建筑的质量和使用效能,建筑师必须要熟悉并深入理解概念设计的内涵,将高质量的设计工程展现给世人。 一、概念设计的重要性 强调概念设计的重要,主要还因为现行的结构设计理论与计算理论存在许多缺陷或不可计算性。比如对混凝土结构设计,内力计算是基于弹性理论的计算方法,而截面设计却是基于塑性理论的极限状态设计方法,这一矛盾使计算结果与结构的实际受力状态差之甚远,为了弥补这类计算理论的缺陷,或者实现对实际存在的大量无法计算的结构构件的设计,都需要优秀的概念设计与结构措施来满足结构设计的目的。同时计算机结果的高精度特点,往往给结构设计人员带来对结构工作性能的误解,结构工程师只有加强结构概念的培养,才能比较客观、真实地理解结构的工作性能。 概念设计之所以重要,还在于在方案设计阶段,初步设计过程是不能借助于计算机来实现的。这就需要结构工程师综合运用其掌握的结构概念,选择效果最好、造价最低的结构方案,为此,需要工程师不断地丰富自己的结构概念,深入、深刻了解各类结构的性能,并能有意识地、灵活地运用它们。 二、概念设计的意义 概念设计一般指不经数值计算,尤其在一些难以作出精确理性分析或在规范中难以规定的问题中,依据整体结构体系与分体系之间的力学关系、结构破坏机理、震害、试验现象和工程经验所获得的基本设计原则和设计思想,从整体的角度来确定建筑结构的总体布置和抗震细部措施的宏观控制。运用概念性近似估算方法,可以在建筑设计的方案阶段迅速、有效地对结构体系进行构思、比较与选择,易于手算。所得方案往往概念清晰、定性正确,避免后期设计阶段一些不必要的繁琐运算,具有较好的的经济可靠性能。概念设计减少了对较难改进的客观条件的依赖,增强了对人才的要求,使得建筑结构设计更具灵活性、更能为人所掌握和控制。 三、概念设计对于建筑设计的必要性 建筑设计需要对各个力学应力数值、结构数值、材料数值进行精确地计算,但是过分依赖计算机软件,会对建筑结构造成不可预计的危害。比如在实际设计中很多设计人员用多、高层结构三维空间分析程序来计算底层框架,还有人为地布置一些抗震墙,但是不能完全满足楼层间的合理刚度比,也不能完全正确地反映底层框架在地震时受力状态。在设计中导致这样问题的出现,根本原因就是在于结构概念不明确,没考虑这两种结构体系的差异。如果是运用概念设计方法可以在建筑设计方案阶段迅速、有效地对结构体系进行构思、比较与选择。所得方案往往概念清晰、定性正确,避免后期设计阶段一些不必要的繁琐运算,具有较好的经济可靠性能。 同时,概念设计也是判断计算机分析输出数据可靠与否的主要依据。避免电算误差问题的产生,在建筑结构设计中采用概念设计是最好的方法。在实际设计工作中,运用概念设计理念还可以对已经出现的问题进行深入的分析,从而发现深层次的因素,来改善设计水平。这往往比查找历史数据更为便捷。 四、如何开展概念设计 4.1选择合理的结构方案一个成功的设计必须选择一个经济合理的结构方案,即要选择一个切实可行的结构形式和结构体系。结构体系应受力明确,传力简捷,同一结构单元不宜混用不同结构体系,地震区应力求平面和竖向规则。总之,必须对工程的设计要求、地理环境、材料供应、施工条件等情况进行综合分析,并与建筑、水、暖、电等专业充分协商,在此基础上进行结构选型,确定结构方案,必要时还应进行多方案比较,择优选用。 4.2平面设计 建筑平面的形状宜选用风压较小的形式,并应考虑邻近高层建筑对其风压分布的影响,还必须考虑有利的抵抗能力和竖向荷载,在地震作用下,力求简单。在高层建筑中,建筑体受到更多的风压,没有好的的流体外形,就会对建筑产生长时间的水平应力。随着建筑层数提高,水平载荷下的侧移现象逐渐加重。在平常情况下承受内部静态应力,如果发生地震等或者其他地质灾害,则会诱发外部形变,对建筑内居住者产生生命安全影响。 4.3竖向设计 在竖向传力体系设计中,首先要注意建筑不能超高,因为新的设计准则对建筑超高有了更严格的要求。在高层建筑的设计中,抗侧力结构刚度,应注意由基础向顶层逐渐过渡,要尽量避免出现在竖向上刚度发生突变的现象,以免由于刚度的较大突变而削弱其抵抗水平荷载的能力。高层建筑必须有相应的锚固深度,此锚固深度可结合布置设备用房和地下停车库的需要,作为一层或多层地下空间,这对降低高层建筑的重心有利,可提高建筑抗震能力及抗倾覆能力。 在竖向形体设计中,截锥形的建筑,采用由下而上分段逐渐减小楼层面积阶梯状体型,能使房屋刚度大大增加,由于房屋顶部的楼面尺寸比底部小,除了在建筑使用功能方面存在优点外,在抗风和抗震方面也具有一定的优越性。

相关主题
文本预览
相关文档 最新文档