当前位置:文档之家› 断裂力学的发展与研究现状

断裂力学的发展与研究现状

断裂力学的发展与研究现状
断裂力学的发展与研究现状

断裂力学的发展与研究现状

康颖安Ξ

(湖南工程学院机械工程系,湖南湘潭411101)

摘 要:断裂力学是50年代开始发展起来的固体力学的新分支.主要按断裂力学发展的成熟度,着重介绍线弹性断裂力学、弹塑性断裂力学、断裂动力学这三种经典断裂力学的基本理论与断裂准则,简要谈及建立在奇异性基础上经典断裂力学断裂理论所存在的主要问题与矛盾,以及对新材料断裂理论的探索与对未来断裂力学的展望.

关键词:断裂力学;基本理论;断裂准则

中图分类号:O346 文献标识码:A 文章编号:1671-119X(2006)01-0039-04

0 引 言

断裂力学是近几十年才发展起来的一支新兴学科,它从宏观的连续介质力学角度出发,研究含缺陷或裂纹的物体在外界条件(荷载、温度、介质腐蚀、中子辐射等)作用下宏观裂纹的扩展、失稳开裂、传播和止裂规律[1].断裂力学应用力学成就研究含缺陷材料和结构的破坏问题,由于它与材料或结构的安全问题直接相关,因此它虽然起步晚,但实验与理论均发展迅速,并在工程上得到了广泛应用.例如断裂力学技术已被应用于估算各种条件下的疲劳裂纹增长率、环境问题和应力腐蚀问题、动态断裂以及确定试验中高温和低温的影响,并且由于有了这些进展,在设计有断裂危险性的结构时,利用断裂力学对设计结果有较大把握.断裂力学研究的方法是:从弹性力学方程或弹塑性力学方程出发,把裂纹作为一种边界条件,考察裂纹顶端的应力场、应变场和位移场,设法建立这些场与控制断裂的物理参量的关系和裂纹尖端附近的局部断裂条件.

1 经典断裂力学的发展

断裂力学包括线弹性断裂力学、弹塑性断裂力学、刚塑性断裂力学、粘弹性断裂力学、断裂动力学、复合材料断裂力学等分支.断裂力学的发展主要是线弹性断裂力学、弹塑性断裂力学、断裂动力学这三种经典断裂力学的发展.

1.1 线弹性断裂力学

许多计算表明,由于材料存在着裂纹或缺陷,材料的实际强度一般仅为其理论强度的1/10-1/ 100,材料就产生低应力脆断现象.

根据裂纹受力情况与裂纹面的位移方式,可将裂纹分为三种基本类型,即:I型或张开型(拉裂型);Ⅱ型或滑移型(面内剪切型);Ⅲ型或撕裂型(面外剪切型).在这三种裂纹型式中,I型裂纹是最危险的,容易引起低应力脆断.

1921年,A.A.Griffith(格里菲斯)用弹性体能量平衡的观点研究了玻璃、陶瓷等脆性材料中的裂纹扩展问题,提出了脆性材料裂纹扩展的能量准则. Griffith能量理论将裂纹失稳扩展的临界条件表示为:G I=G Ic(G I为应变能释放率),即脆性断裂的G准则.G Ic是材料常数,表征材料对裂纹扩展的抵抗能力,由实验确定.上述能量准则没有考虑裂纹尖端附近的应力和应变,而裂纹尖端附近的应力应变场的分析对断裂安全设计非常重要.1955年,G.R. Irwin(欧文)用弹性力学理论分析了裂纹尖端应力应变场后提出了简单但很实用的公式[2],即对于三种类型裂纹尖端领域的应力场与位移场公式可写成如下形式:

 σ(N)ij=

K N

2πr

f(N)

ij

(θ) u(N)i=K N rπg(N)i(θ)

σ

ij

(i,j=1,2,3)为应力分量,u i(i=1,2,3)为位移分量,N=Ⅰ,Ⅱ,Ⅲ,表示裂纹类型,f ij(θ)和

第16卷第1期2006年3月 湖南工程学院学报

Journal of Hunan Institute of Engineering

Vo1.16.No.1

Mar.2006

Ξ收稿日期:2005-10-31

作者简介:康颖安(1972-),女,硕士研究生,讲师,研究方向:一般力学与力学基础.

g i(θ)是极角θ的函数.式中参量K I、KⅡ、KⅢ分别称为Ⅰ、Ⅱ和Ⅲ型裂纹顶端应力强度因子.即各种类型裂纹尖端附近的应力场和应变场表达式均包含一个可统一写为K=Yσπa的系数,式中σ为名义应力(裂纹位畏上按无裂纹计算的应力),a为裂纹尺寸(裂纹的长度或深度),Y为形状系数(与裂纹大小和位置等有关),K称为应力强度因子.其量纲为[力]×[长度]-3/2.在线弹性断裂力学中,它是重要的力学量,是用来判断裂纹是否将进入失稳状态的一个指标.于是以应力强度因子表示的裂纹失稳扩展的临界条件为:K I=K IC,即脆性断裂的K准则.K IC为裂纹临界状态下的应力强度因子,称为断裂韧度,它表示材料对于断裂的抵抗能力,相似于材料力学中的许用应力,亦是材料强度的一个常数.

应力强度因子K I与应变能释放率G I的关系为:

G I=K2I

E

(1-v2)(平面应变状态),G I=

K2I

E

(平

面应力状态).

在弹性条件下G IC=K2I

C

E

,因此对于线弹性断裂

力学问题,采用G准则和K准则是完全等效的,由于应用弹性理论可直接计算各种裂纹体的应力强度因子K I,或实验可测得,且K准则偏于安全,实际应用K准则比较方便.

1.2 弹塑性断裂力学

由于线弹性断裂力学是把材料作为理想线弹性体,运用线弹性理论研究裂纹失稳和扩展规律,从而提出裂纹失稳的准则和扩展规律.但事实上由于裂纹尖端应力高度集中,在裂纹尖端附近必然首先屈服形成塑性区域.若塑性区与裂纹尺寸相比很小,则可以认为塑性区对绝大部分的弹性应力分布影响不大,应力强度因子可近似地表示弹性变形区的应力场.适当修正应力强度因子,线弹性断裂力学的分析方法和结论仍能应用.但对中、低强度钢的中小型构件,薄壁结构,焊接结构的拐角和压力容器的接管处,在裂纹尖端附近,发生大范围屈服或全面屈服,即塑性区尺寸与裂纹长度相比,不可忽略断裂发生在接近屈服应力的时刻.这时线弹性断裂力学的结论不再适用.由此研究大范围屈服断裂已成为发展弹塑性断裂力学的迫切任务.

弹塑性断裂与脆性断裂不同,在裂纹开裂以后出现明显的亚临界裂纹扩展(稳态扩展),达到一定的长度后才发生失稳扩展而破坏.而脆性断裂无明显的临界裂纹扩展,裂纹开裂与扩展几乎同时发生.弹塑性断裂准则分为两类,第一类准则以裂纹开裂为根据,如COD准则,J积分准则;第二类准则以裂纹失效为根据,如R阻力曲线法,非线性断裂韧度G法.

1965年Wells(威尔斯)[3]在大量实验的基础上,提出以裂纹尖端的张开位移描述其应力、应变场.裂纹尖端张开位移,即裂纹体受载后,在原裂纹尖端垂直裂纹方向上所产生的位移(Crack Opening Displacement),一般用δ表示.威尔斯首先提出了弹塑性条件的断裂准则COD准则:当裂纹尖端张开位移δ达到临界值δC时,裂纹将开裂,即δ=δC时,裂纹开裂.δC是材料弹塑性断裂韧性指标,为材料参数,由实验得知与温度有关.δC是裂纹开裂临界值,而不是裂纹最后失稳的临界值.裂纹开裂与裂纹最后失稳是两个不同状态.在裂纹开裂后,若继续增加载荷,一直到裂纹达到失稳点,材料才迅速地失效破坏.COD准则应用到焊接结构和压力容器的断裂安全分析上,非常有效,加上δC的测量方法简单,工程上应用较为普遍,但裂纹从开裂到失稳还有一定的承载能力,因此以δC为设计指标偏于保守.

1968年,Rice(赖斯)提出了J积分理论.以J 积分为参数并建立断裂准则,J积分是围绕裂纹尖端作闭合曲线的积分.在线弹性情况下有:

J=G I=

K2I

E

(平面应力), J=G I=

K21

E

(1-v2)(平面应变).

从上式中可以认为J积分与裂纹扩展力G I的物理意义相同,进而建立J积分断裂准则:当围绕裂纹尖端的J积分达到临界值J C时,即J=J C时,裂纹开始扩展.裂纹扩展分为稳定和不稳定的两种形式.对于稳定的缓慢扩展,上式代表开裂条件;对于不稳定的快速扩展,上式代表裂纹的失稳条件.与COD准则相比,J积分准则理论根据严格,定义明确.但实际多采用COD准则,因为J积分在计算和实验上较复杂,只适用于裂纹的开裂,且不允许卸载,而裂纹稳定扩展时有局部卸载,故不能用于稳定扩展情况.有些学者[4]对弹塑性断裂力学单参数J 理论进行重要改进,即用J-Q理论.这个理论采用双参数J与Q来表征幂硬化材料中的裂纹,其中J 表示积分,Q表示应力的约束度,表征应力的幅度.

弹塑性断裂力学的重要成就是HRR解.硬化材料I型裂纹尖端应力应变场的弹塑性分析是由Hutchinson(哈钦森),Rice(赖斯)与Rosengren(罗

04 湖南工程学院学报 2006年

森格伦)(1968)解决的,故称为HRR理论[5,6].它建立塑性应力强度因子与J积分的定量关系,表明J 积分可以作为描述硬化材料中裂纹尖端应力应变场强度的参量.HRR理论是J积分作为断裂判剧的理论基础.但HRR理论还有不完善之处,它建立在塑性力学全量理论基础上,只适用于单调加载和小变形情况;它只讨论奇异性主项的结构,不是完全解;因积分只适用于小变形,HRR理论也只适用于小变形;理论本身存在矛盾,因为既然考虑了塑性变形,塑性变形必然引起裂纹尖端的钝化,裂纹尖端就不应该是奇异的.裂纹扩展形成温度场,是一个非平衡的不可逆热力学过程[7].

1.3 断裂动力学

断裂动力学问题可分为两大类,其一是裂纹稳定而外力随时间迅速变化,其二是外力恒定而裂纹处于快速运动状态.在这种情形下,必须考虑材料的惯性效应.

70年代初,Sih与Loeber(洛依伯)导出了外载随时间变化而裂纹是稳定的情况的渐近应力场与位移场,Rice等多人先后导出了裂纹以等速传播情况的渐近应力场与位移场,并提出了裂纹稳定而外载随时间迅速变化情况下的裂纹开裂准则:

K I(a,σ,t)=K Id(

σ)

K Id是表征材料动态断裂性能的常数,称为裂纹动态起始扩展问题的断裂韧性,它与加载速率σ?有关.动态应力强度因子K I显然与裂纹长度a、外加应力σ及时间有关.由于左端K I(t)>K s I,右端K Id

裂纹发生运动时,材料对断裂的抗力用动态断裂韧性K ID或动态能量释放率临界值G ID表示.K ID 与G ID与材料性质有关,与裂纹速度也有关.运动裂纹传播与止裂的准则:K I(a,σ,t)≤K ID(a?)式中a?是裂纹运动速率.等式表示传播条件,不等式表示止裂条件.

1.4 粘弹性断裂力学[8]

线弹性或弹塑性断裂力学,均无法处理延迟失稳、裂纹扩展速度及寿命等时间相依问题.对于很多工程材料,如聚合物、复合材料、混凝土等新型粘弹性材料,在常温下明显表现出时间相依性,这些材料的裂纹体可抽象为粘弹性体,与此相应的理论就是粘弹性断裂力学.根据它可以求出瞬时及延迟失稳临界载荷(或裂纹尺寸).在粘弹性体情况下,K准则和G准则不再等价.由于K准则不能反映粘弹性体的时间相依性,它不能预测常载荷下粘弹性体的裂纹延迟失稳,因而它对粘弹性体不适用.G准则才反映问题的本质.

对于缓慢亚临界裂纹扩展很明显的工程实际问题,必须考虑裂纹尖端塑性区或微裂区,按考虑裂尖衰坏区非线性效应的粘弹性断裂力学计算.对粘弹性裂纹扩展速度或裂纹体寿命计算大体采用两类判据,即COD准则和能量平衡判据.而能量平衡判据又可分为以整体能量平衡和以裂纹尖端局部能量平衡两种判据.对应力和位移场的求解,可采用弹性-粘弹性对应原理和Volterra原理两类.裂纹模型,大多采用Dugdale-Barenblatt模型及其推广.

2 存在的主要矛盾

此前所述经典断裂力学源于Griffith的断裂理论,是建立在奇异性基础上的,即均基于裂纹顶端应力与应变为无限大的模式展开的.Inglis数学尖裂纹模型的弹性力学解是断裂理论的基础.这种数学尖裂纹上、下表面间距为零、裂纹顶端曲率半径也为零,因而由弹性力学求出的应力分量,在裂纹顶端处为无限大,这种无限大称为奇异性.奇异性理论一直延续至今.但是奇异性断裂力学在物理上存在本质的缺陷,这主要表现在两方面:其一,在实际中发现的裂纹,其上、下表面间距,以及裂纹顶端曲率半径,都是有限值,不等于零;其二,实际裂纹,即使在裂纹顶端,应力与应变均为有限值,不存在所谓应力与应变的奇异性.这样,基于数学尖裂纹和应力奇异性的物理量缺乏坚实的物理基础.为了完善理论,呈现非奇异性,可采用比较符合真实情形的半圆形顶端的钝裂纹(或切口)模型,但钝裂纹的曲率半径的测量需要用金相的方法来测出,这需要金相断裂力学的发展.

3 新结构材料断裂探索

随着新材料的大量涌现,如准晶材料、多孔材料已引起人们的广泛关注.多孔材料是复杂的多相材料,从细观角度上看,它具有非连续性材料的不均匀和各向异性,若逐个追踪孔洞的形状、大小和分布进行描述,所得表达式极其复杂,难以进行定量求解.然而从工程角度上考虑,材料的力学性能仍可以用连续介质力学来描述,其不连续性则通过相对密度,

14

第1期 康颖安等:断裂力学的发展与研究现状

ρ=ρ3/ρ

s

,或E=E(ρ3/ρs,v=v(ρ3/ρs)间接地表现出来.

由于多孔材料塑性具有可压缩性,可采用表征塑性可压缩性的新的材料参数,如Poisson比.并用内聚力模型求解多孔材料中的非线性裂纹问题,预先假定裂纹顶端塑性区的形状,其中的应力分布可以由屈服判据推断,则原来的非线性问题得到线性化,较易求解材料在平面应力(应变)情形下的裂纹解.在平面应变条件下,多孔材料裂纹尖端的渐近场具有HRR奇异,J积分守恒.场的分布和断裂韧性依赖常数α,它描述在变形中体积变形与形状变形比[9].对多孔材料平面应力裂纹扩展问题在著作[10]中有提及.

4 结束语

由于断裂力学能对材料和结构的安全性进行预测与估算,因而愈来愈受到重视.本文围绕四个断裂准则大致介绍了线弹性、弹塑性与粘弹性断裂力学的一些基本理论和发展情况,以及断裂动力学两类问题中裂纹开裂与止裂准则.提及了建立在奇异性理论基础上的经典断裂力学的根本缺陷和方法论上的矛盾,以及随着大量新材料的出现,新材料断裂力学的出现.断裂力学是20世纪50年代开始发展起来的固体力学的新分支.线弹性断裂、弹塑性断裂和断裂动力学三者几乎是同时开始研究的.目前线弹性断裂力学发展较为成熟,在生产中已经得到应用.弹塑性断裂力学虽取得了一些进展,但仍有许多尚待深入研究的问题,它是当前断裂力学的主要研究方向之一.断裂动力学,对于线性材料还有待完善;对于非线性材料,尚处于研究初期,是断裂力学的又一主要研究方向.随着对断裂问题的深入研究及数学工具的方便使用,断裂力学理论会日益成熟,断裂力学应用会日渐广泛.

参 考 文 献

[1] 沈成康.断裂力学[M].上海:同济大学出版社,1996.

[2] Irwin G R.Analysis of stress and strains near the end of a

crack traversing a plate[J].A ppl.Mech.,1957,24:361-364.

[3] Wells A A.Applications of fracture mechanics at/and be2

yond general yielding[J].British Welding Journal,1963,

10:563-570.

[4] 黄克智.弹塑性断裂力学的一个重要进展[J].力学与

实践,1993,(1):1-7.

[5] Hutchinson J W.Singular behavior at the end of a tensile

crack in a hardening material[J].Mech.Phys.S olids,

1968,16:13-31.

[6] Rice J R,Rosengren G F.Plane strain deformation near

a crack tip in a powerlaw hardening material[J].Mech.

Phys.S olids,1968,16:1-12.

[7] 张俊彦,张淳源.裂纹扩展条件及其温度场研究[J].

湘潭大学自然科学学报,1996,(1):102-105.

[8] 张淳源.粘弹性断裂力学[M].华中理工大学出版社,

1994.

[9]陈会军,李永东,唐立强.多孔材料中裂纹尖端的渐近

场[J].哈尔滨工程大学学报,2000,(3):58-63.

[10]范天佑.断裂理论基础[M].北京:科学出版社,2003.

Development and R esearch Status of Fracture Mechanics

KAN G Y ing-an

(Dept.of Mech.Eng.,Hunan Institute of Engineering,Xiangtan411101,China)

Abstract:Fracture mechanics that developed in50’s is a new branch of solid mechanics.Based on the develop2 ment of fracture mechanics,the basic theories and cracks rules about elastic fracture mechanics,elastic2plastic fracture mechanics and dynamic fracture mechanics are introduced in this paper.The current problems based on singularity in cracks theories are discussed.Finally the fracture theories of new materials are explored and the prospects of future exploration are identified.

K ey w ords:fracture mechanics;basic theory;cracks rule

24 湖南工程学院学报 2006年

逆向工程设计的最新国内外进展

逆向工程设计的最新国内外进展 逆向工程的现状及发展前景 逆向工程也称反求工程或反向工程,是根据已存在的产品或零件原型构造产品或零件的工程设计模型,并在此基础上对已有的产品进行剖析、理解和改进,是对已有设计的再设计。 逆向工程设计实施步骤如下: (1)设计前的准备工作。设计之前应确定设计的整体思路,对实物模型进行系统的分析,划分出模型的特征区,确定模型的基本构成形状的曲面类型,这些关系到相关软件的选择和软件模块的确定。 (2)零件原形的数字化。根据测量对象的特点确定扫描方法以及扫描设备,利用3D 扫描测量设备来获取零件实物表面点的三维坐标值。 (3)提取零件的几何特征。按测量数据的几何属性对其进行分割,分割方法一般可分为两类,一类是基于边界分割法,一类是基于区域分割法。区域分割法将相似几何特征的点划为同一区域,具有明确的几何意义,是较为常用的分割方法。 (4)零件CAD 模型的重建。将分割后的三维数据在CAD 系统中分别做表面模型的拟合,并通过表面片的拼接获取零件实物表面的CAD 模型。 (5)重建CAD 模型的检验与修正。由于测量得到的数据点往往存在一些数字误差,所以需要对曲面或曲线进行光顺处理,提高曲面质量。另外还要检验重建的CAD 模型是否满足精度或其他试验性能指标的要求,对不满足要求的应进行适当的调整修改,直至达到零件的标准 1.1接触式测量系统 接触式三坐标测量机(Coordinate Measure Machine,CMM) 可谓接触式测量的代表。接触式三坐标测量机通常是基于受力变形的原理,通过探头测取三维几何坐标数据。操作者事先设计规划好测量途径与方式,三坐标测量机便会按照所指定的路径测取三维几何坐标数据。一般来说,接触式三坐标测量机测量较稳定,易于定位,测量精度高,对被测物体的材质和色泽没有特殊要求。其主要缺点是测量效率低,测量探头的半径必须进行补偿,并且有可能会出现探头测不到的盲区。使用自动测量还有较多的参数必须决定,包括探头形状和大小、扫瞄间隔、步进距离、误差容许量、扫瞄速度、扫瞄方向等,这些都过分依赖操作者的经验,特别是在测量复杂产品零件时,确定最优的采样策略和路径较困难。另外,由于存在测量力,接触式三坐标测量机无法在一些软质表面进行测量。 1.2非接触式测量系统 非接触式测量根据测量原理的不同,大致有光学测量、超声波测量、电磁测量等方式。在逆向工程中最为常用是较为成熟的光学测量方法。其可分为:①基于光学三角形原理的激光扫描法;②基于相位偏移测量原理的莫尔条纹法;③基于工业CT 断层扫描图像法;④立体视觉测量方法。使用非接触测量产品零件测量速度快,不需要进行探头半径补偿。由于不存在测量力,可对橡胶、油泥、人体头像或超薄形物体进行扫描。但工件坐标定位较困难,测量精度较低,陡峭面不容易测量,另外被测产品零件表面特征(颜色、反光度、粗糙度、形状等) 对测量的精度影响较大2逆向工程的数据处理及常用软件数据处理是逆向工程的一个重要的技术环节,它决定了CAD 模型重建过程是否能够方便、准确地进行。使用测量设备测取的三维几何坐标数据都是一些离散点的点云数据,其中存在着噪声点,所以还需要相应的软件来处理点云数据。点云数据的处理包括噪声去除、多视对齐、数据精简、数据光

逆向工程毕业设计开题报告

毕业论文开题报告 题目某典型零件的逆向工程与注塑模设计 学生姓名学号 所在院(系) 专业班级 指导教师 2013 年 3月 5 日

题目某典型零件的逆向工程与注塑模设计 一、选题的目的及研究意义: 逆向工程(reverse engineering,RE),又称为反求工程或反求设计,与传统工程的设计过程完全不同。他是从实物样本的获取产品数学模型并制造得到新产品的相关技术,已成为CAD/CAM系统中一个研究应用热点,并发展成为一个相对独立的技术领域。早在1980年始欧美国家许多学校及工业界开始注意逆向工程这块领域。1990年初期包括台湾在内,各国学术界团队大量投入逆向工程的研究并发表成果,直到20世纪90年代中期,逆向工程才在我国得到了迅速的发展与推广。 1、选题目的: 随着国民经济的飞速发展,传统的产品开发模式以不能满足经济社会的市场的需求。传统的产品开发过程遵循正向工程(或正向设计)的思维,从市场需求信息着手,按照“产品功能描述(产品规格及预期目标)-产品概念设计-产品总体设计及详细的零部件设计-制定生产工艺流程-设计、制造工夹具、模具等工装-零部件加工及装配-产品检验及性能测试”这样的步骤开展工作,是从未知到已知、从抽象到具体的过程。我国是一个制造大国但不是一个制造强国,沿海很多中小型企业都是为外国大企业进行贴牌生产,没有自己的产品。这样很难适应如今的国际经济形势。所以国家提出技术创新,要有自己的设计、创新的产品,并且要不断地推陈出新。采用逆向工程技术,可以直接在国内外已有的先进产品基础上进行性能分析、设计模型反求、在设计优化制造。这次注塑模具设计不是通过常规的方法设计,而是基于先进的制造技术逆向工程,一个“从有到无”的过程,为模具技术的迅速发展起着至关重要的作用。这样,不仅可以更好地消化和吸收国外先进技术,赶超发达国家,扩大在世界经济市场的占有份额,而且可以打破西方国家对我国进行的技术封锁,从而研制出更先进的产品,以提高我国的综合国力。 2、研究意义: 逆向工程是制造业实现快速产品创新设计的重要途径,实物原型的再现仅仅是逆向工程的初步阶段,在此基础上进行的基于原型的再设计、再分析、再提高,从而实现重大改型的创新设计,才是逆向工程的真正价值和意义所在。逆向工程技术在模具行业中的应用从逆向工程的概念和技术特点可以看出,逆向工程的应用领域主要是飞机、汽车、玩具和家电等模具相关行业。近年来随着生物、材料技术的发展,逆向工程技术也开始应用在人工生物骨骼等医学领域。但是其最主要的应用领域还是在模具行业。由于模具制造过程中经常需要反复试冲和修改模具型面。若测量最终符合要求的模具并反求出其数字化模型,在重复制造该模具时就可运用这一备用数字模型生成加工程序,可以大大提高模具生产效率,降低模具制造成本。逆向工程技术在我国,特别是以生产各种汽车、玩具配套件的地区、企业有着十分广阔的应用前景。因此,逆向工程技术的应用对我国企业缩短与发达国家的差距具有特别重要的意义。

逆向工程的现状及发展前景

逆向工程的现状及发展前景 逆向工程也称反求工程或反向工程,是根据已存在的产品或零件原型构造产品或零件的工程设计模型,并在此基础上对已有的产品进行剖析、理解和改进,是对已有设计的再设计。 逆向工程设计实施步骤如下: (1)设计前的准备工作。设计之前应确定设计的整体思路,对实物模型进行系统的分析,划分出模型的特征区,确定模型的基本构成形状的曲面类型,这些关系到相关软件的选择和软件模块的确定。 (2)零件原形的数字化。根据测量对象的特点确定扫描方法以及扫描设备,利用3D扫描测量设备来获取零件实物表面点的三维坐标值。 (3)提取零件的几何特征。按测量数据的几何属性对其进行分割,分割方法一般可分为两类,一类是基于边界分割法,一类是基于区域分割法。区域分割法将相似几何特征的点划为同一区域,具有明确的几何意义,是较为常用的分割方法。

(4)零件CAD模型的重建。将分割后的三维数据在CAD系统 中分别做表面模型的拟合,并通过表面片的拼接获取零件实物表面的 CAD模型。 (5)重建CAD模型的检验与修正。由于测量得到的数据点往往 存在一些数字误差,所以需要对曲面或曲线进行光顺处理,提高曲面 质量。另外还要检验重建的CAD模型是否满足精度或其他试验性能 指标的要求,对不满足要求的应进行适当的调整修改,直至达到零件 的标准 坐标测量机 接触式非接触式 机械手坐标测量机光学测量机声学测量机磁学测量机结构光法激光三角形法激光测距法干涉测量法图像分析法 1.1接触式测量系统 接触式三坐标测量机(Coordinate Measure Machine,CMM)可 谓接触式测量的代表。接触式三坐标测量机通常是基于受力变形的原 理,通过探头测取三维几何坐标数据。操作者事先设计规划好测量途 径与方式,三坐标测量机便会按照所指定的路径测取三维几何坐标数 据。一般来说,接触式三坐标测量机测量较稳定,易于定位,测量精

断裂力学发展史

断裂力学研究的内容几乎完全是断裂为主的破坏。1920年格里菲斯(Griffith)研究玻璃中裂纹的脆性扩展,成功地提出了以含裂纹体的应变能释放率为参量的裂纹失稳扩展准则,其内容是:结构体系内裂纹扩展,体系内总能量降低,降低的能量用于裂纹增加新自由表面的表面能,裂纹扩展的临界条件是裂纹扩展力(即应变能释放率)等于扩展阻力(裂纹扩展,要增加自由表面能而引起的阻力)。很好地解释了玻璃的低应力脆断现象。Griffith理论可用于估算脆性固体的理论强度,并给出了断裂强度与缺陷尺寸之间的正确关系。 1944年泽纳(Zener)和霍洛蒙(Hollmon)又首先把Griffith理论用于金属材料的脆性断裂。不久欧文(1rwin)指出,Griffith的能量平衡应该是体系内储存的应变能与表面能、塑性变形所做的功之间的能量平衡,并且还指出,对于延性大的材料,表面能与塑性功相比一般是很小的。同时把G定义为“能量释放率”或“裂纹驱动力”,即裂纹扩展过程中增加单位长度时系统所提供的能量,或裂纹扩展单位面积系统能量的下降率。 20世纪50年代,Irwin又提出表征外力作用下,弹性物体裂纹尖端附近应力强度的一个参量一应力强度因子,建立以应力强度因子为参量的裂纹扩展准则一应力强度因子准则(亦称K准则)。其内容为:裂纹扩展的临界条件为K1:=K1c,其中尺K1为应力强度因子,可由弹性力学方法求得,K1c为材料的临界应力强度因子或平面应变断裂韧度,可由试验测定。Irwin的另一贡献是,他还指出,能量方法相当于应力强度方法。 1963年韦尔斯(Wells)发表有关裂纹张开位移(COD)的著名著作,提出以裂纹张开位移作为断裂参量判别裂纹失稳扩展的一个近似工程方法。其内容是:不管含裂纹体的形状、尺寸、受力大小和方式如何,当裂纹张开位移δ达到临界值δc时,裂纹开始扩展。δc是表征材料性能的常数,由试验得到。对于韧性材料,短裂纹平面应力断裂问题,特别是裂纹体内出现大范围屈服和全面屈服情况可采用此法。 1968年赖斯(Rice)提出围绕含裂纹体裂纹尖端的一个与路径无关的回路积分,定义为二维含裂纹体的J积分。J积分可用来描述裂纹尖端附近在非线性弹性情况下的应力应变场,建立J l=J1c的断裂准则。J1c为表征材料断裂韧性的临界J积分值,可由试验确定。 由于研究的观点和出发点不同,断裂力学分为微观断裂力学和宏观断裂力学。微观断裂力学是研究原子位错等晶体尺度内的断裂过程,宏观断裂力学是在不涉及材料内部断裂机理的条件下,通过连续介质力学分析和试样的实验作出断裂强度的估算与控制。宏观断裂力学通常又分为线弹性断裂力学和弹塑性断裂力学。 线弹性断裂力学是应用线性弹性理论研究物体裂纹扩展规律和断裂准则。线弹性断裂力学可用来解决材料的平面应变断裂问题,适用于大型构件(如发电机转子,较大的接头,车轴等)和脆性材料的断裂分析。线弹性断裂力学还主要用于宇航工业,因为在宇航工业里减轻重量是非常重要的,所以必须采用高强度低韧性的金属材料。实际上对金属材料裂纹尖端附近总存在着塑性区,若塑性区很小(如远小于裂纹长度),经过适当的修正,则仍可以采用线弹性断裂力学进行断裂分析。目前,线弹性断裂力学已发展的比较成熟,但也还存在一些问题(如表面裂纹分析,复合型断裂准则,裂纹动力扩展等)有待进一步研究。 弹塑性断裂力学是应用弹性力学、塑性力学研究物体裂纹扩展规律和断裂准则,适用于裂纹尖端附近有较大范围塑性区的情况。由于直接求裂纹尖端附近塑性区断裂问题的解析解十分

材料的韧性及断裂力学简介

第二节材料的韧性及断裂力学简介 一、低应力脆断及材料的韧性 人们在对船舶的脆断、无缝输气钢管的脆断裂缝、铁桥的脆断倒塌、飞机因脆断而失事、石油、电站设备因脆断而发生重大事故的分析中,发现了一些它们的共同特点: 1.通常发生脆断时的宏观应力很低,按强度设计是安全的; 2.脆断事故通常发生在比较低的工作温度环境下; 3.脆断从应力集中处开始,裂纹源通常在结构或材料的缺陷处,如缺口、裂纹、夹杂等; 4.厚截面、高应变速率促进脆断。 由此,人们发现了传统设计思想和材料的性能指标在强度设计上的不足,试图提出新的性能指标和安全判据,找到防止脆断的新的设计方法。 传统的强度设计所依据的性能指标主要为弹性模量E、屈服极限σs、抗拉强度σb,而塑性指标延伸率δ和面收缩率φ在设计中只是参考数据,通常还会考虑应力集中现象,即使如此,设计的安全判据仍不足以防止脆断的发生,这说明材料的强度、塑性、弹性这些性能指标还不能完全反映材料抵抗脆断的发生。经过对众多脆断事故的分析和研究,人们提出了一个便于反映材料抗脆断能力的新的性能指标——韧性,从使脆性材料和韧性材料断裂所消耗的能量不同,归纳出韧性的定义为:所谓韧性是材料从变形到断裂过程中吸收能量的太小,它是材料强度和塑性的综合反映。 例如图l-2为球墨铸铁和低碳钢的拉伸曲线,可以用拉伸曲线下的面积来表示材料的韧性,即 图中可见,虽然球墨铸铁的抗拉强度σb比低碳钢高,但其断裂时的塑性应变εp确远较低碳钢小,综合起来看,低碳钢的韧性高。 图1-2 球铁和低碳钢拉伸曲线表示的韧性 材料的韧性可用实验的方法测试和判定。应用较早和较广泛的是缺口冲击试验,这种方法已经规范化。具体方法是将图1-3所示的缺口试样用专用冲击试验机施加冲击载荷,使试 样断裂,用冲击过程中吸收的功除以断口面积,所得即为材料的冲击韧性,以αk表示,单位为J/cm^2。目前国际上多用夏氏V型缺口试样,我国多用U型缺口试样。由于缺口冲击

逆向工程应用现状及研究方向

逆向工程应用现状及研究方向 [摘要] 近年来, 逆向工程作为一种新的产品设计思想和方法越来越广泛地用于工业领域, 并取得了不少成果。本文全面地总结了反向工程的环节、目前的研究应用状况及现有系统的不足之处, 进一步提出了今后逆向工程的研究方向。 [关键词] 逆向工程几何建模集成系统 引言 随着科技的发展和市场竞争的日益激烈,对产品的设计提出了更高的要求,即产品多样化、外形美观、更新换代周期短;同时也促进了产品制造过程的发展。近年来,许多产品的设计、制造要求基于现有的原型或实物,由此产生了逆向工程的概念。 逆向工程是指根据实物模型测定的数据,构造出CAD模型的过程。逆向工程为客户和制造者在并行工程环境下应用快速原型技术提供了强有力的工具,是缩短产品开发周期的有效途径,特别是形状复杂的物体或自由曲面组成的物体,例如:流线型物体、人体器官、雕塑品、模具等。这种技术在工程上正得到越来越广泛的应用。 1.逆向工程建模过程 由实物产生CAD设计模型的过程称为逆向工程的几何建模,是逆向工程的关键技术,也是逆向工程的研究重点,此过程分两个阶段:数据采集;CAD模型的建立。 1.1 数据采集 数据采集是由实物测量出数据点的过程,根据测量方式不同,数据采集方法分为接触式和非接触式测量两大类。接触式测量方法是通过传感器测头与样件的接触而记录样件表面点的坐标位置。非接触式测量方法主要是基于光学、声学、磁学等领域中的基本原理,将一定的物理模拟量通过适当的算法转换为样件表面的坐标点。使用的测量方法及测量设备不同,得到的测量数据组织方式也不同。 数据采集是逆向工程准确建模的基础,采集的质量受很多因素影响, 主要有以下几方面: 测量方法本身的精度、仪器的校准、测量范围的限制、定位的准确性、多视图问题、数据的局部丢失、被测表面的光洁度、零件数据的统计性分布等。由于以上原因, 测量数据需要进行预处理,包含多视拼合、噪声处理及数据精简等多方面的工作。经过预处理的数据才可进行曲面拟合及CAD 模型的建立。 1.2 CAD 建模

断裂力学答案

( ( = K I + K I(2) 1.简述断裂力学的发展历程(含3-5 个关键人物和主要贡献)。 答:1)断裂力学的思想是由Griffith 在1920 年提出的。他首先提出将强度与裂纹长度定量 地联系在一起。他对玻璃平板进行了大量的实验研究工作,提出了能量理论思想。(2)断裂 力学作为一门科学,是从1948 年开始的。这一年Irwin 发表了他的第一篇经典文章“Fracture Dynamic(断裂动力学)”,研究了金属的断裂问题。这篇文章标志着断裂力学的诞生。(3) 关于脆性断裂理论的重大突破仍归功于Irwin。他于1957 年提出了应力强度因子的概念,在 此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术。这样,作为断裂 力学的最初分支——线弹性断裂力学就开始建立起来了。(4)1963 年,Wells 提出了裂纹张 开位移(COD)的概念,并用于大范围屈服的情况。研究表明,在小范围屈服情况下COD 法与LEFM 是等效的。(5)1968 年,Rice 等人根据与路径无关的回路积分,提出了J 积分 的概念。J 积分是一个定义明确、理论严密的应力应变参量,它的实验测定也比较简单可靠。 J 积分的提出,标志着弹塑性断裂力学基本框架形成。 2.断裂力学的定义,研究对象和主要任务。 答:1)断裂力学的定义:断裂力学是一门工程学科,它定量地研究承载结构由于所含有的 一条主裂纹发生扩展而产生失效的条件。 (2)研究对象:断裂力学的研究对象是带有裂纹的承载结构。 (3)主要任务:研究裂纹尖端附近应力应变分布,掌握裂纹在载荷作用下的扩展规律;了 解带裂纹构件的承载能力,进而提出抗断设计的方法,保证构件安全工作。 3.什么是平面应力和平面应变状态,二者有什么特点?请举例说明之。 答:(1)平面应力:薄板问题,只有xoy 平面内的三个应力分量σ x、σ y、τ xy; ε z ≠ 0, 属三向应变状态。 (2)平面应变:长坝问题,与oz 轴垂直的各横截面相同,载荷垂直于z 轴且沿z 轴方向无 变化; ε z = 0, σ z ≠ 0,属三向应力状态;材料不易发生塑性变形,更具危险。 4.什么是应力强度因子的叠加原理,并证明之。掌握工程应用的方法。 答:(1)应力强度因子的叠加原理:复杂载荷下的应力强度因子等于各单个载荷的应力强 度因子之和。 (1) 在外载荷T2作用下,裂纹前端应力场为 σ2,则相应的应力强度因子为K I(2) = σ 2 π a 如果外载荷T1和T2联合作用,则裂纹前端应力场为 σ1+ σ2,则相应的应力强度因子为 K I = (σ 1 + σ 2 ) π a = σ 1 π a + σ 2 π a (1) 6.为什么裂纹尖端会发生应力松弛?如何对应力强度因子进行修正? 答:裂纹尖端附近存在着小范围的塑性区(设塑性区是以裂纹尖端为圆心,半径为r0 的圆 π a 形区域),材料屈服后,多出来的应力将要松驰(即传递给r>r0 的区域),使r0 前方局部地 区的应力升高,又导致这些地方发生屈服。即屈服导致应力松弛。 Irwin 提出了有效裂纹尺寸的概念a eff = a + r y对应力强度因子进行修正,在小范围条件下,

断裂力学的发展与研究现状 - glearningtjueducn

万方数据

万方数据

万方数据

万方数据

断裂力学的发展与研究现状 作者:康颖安, KANG Ying-an 作者单位:湖南工程学院,机械工程系,湖南,湘潭,411101 刊名: 湖南工程学院学报(自然科学版) 英文刊名:JOURNAL OF HUNAN INSTITUTE OF ENGINEERING(NATURAL SCIENCE EDITION) 年,卷(期):2006,16(1) 被引用次数:1次 参考文献(10条) 1.范天佑断裂理论基础 2003 2.陈会军;李永东;唐立强多孔材料中裂纹尖端的渐近场[期刊论文]-哈尔滨工程大学学报 2000(03) 3.张淳源粘弹性断裂力学 1994 4.张俊彦;张淳源裂纹扩展条件及其温度场研究 1996(01) 5.Rice J R;Rosengren G F Plane strain deformation near a crack tip in a powerlaw hardening material 1968 6.Hutchinson J W Singular behavior at the end of a tensile crack in a hardening material 1968 7.黄克智弹塑性断裂力学的一个重要进展 1993(01) 8.Wells A A Applications of fracture mechanics at/and beyond general yielding 1963 9.Irwin G R Analysis of stress and strains near the end of a crack traversing a plate 1957 10.沈成康断裂力学 1996 引证文献(1条) 1.单丙娟浅谈断裂力学的发展与研究现状[期刊论文]-内蒙古石油化工 2007(7) 本文链接:https://www.doczj.com/doc/3514018449.html,/Periodical_hngcxyxb-zr200601011.aspx

逆向工程论文

题目:浅谈逆向工程技术发展趋势及应用系(院):机械工程学院 专业: 12机自一班 学生姓名:王凯 学号: 1210111039 2015年10月

浅谈逆向工程技术发展趋势及应用 摘要:为适应先进制造技术的发展,越来越多的产品需要一体化的解决方案,即从样品一数据一产品,逆向工程技术的运用使得产品的异形曲面快速完成数字建模,加快了新产品问世的步伐,提高了产品的外观新颖性、复杂性及制造精度,并大大降低了产品研制开发的成本。逆向工程是专门为制造业提供了一个全新、高效的重构手段,实现从实际物体到几何模型的转换,成为现代企业开发新产品的重要设计手段。 关键词:逆向工程数字建模加快步伐降低成本 1 引言 从20世纪60年代末开始,设计领域中就开始相继出现一系列新兴理论与方法。为了区别过去常用的传统设计理论与方法,把这些新兴的理论与方法称之为现代设计。现代设计理论与方法的内容众多而丰富,它们是功能论、优化论、离散论、对应论、艺术论、系统论、信息论控制论、突变论、智能论和模糊论等方法学构成。 现代设计方法包括可靠性设计方法、化设计方法、并行设计、虚拟设计、绿色设计、动态设计等,这里重点介绍逆向工程设计。 逆向工程作为软件工程领域的一个新兴分支,是对已知的事物的有关信息进行充分的消化和吸收,在此基础上加以创新改型,通过数字化及数据处理后重构实物的三维模型,大大缩短了产品的问世周期。其主要作用是接收来自测量设备的产品数据,通过一系列的编辑操作,得到品质优良的曲线或曲面模型,并通过标准数据格式将这些曲线曲面数据输送到现有CAD/CAM系统中,在这些系统中完成最终的产品造型。 目前主流应用的四大逆向工程软件:Imageware、RapidForm、CopyCAD、Geomagic Studio。 2 逆向工程的发展历程及现状 20世纪60年代,逆向工程作为独立的新兴学科出现在国际工业界,1956年,英国Ferranti公司开发了世界上第一台三坐标测量机;1963年10月,DEA公司制造出世界上第一台龙门式测量机,开创了坐标测量技术的新领域。目前逆向工程已发展为CAD/CAM系统中的一个相对独立的研究分支,其相关领域包括几何测量、图像处理、计算机视觉、几何造型和数字化制造等。 3 逆向工程的应用 逆向工程主要应用于汽车、飞机、家电、玩具、模具等相关领域,它实现了制造技术的数字化,充分利用现有资源,使新产品的开发更加方便、快捷,也大大降低了开发和生产成本,缩短了设计生产周期。其主要应用有以下几个方面:

断裂力学材料

?断裂力学是为解决机械结构断裂问题而发展起来的力学分支,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。 ?本课程将简要介绍断裂的工程问题、能量守恒与断裂判据、应力强度因子、线弹性和弹塑性断裂力学基本理论、裂纹扩展、J积分以及断裂问题的有限元方法等内容。 ?当机械结构带有裂纹时,判断机械结构发生断裂的时机,不能用屈服判据,而应该寻求新的断裂判据。 ?现代断裂力学(fracture mechanics)这门学科,就在这种背景下诞生了。从上世纪五十年代中期以来,断裂力学发展很快,目前线性理论部分已比较成熟,在工程方面,已广泛应用于宇航、航空、海洋、兵器、机械、化工和地质等许多领域。断裂力学的关键问题(一) 1.多小的裂纹或缺陷是允许存在的,即此小裂纹或缺陷不会在预定的服役期间发展成断裂时的大裂纹? 2.多大的裂纹就可能发生断裂,即用什么判据判断断裂发生的时机? 3.从允许存在的小裂纹扩展到断裂时的大裂纹需要多长时间,即机械结构的寿命如何估算?以及影响裂纹扩展率的因素。 4.在既能保证安全,又能避免不必要的停产损失,探伤检查周期应如何安排? 5.万一检查时发现了裂纹,该如何处理? 断裂力学的关键问题(二) 1.什么材料比较不容易萌生裂纹? 2.什么材料可以容许比较长的裂纹存在而不发断裂? 3.什么材料抵抗裂纹扩展的性能较好? 4.怎样冶炼、加工和热处理可以得到最佳效果? 前五个问题可以用断裂力学的方法来解决;后面四个问题则属于材料或金属学的领域。因此,断裂是与力学、材料和工程应用有关的问题。应综合力学、材料学和工程应用等方面着手研究。 解决断裂问题的思路 为解决上面所提的工程问题和材料问题,对于含裂纹的受力机械零件或构件,必须先找到一个能表征裂纹端点区应力应变场强度(intensity)的参量,就象应力可以作为裂纹不存在时的表征参量一样。 解决断裂问题的思路—科学假说(续) 因为断裂的发生绝大多数都是由裂纹引起的,而断裂尤其是脆性断裂,一般就是裂纹的失稳扩展。裂纹的失稳扩展,通常由裂纹端点开始。因此,发生断裂的时机必然与裂端区应力应变场的强度有关。 对于不含裂纹的物体,当某处的应力水平超过屈服应力,就要发生塑性变形;而对于含裂纹的物体,当某裂端表征应力应变场强度的参量达到临界值时,就要发生断裂。 这个发生断裂的临界值很可能是材料常数,它既可表征材料抵抗断裂的性能,亦可用来衡量材料质量的优劣。 影响断裂的两大因素 载荷大小和裂纹长度 考虑含有一条宏观裂纹的构件,随着服役时间后使用次数的增加,裂纹总是愈来愈长。在工作载荷较高时,比较短的裂纹就有可能发生断裂;在工作载荷较低时,比较长的裂纹才会带来危险。这表明表征裂端区应力变场强度的参量与载荷大小和裂纹长短有关,甚至可能与构件的几何形状有关。 断裂力学研究内容

断裂力学答案

( ( = K I + K I(2) 1.简述断裂力学的发展历程(含 3-5 个关键人物和主要贡献)。 答: 1)断裂力学的思想是由 Griffith 在 1920 年提出的。他首先提出将强度与裂纹长度定量 地联系在一起。他对玻璃平板进行了大量的实验研究工作,提出了能量理论思想。(2)断裂 力学作为一门科学,是从 1948 年开始的。这一年 Irwin 发表了他的第一篇经典文章“Fracture Dynamic (断裂动力学)”,研究了金属的断裂问题。这篇文章标志着断裂力学的诞生。(3) 关于脆性断裂理论的重大突破仍归功于 Irwin 。他于 1957 年提出了应力强度因子的概念,在 此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术。这样,作为断裂 力学的最初分支——线弹性断裂力学就开始建立起来了。(4)1963 年,Wells 提出了裂纹张 开位移(COD )的概念,并用于大范围屈服的情况。研究表明,在小范围屈服情况下 COD 法与 LEFM 是等效的。(5)1968 年,Rice 等人根据与路径无关的回路积分,提出了 J 积分 的概念。J 积分是一个定义明确、理论严密的应力应变参量,它的实验测定也比较简单可靠。 J 积分的提出,标志着弹塑性断裂力学基本框架形成。 2.断裂力学的定义,研究对象和主要任务。 答: 1)断裂力学的定义:断裂力学是一门工程学科,它定量地研究承载结构由于所含有的 一条主裂纹发生扩展而产生失效的条件。 (2)研究对象:断裂力学的研究对象是带有裂纹的承载结构。 (3)主要任务:研究裂纹尖端附近应力应变分布,掌握裂纹在载荷作用下的扩展规律;了 解带裂纹构件的承载能力,进而提出抗断设计的方法,保证构件安全工作。 3.什么是平面应力和平面应变状态,二者有什么特点?请举例说明之。 答:(1)平面应力:薄板问题,只有 xoy 平面内的三个应力分量σ x 、σ y 、τ xy ; ε z ≠ 0 , 属三向应变状态。 (2)平面应变:长坝问题,与 oz 轴垂直的各横截面相同,载荷垂直于 z 轴且沿 z 轴方向无 变化; ε z = 0 , σ z ≠ 0 ,属三向应力状态;材料不易发生塑性变形,更具危险。 4.什么是应力强度因子的叠加原理,并证明之。掌握工程应用的方法。 答:(1)应力强度因子的叠加原理:复杂载荷下的应力强度因子等于各单个载荷的应力强 度因子之和。 (1) 在外载荷 T 2 作用下,裂纹前端应力场为 σ2,则相应的应力强度因子为 K I(2) = σ 2 π a 如果外载荷 T 1 和 T 2 联合作用,则裂纹前端应力场为 σ1+ σ2 ,则相应的应力强度因子为 K I = (σ 1 + σ 2 ) π a = σ 1 π a + σ 2 π a (1) 6.为什么裂纹尖端会发生应力松弛?如何对应力强度因子进行修正? 答:裂纹尖端附近存在着小范围的塑性区(设塑性区是以裂纹尖端为圆心,半径为 r0 的圆 π a 形区域),材料屈服后,多出来的应力将要松驰(即传递给 r>r0 的区域),使 r0 前方局部地 区的应力升高,又导致这些地方发生屈服。即屈服导致应力松弛。 Irwin 提出了有效裂纹尺寸的概念 a eff = a + r y 对应力强度因子进行修正,在小范围条件下,

逆向工程技术现状及发展前景

逆向工程技术现状及发展前景 概念 逆向工程也称反求工程或反向工程,是根据已存在的产品或零件原型构造产品或零件的工程设计模型,并在此基础上对已有的产品进行剖析、理解和改进,是对已有设计的二次设计。 分类 从广义讲,逆向工程可分以下三类: 1)实物逆向:它是在已有产品实物的条件下,通过测绘和分折,从而再创造;其中包括功能逆向、性能逆向、方案、结构、材质等多方面的逆向。实物逆向的对象可以是整机、零部件或组件。 2)软件逆向:产品样本、技术文件、设计书、使用说明书、图纸、有关规范和标准、管理规范和质量保证手册等均称为技术软件。软件逆向有三类:既有实物,又有全套技术软件;只有实物而无技术软件;没有实物,仅有全套或部分技术软件。 3)影像逆向:设计者既无产品实物,也无技术软件,仅有产品的图片、广告介绍或参观后的印象等,设计者要通过这些影像资料去构思、设计产品,该种逆向称为影像逆向。 工艺过程 逆向工程系统主要由三部分组成: 产品实物几何外形的数字化、CAD 模型重建、产品或模具制造。逆向工程中的关键技术是据采集、数据处理和模型的重建。 (1) 数据采集:数据采集是逆向工程的第一步,其方法的得当直接影响到是否能准确、快速、完整地获取实物的二维、三维几何数据, 影响到重构的CAD 实体模型的质量, 并最终影响产品的质量。 (2) 数据处理:对于获取的一系列点数据在进行CAD 模型重建前, 必须进行格式转换、噪声滤除、平滑、对齐、归并、测头半径补偿和插值补点等处理。 (3) 模型重建:将处理过的测量数据导入CAD系统, 依据前面创建的曲线、曲面构建出原型的CAD 模型。 逆向工程技术过程图解:

断裂力学和断裂韧性

断裂力学与断裂韧性 3.1 概述 断裂是工程构件最危险的一种失效方式,尤其是脆性断裂,它是突然发生的破坏,断裂前没有明显的征兆,这就常常引起灾难性的破坏事故。自从四五十年代之后,脆性断裂的事故明显地增加。例如,大家非常熟悉的巨型豪华客轮-泰坦尼克号,就是在航行中遭遇到冰山撞击,船体发生突然断裂造成了旷世悲剧! 按照传统力学设计,只要求工作应力σ小于许用应力[σ],即σ<[σ], 就被认为是安全的了。而[σ],对塑性材料[σ]=σ s /n,对脆性材料[σ]=σ b /n, 其中n为安全系数。经典的强度理论无法解释为什么工作应力远低于材料屈服强度时会发生所谓低应力脆断的现象。原来,传统力学是把材料看成均匀的,没有缺陷的,没有裂纹的理想固体,但是实际的工程材料,在制备、加工及使用过程中,都会产生各种宏观缺陷乃至宏观裂纹。 人们在随后的研究中发现低应力脆断总是和材料内部含有一定尺寸的裂纹相联系的,当裂纹在给定的作用应力下扩展到一临界尺寸时,就会突然破裂。因为传统力学或经典的强度理论解决不了带裂纹构件的断裂问题,断裂力学就应运而生。可以说断裂力学就是研究带裂纹体的力学,它给出了含裂纹体的断裂判据,并提出一个材料固有性能的指标——断裂韧性,用它来比较各种材料的抗断能力。 3.2 格里菲斯(Griffith)断裂理论 3.2.1 理论断裂强度

金属的理论断裂强度可由原子间结合力的图形算出,如图3-1。图中纵坐标表示原子间结合力,纵轴上方 为吸引力下方为斥力,当两原子间 距为a即点阵常数时,原子处于平 衡位置,原子间的作用力为零。如 金属受拉伸离开平衡位置,位移越 大需克服的引力越大,引力和位移 的关系如以正弦函数关系表示,当 位移达到X m 时吸力最大以σ c 表示, 拉力超过此值以后,引力逐渐减小, 在位移达到正弦周期之半时,原子间的作用力为零,即原子的键合已完全破坏, 达到完全分离的程度。可见理论断裂强度即相当于克服最大引力σ c 。该力和位移的关系为 图中正弦曲线下所包围的面积代表使金属原子完全分离所需的能量。分离后形成两个新表面,表面能为。 可得出。 若以=,=代入,可算出。 3.2.2 格里菲斯(Griffith)断裂理论 金属的实际断裂强度要比理论计算的断裂强度低得多,粗略言之,至少 低一个数量级,即 。 陶瓷、玻璃的实际断裂强度则更低。

断裂力学论文

中国矿业大学 断裂力学课程报告课程总结及创新应用 XXX 2014/5/7 班级:工程力学XX班 学号:0211XXXX

断裂力学结课论文 一、学科简介 1、学科综述 结构的破坏控制一直是工程设计的关键所在。工程构件中难免有裂纹,从而会产生应力集中、结构失效等问题。裂纹既可能是结构零件使用前就存在的,也可能是结构在使用过程中产生的。但裂纹的存在并不意味着构件的报废,而是要求我们能准确地预测含裂纹构件的使用寿命或剩余强度。针对脆性材料的研究已有完善的弹性理论方法,并获得了广发的应用。但对于工程中许多由韧性较好的中、低强度金属材料制成的构件,往往在裂纹处先经历大量的塑性变形,然后才发生断裂破坏或失稳等。这说明,韧性好的金属材料有能力在一定程度上减弱裂纹的危险,并可以增大结构零件的承载能力或延长器使用寿命,这也是韧性材料的优点所在。但与此同时,这给预测强度的力学工作者带来了更复杂的问题,即不可逆的非塑性变形,这也是开展工程构架弹塑性变形的原因之一。 因而,裂纹的弹塑性变形研究具有广泛的工程背景和重要的理论意义。作为研究裂纹规律的一门学科,即断裂力学,它是50年代开始蓬勃发展起来的固体力学新分支,是为解决机械结构断裂问题而发展起来的力学分支,被广泛地应用于航海、航空、兵器、机械、化工和地质等诸多领域,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。 断裂力学有微观断裂力学与宏观断裂力学之分。一方面,需要深入到微观领域弄清微观的断裂机理,才能深入了解宏观断裂的现象。另一方面,宏观断裂力学仍然没有发展完善,尤其是在工程实际中的应用还远未成熟,即使平面弹塑性断裂力学也依然有许多亟待解决的问题。 2、断裂力学研究的主要问题 1、多少裂纹和缺陷是允许存在的? 2、用什么判据来判断断裂发生的时机? 3、研究对象的寿命图和估算?如何进行裂纹扩展率的测试及研究影响裂纹扩展率的因素。 4、如何在既安全又能避免不必要的停产损失的情况下安排探伤检测周期。 5、若检测出裂纹又应如何处理? 3、生活中常见的断裂破坏及破坏的主要特征 断裂在生活及工程中引发的问题和事故:1、海洋平台发生崩溃;2、压力容器发生破裂;3、吊桥的钢索断;4、天然气管道破裂;5、房屋开裂倒塌;6、气轮机叶片断裂。 断裂破坏的主要特征:1、尽管材料可能是由延性材料制成,但是灾难性破坏大多有脆性特征。2、大多数是低应力破坏,破坏时应力远小于屈服极限或设计的极限应力。3、大多数破坏始于缺陷、孔口、缺口根部等不连续部位。4、断裂破坏传播速度很高,难以防范和补救。5、高速撞击、高强度材料、低温情况下更容易发生。 4、断裂力学的发展历史 断裂力学的发展迄今为止大致经历了一下几个阶段,首先1920—1949年间主要以能量的方法求解,其中最有影响的是英国科学家Griffith提出的能量断裂理论以及据此建立的断裂判据。而后从1957年开始时线弹性断裂理论阶段,提出了应力强度因子概念及相应的判断依据。到1961—1968年间是弹塑性理论阶段,其中以1961年的裂纹尖端位移判据和

Ansys 断裂力学理论

第四章断裂力学 文献来源:https://www.doczj.com/doc/3514018449.html,/document/200707/article796_2.htm 4.1 断裂力学的定义 在许多结构和零部件中存在的裂纹和缺陷,有时会导致灾难性的后果。断裂力学在工程领域的应用就是要解决裂纹和缺陷的扩展问题。 断裂力学是研究载荷作用下结构中的裂纹是怎样扩展的,并对有关的裂纹扩展和断裂失效用实验的结果进行预测。它是通过计算裂纹区域和破坏结构的断裂参数来预测的,如应力强度因子,它能估算裂纹扩展速率。一般情况下,裂纹的扩展是随着作用在构件上的循环载荷次数而增加的。如飞机机舱中的裂纹扩展,它与机舱加压及减压有关。此外,环境条件,如温度、或大范围的辐射都能影响材料的断裂特性。 典型的断裂参数有: 与三种基本断裂模型相关的应力强度因子(K I,K II,K III)(见图4-1); J积分,它定义为与积分路径无关的线积分,用于度量裂纹尖端附近奇异应力与应变的强度; 能量释放率(G),它反映裂纹张开或闭合时功的大小; 注意--在本节大部分的图形中裂纹的宽度被放大了许多倍。 图4-1 裂缝的三种基本模型 4.2 断裂力学的求解 求解断裂力学问题的步骤为:先进行线弹性分析或弹塑性静力分析,然后用特殊的后处理命令、或宏命令计算所需的断裂参数。本章我们集中讨论下列两个主要的处理过程。 裂纹区域的模拟; 计算断裂参数。 4.2.1 裂纹区域的模拟 在断裂模型中最重要的区域,是围绕裂纹边缘的部位。裂纹的边缘,在2D模型中称为裂纹尖端,在3D模型中称为裂纹前缘。如图4-2所示。

图4-2 裂纹尖端和裂纹前缘 在线弹性问题中,在裂纹尖端附近(或裂纹前缘)某点的位移随而变化,γ是裂纹尖端到该点的距离,裂纹尖端处的应力与应变是奇异的,随1/变化。为选取应变奇异点, 相应的裂纹面需与它一致,围绕裂纹顶点的有限元单元应该是二次奇异单元,其中节点放到1/4边处。图4-3表示2-D和3-D模型的奇异单元。 图4-3 2-D和3-D模型的奇异单元 4.2.1.1 2-D断裂模型 对2D断裂模型推荐采用PLANE2单元,其为六节点三角形单元。围绕裂纹尖端的第一行单元,必须具有奇异性,如图4-3a所示。PREP7 中KSCON命令(Main Menu>Preprocessor>-Meshing-Shape & Size>-Concentrat KPs-Create)用于指定关键点周围的单元大小,它特别适用于断裂模型。本命令自动围绕指定的关键点产生奇异单元。命令的其他选项可以控制第一行单元的半径,以及控制周围的单元数目等,图4-4显示用KSCON命令产生的断裂模型。

岩石的损伤力学及断裂力学综述

岩石的断裂力学及损伤力学综述 摘要:论述了国内外断裂力学及损伤力学的学科发展历程,总结了岩体断裂力学损伤力学的研究内容、研究特点以及岩石力学专家们一些年来所取得的主要成果,并简单介绍了断裂力学损伤力学在岩土工程中的实际应用。最后,通过对岩石破坏的断裂-损伤理论的阐述,指出了综合考虑损伤与断裂的破坏理论是能更好地反映岩石实际破坏过程的一种新的理论, 可在以后的理论研究和实际工程中得以更为广泛的应用。 关键词:岩石 断裂力学 损伤力学 应用 1 引 言 岩石的破坏过程总是伴随着损伤(分布缺陷)和裂纹(集中缺陷)的交互扩展, 这种耦合效应使得裂纹尖端附近区域材料必然具有更严重的分布缺陷。岩石的破坏, 如脆性断裂和塑性失稳, 虽然有突然发生的表面现象, 但是, 从材料损伤的发生、发展和演化直到出现宏观的裂纹型缺陷, 伴随着裂纹的稳定扩展或失稳扩展, 是作为过程而展开的。 经典的断裂力学广泛研究的是裂纹及其扩展规律问题。物体中的裂纹被理想化为一光滑的零厚度间断面。在裂纹的前缘存在着应力应变的奇异场,而裂纹尖端附近的材料假定同尖端远处的材料性质并无区别。象裂纹这样的缺陷可称它为奇异缺陷,因此经典断裂力学中物体的缺陷仅仅表现为有奇异缺陷的存在。 而损伤力学所研究的是连续分布的缺陷, 物体中存在着位错、微裂纹与微孔洞等形形色色的缺陷,这些统称为损伤。从宏观来看, 它们遍布于整个物体。这些缺陷的发生与发展表现为材料的变形与破坏。损伤力学就是研究在各种加载条件下, 物体中的损伤随变形而发展并导致破坏的过程和规律。 事实上, 物体中往往同时存在着奇异缺陷和分布缺陷。在裂纹(奇异缺陷)附近区域中的材料必然具有更严重的分布缺陷, 它的力学性质必然不同于距离裂纹尖端远处的材料。因此, 为了更切合实际, 就必须把损伤力学和断裂力学结合起来, 用于研究物体更真实的破坏过程。 2 断裂力学 2.1 断裂力学学科发展 “断裂力学”指的是固体力学的一个重要分支,该学科要在假定裂纹存在的条件下,寻求裂纹长度、材料抗裂纹增长的固有阻力、以及能使裂纹高速扩展从而导致结构失效的应力之间的定量关系[]1。 断裂力学最早是在1920年提出的。当时格里菲斯为了研究玻璃、陶瓷等脆性材料的实际强度比理论强度低的原因,提出了在固体材料中或在材料的运行过程中存在或产生裂纹的设想,计算了当裂纹存在时,板状构件中应变能变化进而得出了一个十分重要的结果:常数≡a c δ。 1949年,奥罗万在分析了金属构件的断裂现象后对格里菲斯的公式提出了修正,他认为产生裂纹所释放的应变能不仅能转化为表面能,也应转化为裂纹前沿

逆向工程技术及其发展现状

摘要 与CAD/CAM系统在我国几十年的应用时间相比,逆向工程技术为企业所接受只有十几年甚至几年的时间。时间虽短,但是逆向工程技术广阔的应用前景和对企业竞争力的巨大推动作用,已经引起了很多企业的关注。 逆向工程实现了从实际物体到几何建模的直接转换。逆向工程技术涉与计算机图形学、计算机图像处理、微分几何、概率统计等学科。本文介绍了逆向工程的基本概念,重点分析的逆向工程技术过程,阐述了现代制造业中逆向工程的的发展前景以与逆向工程技术的重要应用领域。本文对于我们正确认识逆向工程技术有一定的意义。 【关键词】逆向工程CAD/CAM solidworks surfacer 反向工程、建模

目录 1 逆向工程简介 (1) 1.1逆向工程介绍............................. 错误!未定义书签。 1.2 逆向工程的应用 (3) 2 逆向工程应用实例 (6) 3 逆向工程的其他应用领域 (7) 参考文献 (8)

1 逆向工程介绍 1. 逆向工程的概念 逆向工程(Reverse Engineering,RE)是对产品设计过程的一种描述。在工程技术人员的一般概念中,产品设计过程是一个从无到有的过程:设计人员首先构思产品的外形、性能和大致的技术参数等,然后利用CAD技术建立产品的三维数字化模型,最终将这个模型转入制造流程,完成产品的整个设计制造周期。这样的产品设计过程我们可以称之为“正向设计”。逆向工程则是一个“从有到无”的过程。简单地说,逆向工程就是根据已经存在的产品模型,反向推出产品的设计数据(包括设计图纸或数字模型)的过程。 随着计算机技术在制造领域的广泛应用,特别是数字化测量技术的迅猛发展,基于测量数据的产品造型技术成为逆向工程技术关注的主要对象。通过数字化测量设备(如坐标测量机、激光测量设备等)获取的物体表面的空间数据,需要经过逆向工程技术的处理才能获得产品的数字模型,进而输送到CAM系统完成产品的制造。因此,逆向工程技术可以认为是“将产品样件转化为CAD模型的相关数字化技术和几何模型重建技术”的总称。 逆向工程软件部分品牌包括Surfacer(Imageware)、ICEM、CopyCAD、Rapid Form等。逆向软件的演进约略可区分为三个阶段。十一年前在逆向工程上,只能运用CATIA等CAD/CAM高阶曲面系统。市场后来发展出两套主流产品约在七、八年前技术成熟,广为业界引用。到最近四年来,发展

相关主题
文本预览
相关文档 最新文档