当前位置:文档之家› 3简明材料力学习题解答第三章 2

3简明材料力学习题解答第三章 2

3简明材料力学习题解答第三章 2
3简明材料力学习题解答第三章 2

3-1. 用截面法求图示各杆在截面1-1、2-2、3-3上的扭矩。并于截面上有矢量表示扭矩,指

出扭矩的符号。作出各杆扭矩图。

解: (a)

(1) 用截面法求1-1截面上的扭矩

110 20

2 .x

m

T T kN m

=-+=∴=∑

(2) 用截面法求2-2截面上的扭矩

220 20

2 .x

m

T T kN m

=--=∴=-∑

(3) 画扭矩图

(b)

(1) 用截面法求1-1截面上的扭矩

110 53204 .x

m

T T kN m

=--+-=∴=-∑

(2) 用截面法求2-2截面上的扭矩

(a)

x

x

x

x

x

220 3201 .x

m

T T kN m

=-+-=∴=∑

(3) 用截面法求3-3截面上的扭矩

330 20

2 .x

m

T T kN m

=--=∴=-∑

(4) 画扭矩图

3.3. 直径D =50 mm 的圆轴受扭矩T =2.15 kN.m 的作用。试求距轴心10 mm 处的切应力,并

求横截面上的最大切应力。 解: (1) 圆轴的极惯性矩

4

4

74320.05 6.1410 3232

P D I m π-?===?

点的切应力

37

2.15100.0135.0 6.1410p T MPa I ρτ-??===?

(2) 圆轴的抗扭截面系数

7

536.1410 2.45610 /20.05/2

p

t I W m D --?===?

截面上的最大切应力

3max

5

2.151087.5 2.45610t T MPa W τ-?===? 注:截面上的切应力成线性分布,所以也可以用比例关系求最大切应力。

max /2

0.05/2

35.087.5 0.01

D MPa ττρ

=?

=?

= 3.4. 发电量为1500 kW 的水轮机主轴如图示。D =550 mm ,d =300 mm ,正常转速n =250

r/min 。材料的许用剪应力[τ]=500 MPa 。试校核水轮机主轴的强度。

x

解:(1) 计算外力偶矩

15009549

954957.29 .250

P m kN m n ==?= (2) 计算扭矩

57.29 .T m kN m ==

(3) 计算抗扭截面系数

4433()29.810 16t W D d m D

π

-=

-=?

(4) 强度校核

3

3

57.291019.2[]29.810t T MPa W τσ-?===?

强度足够。

注:强度校核类问题,最后必需给出结论。

3-5. 图示轴AB 的转速n =120 r/min ,从B 轮输入功率P =44.1 kW ,功率的一半通过锥形齿轮

传送给轴C ,另一半由水平轴H 输出。已知D 1=60 cm ,D 2=24 cm ,d 1=10 cm ,d 2=8 cm ,d 3=6 cm ,[τ]=20 MPa 。试对各轴进行强度校核。

解:(1)计算外力偶矩

1244.1954995493509 .120

1

1755 .2

44.1

2295499549701.9 .6012024

H C P m N m n m m N m P m N m

D n D ==?==

====??

(2)计算内力扭矩

3509 . 1755701.9.AB H H C C T m N m T m Nm T m N m

======

(3)计算抗扭截面系数

3363

1336323363

30.119610 16

16

0.0810010 16

16

0.0642.410 16

16

tAB tH tC W d m W d m W d m π

π

π

π

π

π

---==

?=?==?=?=

=

?=? (4)强度校核

max 6

max 6

max 6

350917.9[]196101755

17.55[]10010701.9

16.55[]42.410AB AB tAB H H tH C C tC tC

T MPa W T MPa W T MPa W ττττττ---===?===?=

==? 强度足够。

3-6. 图示阶梯形圆轴直径分别为d 1=40 mm ,d 2=70 mm ,轴上装有三个带轮。已知由轮3输

入的功率为P 3=30 kW ,轮1输出的功率为P 1=13 kW ,轴作匀速转动,转速n =200 r/min ,材料的许用剪应力[τ]=60 MPa ,G=80 GPa ,许用扭转角[θ]=2 o /m 。试校核轴的强度和刚度。

解:(1) 计算外力偶矩

1133139549

9549620.7200

30

954995491432.4200P m Nm n P m Nm

n ==?===?=

(2) 计算扭矩

121233620.7 . 1432.4 .T m N m T m N m =-=-=-=-

(3) 计算抗扭截面系数

3363

113363

220.0412.561016

16

0.0767.311016

16

t t W d m W d m π

π

π

π

--==

?=?=

=

?=?

(4) 强度校核

[][]12max16

123max 26

2620.7

49.4212.5610

1432.4

21.2867.3110

t t T MPa W T MPa W ττττ--===≤?=

==≤?

强度足够。

(5) 计算截面极惯性矩

684111673

22

20.0412.561025.1210 22

0.07

67.311023.5610 22

p t p t d I W m d I W m ----=?=??=?=?=??=?

(6) 刚度校核

12max198

123max 297

2180620.7180 1.77/[]801025.12101801432.41800.435/[]801023.5610o o

o p o o

o

p T m GI T m GI θθππ

θθππ

--=?=?=???=

?=?=???

刚度足够。

注:本题中扭矩的符号为负,而在强度和刚度计算中,扭矩用其数值代入。

3.9. 实心轴和空心轴由牙嵌式离合器连接在一起,如图所示。已知轴的转速为n =100

r/min ,传递的功率P =7.5 kW ,材料的许用剪应力[τ]=40 MPa 。试选择实心轴直径d 1和内外径比值为1/2的空心轴外径D 2。

解:(1) 计算外力偶矩

7.59549

9549716.2.100

P m N m n ==?= (2) 计算内力-扭矩

716.2.T m N m ==

(3) 计算抗扭截面系数

3

11342216

1

(1) 162

t t W d W D π

π

αα==

-=

(4) 设计截面

3113

42216

[]

45 (1)16[]

46 T d d mm T D D mm π

τπ

ατ≥

=

==-≥=

==

注:也可以用比例关系求直径D 2。

12246 d D mm D ====

3.11. 图示传动轴的转速为n =500 r/min ,主动轮1输入功率P 1=368 kW ,从动轮2、3分别

输出功率P 2=147 kW ,P 3=221 kW 。已知[τ]=70 MPa ,[θ]=1 o /m ,G =80 GPa 。 (1) 确定AB 段的直径d 1和BC 段的直径d 2;

(2) 若AB 和BC 两段选用同一直径,试确定其数值。

(3) 主动轮和从动轮的位置如可以重新安排,试问怎样安置才比较合理?

解:(1) 计算外力偶矩

1122333689549

95497028 .500147

954995492807.500221

954995494221 .500P m N m n P m N m n P m N m

n ==?===?===?=

(2) 计算内力-扭矩

1212337028 .4221.T m N m T m N m

=-=-=-=-

(3) 计算AB 段的直径d 1和BC 段的直径d 2 根据强度条件设计

31211116

[]

80 t T W d d mm π

τ=

==

3

23

22216

[]

67 t T W d d mm π

τ=

==

根据刚度条件设计

412111180

32

[]84.6 p T I d G d mm

π

θπ

=

?∴≥

==

4

23222180

32

[]74.5 p T I d G d mm

π

θπ

=

?∴≥

==

综合强度和刚度条件,取

mm d mm d 5.74 6.8421==

(4) 若AB 和BC 两段选用同一直径,则取

mm d d 6.84 21==

(5) 将A 轮和B 轮对调位置,则T12=2807N.m ,最大扭矩减小,轴的扭转强度提高了,

所以主动轮放在中间更合理。 3.13. 设圆轴横截面上的扭矩为T ,试求四分之一截面上内力系的合力的大小、方向及作用

点。

解:(1) 取微元dA ,上面的切应力是τρ,则微力为τρdA :

4

432 32

T T T dA d d d I d ρρρρ

ρ?ρτππ==

==

(2) 将四分之一截面上的力系向O点简化

2

22

400

2

22

400

324

sin sin

3

324

cos cos

3

d

x

A

d

y

A

O

T T

Q dA d d

d d

T T

Q dA d d

d d

R

π

ρ

π

ρ

τ???ρρ

ππ

τ???ρρ

ππ

===

===

==

????

????

3

22

400

32

4

d

O

A

T T

M dA d d

d

π

ρ

τρ?ρρ

π

===

????

(3) R o与x轴之间的夹角

4

π

Q

Q

arctg

α

x

y=

=

(4) 将R o和M o进一步简化为一合力R,即将R o向左方平移一段距离d:

2

16

3d

π

R

M

d

o

o=

=

3.1

4. 图示圆截面杆的左端固定,沿轴线作用集度为t的均布力偶矩。试导出计算截面B的

扭转角的公式。

解:(1) 用截面法求x截面上的扭矩:

()()

T x t l x

=-

(2) dx微段的扭转角

()()

p p

T x t l x

d dx dx

GI GI

?

-

==

(3) 截面B 的扭转角

()2

2l

BA p

p

t l x tl dx GI GI ?-==?

3.15. 将钻头简化成直径为20mm 的圆截面杆,在头部受均布阻抗扭矩t 的作用,许用剪应

力为[τ]=70 MPa ,G =80 GPa 。(1)求许可的m ;(2)求上、下两端的相对扭转角。

解:(1) 画扭矩图

由扭矩图知

max 0.1T m t ==

(2) 确定许可载荷:

336max [][]0.027010110 .16

16

t m T W d N m π

π

ττ=≤=

=

???=

(3) 求上、下两端的相对扭转角:

()()0.2

0.10

02

49

100.1/20.20.250.251100.022 1.26

0.02801032

p p

p p p

o

m

tx dx dx

GI GI m m m GI GI GI rad ?π=+?=+=?=

==???

?

?

3.17. AB 和CD 两轴的B 、C 两端以凸缘相连接,A 、D 两端则都是固定端。由于两个凸缘

的螺钉孔的中心线未能完全生命形成一个角度为的误差。当两个凸缘由螺钉联接后,试度求两轴的装配扭矩。

解:(1) 整体受力分析,列平衡方程:

t

T

0D A m m -=

这是一次静不定问题。 (2) 求AB 、CD 杆内的扭矩

AB A CD D T m T m ==

(3) AB 、CD 杆扭转变形

11112222

CD AB A D BA CD P P P P T b T a m a m b

G I G I G I G I ??=

=== (4) 变形几何关系

1122

BA CD A D P P m a m b

G I G I ??ψ

ψ+=+= (5) 解联方程组

1212

2211

=p p A D AB CD p p G G I I m m T T aG I bG I ψ===

+

3.19. 图示结构中,AB 和CD 两杆的尺寸相同。AB 为钢杆,CD 为铝杆,两种材料的切变模

量之比为G 钢:G 铝=3:1。若不计BE 和ED 两杆的变形,试问P 将以怎样的比例分配于AB 和CD 杆上。

解:(1) 解除E

本题为扭转一次静不定问题 (2) 计算杆的扭转角

AB :

()'E AB

AB AB p

R a L G I ?=

D

D

CD :

[]()E CD CD CD p

P R a L G I ?-=

(3) 变形协调关系:

AB CD a a ??=

考虑到

E E CD AB CD AB R R G G L L ' 3 ===

解得

(4) 分配到AB 和CD 两杆上的受力分别为:3P /4和P /4

34

E R P =

材料力学习题与答案

第一章 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 可以从河流花样的反“河流”方向去寻找裂纹源。 解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素 与以下三个方面相联系的因素都会影响到屈服强度 位错增值和运动 晶粒、晶界、第二相等

外界影响位错运动的因素 主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构) 单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。 派拉力: 位错交互作用力 (a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。)2.晶粒大小和亚结构 晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形。 晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。 屈服强度与晶粒大小的关系: 霍尔-派奇(Hall-Petch) σs= σi+kyd-1/2 3.溶质元素 加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)。 4.第二相(弥散强化,沉淀强化) 不可变形第二相

材料力学习题册答案-第2章-拉压

第二章 轴向拉压 一、 选择题 1.图1所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D ) A.平动 B.转动 C.不动 D.平动加转动 2.轴向拉伸细长杆件如图2所示,则正确的说法是 ( C ) A.1-1、2-2面上应力皆均匀分布 B.1-1、2-2面上应力皆非均匀分布 C. 1-1面上应力非均匀分布,2-2面上应力均匀分布 D.1-1 面上应力均匀分布,2-2面上应力非均匀分布 F P P 1 1 2 2 图1 图2 3.有A 、B 、C 三种材料,其拉伸应力-应变实验曲线如图3所示,曲线( B )材料的弹性模量E 大,曲线( A )材料的强度高,曲线( C )材料的塑性好。 A B C 图3 ε σ B A C 图4 p α h b a 图5 4.材料经过冷却硬化后,其( D )。 A .弹性模量提高,塑性降低 B .弹性模量降低,塑性提高 C .比利极限提高,塑性提高 D .比例极限提高,塑性降低 5.现有钢铸铁两种杆件,其直径相同。从承载能力与经济效益两个方面考虑,图4所示结构中两种合理选择方案是( A )。 A .1杆为钢,2 杆为铸铁 B .1杆为铸铁,2杆为钢 C .2杆均为钢 D .2杆均为铸铁 6.如图5所示木接头,水平杆与斜杆成角,其挤压面积A 为( A )。 A .bh B .bh tg C .bh/cos D .bh/(cos -sin ) 7.如图6所示两板用圆锥销钉联接,则圆锥销钉的受剪面积为( C ),计算挤压面积为 ( D ) A . B . C . D (3d+D )

二、填空题 1.直径为d 的圆柱体放在直径为D =3d ,厚为t 的圆基座上,如图7所示低级对基座的支反力均匀分布,圆柱承受轴向压力P ,则基座剪切面的剪力 。 F F h h D d 图6 P d t D 图7 2.判断剪切面和挤压面应注意的是:剪切面是构件的两部分有发生 相对错动 趋势的平面;挤压面是构件 相互挤压 的表面。 三、试画下列杆件的轴力图 2 3 1 1 2 F F F F 3 + -解: 2KN 1 1 2 2 3 3 18KN 3KN 25KN 10KN + -15KN 10KN 解: 四、计算题 1.作出图示等截面直杆的轴力图,其横截面积为,指出最大正应力发生的截面,并计 算相应的应力值。 4KN 10KN 11KN 5KN A B C D 解:+ + -轴力图如下: 4KN 5KN

材料力学习题册答案-第3章 扭转

第三章扭转 一、是非判断题 1.圆杆受扭时,杆内各点处于纯剪切状态。(×) 2.杆件受扭时,横截面上的最大切应力发生在距截面形心最远处。(×) 3.薄壁圆管和空心圆管的扭转切应力公式完全一样。(×) 4.圆杆扭转变形实质上是剪切变形。(×) 5.非圆截面杆不能应用圆截面杆扭转切应力公式,是因为非圆截面杆扭转时“平截面假设”不能成立。(√) 6.材料相同的圆杆,他们的剪切强度条件和扭转强度条件中,许用应力的意义相同,数值相等。(×) 7.切应力互等定理仅适用于纯剪切情况。(×) 8.受扭杆件的扭矩,仅与杆件受到的转矩(外力偶矩)有关,而与杆件的材料及其横截面的大小、形状无关。(√) 9.受扭圆轴在横截面上和包含轴的纵向截面上均无正应力。(√) 10.受扭圆轴的最大切应力只出现在横截面上。(×) 11.受扭圆轴内最大拉应力的值和最大切应力的值相等。(√) 12.因木材沿纤维方向的抗剪能力差,故若受扭木质圆杆的轴线与木材纤维方向平行,当扭距达到某一极限值时,圆杆将沿轴线方向出现裂纹。(×) 二、选择题

1.内、外径之比为α的空心圆轴,扭转时轴内的最大切应力为τ,这时横截面上内边缘的切应力为 ( B ) A τ; B ατ; C 零; D (1- 4α)τ 2.实心圆轴扭转时,不发生屈服的极限扭矩为T ,若将其横截面面积增加一倍,则极限扭矩为( C ) 0 B 20T 0 D 40T 3.两根受扭圆轴的直径和长度均相同,但材料C 不同,在扭矩相同的情况下,它们的最大切应力τ、τ和扭转角ψ、ψ之间的关系为( B ) A 1τ=τ2, φ1=φ2 B 1τ=τ2, φ1≠φ2 C 1τ≠τ2, φ1=φ2 D 1τ≠τ2, φ1≠φ2 4.阶梯圆轴的最大切应力发生在( D ) A 扭矩最大的截面; B 直径最小的截面; C 单位长度扭转角最大的截面; D 不能确定。 5.空心圆轴的外径为D ,内径为d, α=d /D,其抗扭截面系数为 ( D ) A ()3 1 16p D W πα=- B ()3 2 1 16p D W πα=- C ()3 3 1 16p D W πα=- D ()3 4 1 16p D W πα=- 6.对于受扭的圆轴,关于如下结论: ①最大剪应力只出现在横截面上; ②在横截面上和包含杆件的纵向截面上均无正应力; ③圆轴内最大拉应力的值和最大剪应力的值相等。

工程力学材料力学_知识点_及典型例题

作出图中AB杆的受力图。 A处固定铰支座 B处可动铰支座 作出图中AB、AC杆及整体的受力图。 B、C光滑面约束 A处铰链约束 DE柔性约束 作图示物系中各物体及整体的受力图。 AB杆:二力杆 E处固定端 C处铰链约束

(1)运动效应:力使物体的机械运动状态发生变化的效应。 (2)变形效应:力使物体的形状发生和尺寸改变的效应。 3、力的三要素:力的大小、方向、作用点。 4、力的表示方法: (1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!) (2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。 5、约束的概念:对物体的运动起限制作用的装置。 6、约束力(约束反力):约束作用于被约束物体上的力。 约束力的方向总是与约束所能限制的运动方向相反。 约束力的作用点,在约束与被约束物体的接处 7、主动力:使物体产生运动或运动趋势的力。作用于被约束物体上的除约束力以外的其它力。 8、柔性约束:如绳索、链条、胶带等。 (1)约束的特点:只能限制物体原柔索伸长方向的运动。 (2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。() 9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。 (1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。 (2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。() 10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。 约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。()11、固定铰支座 (1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。

材料力学习题第三章

材料力学第三章答案 薄壁钢管外径为mm 114,受扭矩m kN 8?作用,用薄壁圆管的近似公式确定所需的壁厚t 值。设容许切应力[]MPa 100=τ。 解:[][]mm r T t t r T 92.3100 5721082226 22=???=≥?≤=πτπτπτ,取mm t 4=。 3.1 如图所示为圆杆横截面上的扭矩,试画出截面上的切应力分布图。 解: 3.2 直径为mm d 50=的圆轴受力如图所示,求:(1)截面上处A 点的切应力;(2)圆轴上的最大切应力。 解:MPa I T p 4.20 5.125032 1014 6 =???= =πρτρ MPa W T t 7.4016 5010136 max =??==πτ 3.3 图示圆轴的直径mm 100=d ,mm 500=l , kN.m 71=M ,kN.m 52=M ,已知材料GPa 82=G 。试求:(1)轴上的最大切应力,并指出其所在位置;(2)C 截面相对于A 截面的相对扭转角。 解:扭矩图如下 x 2 5 T/kN m . MPa W T t 5.2516 10010536max max =??==πτ,发生在BC 段外表面。 11.00019.032 1001082500 1053210010825001024 364362211-=-=?????-?????=+=+=rad GI l T GI l T P P BC AB AC ππ???。 3.4 图示阶梯形圆轴ABC ,其中AB 段为直径为1d 的实心轴,BC 段为空心轴,其外径125.1d D =。为了保证空心段BC 的最大切应力与实心段AB 的最大切应力相等,试确定空心段内径d 2。 解:()242422 31121max 1616t t t t W d D D d W W T W T =-==?== π πτ ()214313 22292.037.1D d d D D d ==-=? 3.5 图示AB 轴的转速min 120r n =,从B 轮输入功率=kW 13.44=P ,功率的一半通过锥形齿轮传给垂直

材料力学习题答案

材料力学习题答案2 7.3 在图示各单元体中,试用解析法和图解法求斜截面ab 上的应力。应力的单位为MPa 。 解 (a) 如受力图(a)所示 ()70x MPa σ=,()70y MPa σ=-,0xy τ=,30α= (1) 解析法计算(注:P217) () cos 2sin 222 70707070 cos 6003522x y x y xy MPa ασσσσσατα +-=+--+=+-= ()7070sin cos 2sin 60060.622 x y xy MPa ασστατα-+=+=-= (2) 图解法 作O στ坐标系, 取比例1cm=70MPa, 由x σ、xy τ定Dx 点, y σ、yx τ定Dy 点, 连Dx 、Dy , 交τ轴于C 点, 以C 点为圆心, CDx 为半径作应力圆如图(a1)所示。由CDx 起始, 逆时针旋转2α= 60°,得D α点。从图中可量得 D α点的坐标, 便是ασ和ατ数值。 7.4 已知应力状态如图所示,图中 应力单位皆为MPa 。试用解析法及图解 法求: (1) 主应力大小,主平面位置; (2) 在单元体上绘出主平面位置及主应力方向;

(3) 最大切应力。 解 (a) 受力如图(a)所示 ()50x MPa σ=,0y σ=,()20xy MPa τ= (1) 解析法 (数P218) 2max 2min 22x y x y xy σσσσστσ+-?? ? =±+? ?? ?? () ( )2 25750050020722MPa MPa ?+-???=±+=? ?-???? 按照主应力的记号规定 ()157MPa σ=,20σ=,()37MPa σ=- 022 20 tan 20.8500xy x y τασσ?=-=-=---,019.3α=- ()13max 577 3222MPa σστ-+=== (2) 图解法 作应力圆如图(a1)所示。应力圆 与σ轴的两个交点对应着两个主应 力1σ、3σ 的数值。由x CD 顺时针旋 转02α,可确定主平面的方位。应力 圆的半径即为最大切应力的数值。 主应力单元体如图(a2)所示。 (c) 受力如图(c)所示 0x σ=,0y σ=,()25xy MPa τ= (1) 解析法

简明材料力学习题解答第三章

3-1.用截面法求图示各杆在截面1-1、2-2、3-3上的扭矩。并于截面上有矢量表示扭矩, 指出扭矩的符号。作出各杆扭矩图 34 发电量为1500 kW 的水轮机主轴如图示。D=550 mnpd=300 mm 正常转速n=250 r/min 。 材料的许 用剪应力[T ]=500 MPa 。试校核水轮机主轴的强度。 计算扭矩 计算抗扭截面系数 强度校核 水轮机轴 强度足够 注:强度校核类问题,最后必 3-5.图示轴AB 的转速n=120 r/m n'■, 从B 轮输入功率P=44.1 kW ,功率的一半通过锥形 齿轮传送给轴C,另一半由水平轴H 输出。已知D=60 cm, D 2=24 cm, d 1=10 cm, d 2=8 cm, d a =6 cm , [ T ]=20 MPa 。试对各轴进行强度校核。 解:(a) (1) 2kN.m 1 4kN.m 2 2kN.m 用截面法求g -1截面上的扭矩 \2 N.m 1 2-2截面上的扭矩 T 2 ; 用截面法求 3kN.m 2kN.m jt 2 3 画扭矩图 (b ) T * 2kN.m 用截面法求 1-1截面上的扭矩 用截面法求 用截面法求 画扭矩图 N.m 二 fi kN.m i 1的作用。试求距轴心10 mm 处的切应力, 3.3.直径D=50 mm 的圆轴受扭矩T=2315 并求横截面上的最大切应力 解: (1)圆轴的极惯性矩 点的切应力 (2)圆轴的抗扭截面系数 截面上的最大切应力 注:截面上的切应力成线性分布, 所以也可以用比例关系求最大切应力。 4kN.m 2kN.m 解: (1) 计算外力偶矩发电机轴 (2) (3) (4) 吉论。 d 2 L 5kN.m T i (b) ■ -x 3 3kN ?.m 2kN.m 2-2截面 .m 卩 5kN.m 3kN.m 2kN.m 3-3截面上的扭矩 挣 ? T 3 2 .D 2 ” f|d 3)4- c

材料力学性能-第2版课后习题答案.

第一章 单向静拉伸力学性能 1、 解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 4、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 5、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 6、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 7、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 8、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 9、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。【P32】

工程材料力学性能-第2版习题答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 2、金属的弹性模量主要取决于什么因素为什么说它是一个对组织不敏感的力学性能指标 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 3、试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别为什么 4、决定金属屈服强度的因素有哪些【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 5、试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 6、剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 7、何谓拉伸断口三要素影响宏观拉伸断口性态的因素有哪些 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 第二章金属在其他静载荷下的力学性能

材料力学习题解答[第三章]

3-1求图中所示杆各个横截面上的应力,已知横截面面积A=400mm 2。 解a): MPa MPa 100400 10400 50400 10203 323 1=?==-=?-=σσσ 题3-1a)图 解b): MPa MPa MPa 25400 10 105050400 10203 223 1=?= -=-=?-=右左σσσ MPa MPa 125400 105025333=?==右 左σσ 题3-1b)图 3-2图中为变截面杆,如果横截面面积A 1=200mm 2,A 2=300mm 2,A 3=400mm 2,求杆内各横截面上的应力。 解a ): MPa MPa MPa 100400 10407.6630010205020010103 33 23 1=?=-=?-==?=σσσ 题3-2a)图 解b):

MPa MPa 75400 10303.3330010100 3 33 21-=?-==?==σσσ 题3-2b)图

3-3 图示杆系结构中,各杆横截面面积相等,即A=30cm 2,载荷F=200kN 。试求各杆横截面上的应力。 解:(1)约束反力: kN F F kN F F kN F F AX AY Dy 2001504 3 15043 ====== (2)各杆轴力 ) (250150200) (150)(200)(150222 2压压拉拉kN F F F kN F F kN F F kN F F NCD NAC NAC D NCD AX NAC AY NAB =+=+======= 题3-3图 (3)各杆的正应力 ) (3.83300 10250,)(5030010150) (7.66300 10200,)(50300101503 33 3压压拉拉MPa MPa MPa MPa AC CD AC AB -=?-=-=?-==?==?=σσσσ 3-4钢杆CD 直径为20mm ,用来拉住刚性梁AB 。已知F=10kN ,求钢杆横截面上的正应力。 解: ) (7.112204 104.3544.3545 cos 1) 5.11(2 3 2拉MPa d F kN F F NCD CD o NCD =??===?+=ππσ 题3-4图 3-5图示结构中,1、2两杆的横截面直径分别为10mm 和20mm ,试求两杆内的应力。设结构的横梁为刚体。

材料力学习题答案2教程文件

材料力学习题答案2 7.3 在图示各单元体中,试用解析法和图解法求斜截面ab 上的应力。应力的单位为MPa 。 解 (a) 如受力图(a)所示 ()70x MPa σ=,()70y MPa σ=-,0xy τ=,30α=o (1) 解析法计算(注:P217) () cos 2sin 22 270707070 cos 6003522x y x y xy MPa ασσσσσατα +-=+--+=+-=o ()7070sin cos 2sin 60060.622 x y xy MPa ασστατα-+=+=-=o (2) 图解法 作O στ坐标系, 取比例1cm=70MPa, 由x σ、xy τ定Dx 点, y σ、yx τ定Dy 点, 连Dx 、Dy , 交τ轴于C 点, 以C 点为圆心, CDx 为半径作应力圆如图(a1)所示。由CDx 起始, 逆时针旋转2α= 60°,得D α点。从图中可量得 D α点的坐标, 便是ασ和ατ数值。 7.4 已知应力状态如图所示,图中 应力单位皆为MPa 。试用解析法及图解 法求: (1) 主应力大小,主平面位置; (2) 在单元体上绘出主平面位置及主应力方向;

(3) 最大切应力。 解 (a) 受力如图(a)所示 ()50x MPa σ=,0y σ=,()20xy MPa τ= (1) 解析法 (数P218) 2max 2min 22x y x y xy σσσσστσ+-?? ? =±+? ?? ?? () ()2 25750050020722MPa MPa ?+-??? =±+=? ?-???? 按照主应力的记号规定 ()157MPa σ=,20σ=,()37MPa σ=- 02220 tan 20.8500xy x y τασσ?=-=-=---,019.3α=-o ()13max 577 3222MPa σστ-+=== (2) 图解法 作应力圆如图(a1)所示。应力圆 与σ轴的两个交点对应着两个主应 力1σ、3σ 的数值。由x CD 顺时针旋 转02α,可确定主平面的方位。应力 圆的半径即为最大切应力的数值。 主应力单元体如图(a2)所示。 (c) 受力如图(c)所示 0x σ=,0y σ=,()25xy MPa τ= (1) 解析法

第二章 金属材料力学性能基本知识及钢材的脆化

金属材料力学性能基本知识 及钢材的脆化 金属材料是现代工业、农业、国防以及科学技术各个领域应用最广泛的工程材料,这不仅是由于其来源丰富,生产工艺简单、成熟,而且还因为它具有优良的性能。 通常所指的金属材料性能包括以下两个方面: 1.使用性能即为了保证机械零件、设备、结构件等能正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等),化学性能(耐蚀性、热稳定性等)。使用性能决定了材料的应用范围,使用安全可靠性和使用寿命。 2 工艺性能即材料在被制成机械零件、设备、结构件的过程中适应各种冷、热加工的性能,例如锻造,焊接,热处理,压力加工,切削加工等方面的性能。工艺性能对制造成本、生成效率、产品质量有重要影响。 1.1材料力学基本知识 金属材料在加工和使用过程中都要承受不同形式外力的作用,当外力达到或超过某一限度时,材料就会发生变形以至断裂。材料在外力作用下所表现的一些性能称为材料的力学性能。锅炉压力容器材料的力学性能指标主要有强度、硬度、塑性、韧性等这些性能指标可以通过力学性能试验测定。 1.1.1强度 金属的强度是指金属抵抗永久变形和断裂的能力。材料强度指标可以通过拉伸试验测 出。把一定尺寸和形状的金属试样(图1~2)装夹在试验机上,然后对试样逐渐施加拉伸载荷,直至把试样拉断为止。根据试样在拉伸过程中承受的载荷和产生的变形量之间的关系,可绘出该金属的拉伸曲线(图1—3)。在拉伸曲线上可以得到该材料强度性能的一些数据。图1—3所示的曲线,其纵坐标是载荷P(也可换算为应力d),横坐标是伸长量AL(也可换算为应变e)。所以曲线称为P—AL曲线或一一s曲线。图中曲线A是低碳钢的拉伸曲线,分析曲线A,可以将拉伸过程分为四个阶段:

材料力学习题答案2

材料力学习题答案2 在图示各单元体中,试用解析法和图解法求斜截面ab 上的应力。应力的单位为MPa 。 解 (a) 如受力图(a)所示 ()70x MPa σ=,()70y MPa σ=-,0xy τ=,30α=o (1) 解析法计算(注:P217) () cos 2sin 222 70707070 cos 6003522x y x y xy MPa ασσσσσατα +-=+--+=+-=o ()7070sin cos 2sin 60060.622 x y xy MPa ασστατα-+=+=-=o (2) 图解法 作O στ坐标系, 取比例1cm=70MPa, 由x σ、xy τ定Dx 点, y σ、yx τ定Dy 点, 连Dx 、Dy , 交τ轴于C 点, 以C 点 为圆心, CDx 为半径作应力圆如图(a1)所示。由CDx 起 始, 逆时针旋转2α= 60°,得D α点。从图中可量得D α点 的坐标, 便是ασ和ατ数值。 已知应力状态如图所示,图中应力 单位皆为MPa 。试用解析法及图解法求: (1) 主应力大小,主平面位置; (2) 在单元体上绘出主平面位置及 主应力方向; (3) 最大切应力。

解 (a) 受力如图(a)所示 ()50x MPa σ=,0y σ=,()20xy MPa τ= (1) 解析法 (数P218) 2max 2min 22x y x y xy σσσσστσ+-?? ?=±+? ???? () ()2 25750050020722MPa MPa ?+-???=±+=? ?-???? 按照主应力的记号规定 ()157MPa σ=,20σ=,()37MPa σ=- 02 220 tan 20.8500xy x y τασσ?=-=-=---,019.3α=-o ()13max 577 3222MPa σσ τ-+=== (2) 图解法 作应力圆如图(a1)所示。应力圆 与σ轴的两个交点对应着两个主应 力1σ、3σ 的数值。由x CD 顺时针旋 转02α,可确定主平面的方位。应力 圆的半径即为最大切应力的数值。 主应力单元体如图(a2)所示。 (c) 受力如图(c)所示 0x σ=,0y σ=,()25xy MPa τ= (1) 解析法 2 max 2 min 22x y x y xy σσσσστσ+-?? ?=±+? ?? ??

材料力学复习总结

《材料力学》第五版 刘鸿文 主编 第一章 绪论 一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。 二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能 力。 三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。 第二章 轴向拉压 一、轴力图:注意要标明轴力的大小、单位和正负号。 二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。注意此规定只适用于轴力,轴力是内力,不适用于外力。 三、轴向拉压时横截面上正应力的计算公式:N F A σ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。 四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22 αστα= 注意角度α是指斜截面与横截面的夹角。 五、轴向拉压时横截面上正应力的强度条件[],max max N F A σσ=≤ 六、利用正应力强度条件可解决的三种问题:1.强度校核[],max max N F A σσ=≤ 一定要有结论 2.设计截面[],max N F A σ≥ 3.确定许可荷载[],max N F A σ≤ 七、线应变l l ε?=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA ?= 注意当杆件伸长时l ?为正,缩短时l ?为负。 八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服

材料力学习题答案2

材料力学习题答案2 7.3在图示各单元体中,试用解析法和图解法求斜截面 x y cos2 2 70 70 “ cos60、 2 ⑵图解法 Dx 、Dy ,交T 轴于C 点,以C 点为圆心,CDx 为半径作应力圆如图(a1)所示。 由CD 起始,逆时针旋转2 = 60° ,得D 点。从图中可量得D 点的坐标,便是 和数值。 7.4已知应力状态如图所示,图中 应力单位皆为MPa 试用解析法及图解 法求: (1)主应力大小,主平面位置; (2) 在单元体上绘出主平面位置及主应力方向; (3) 最大切应力。 单位为MPa 解(a)如受力图⑻所示 70 MPa , 70 MPa , xy 0, 30 : (1)解析法计算(注:P217) -sin xy cos 2 型旦 sin60: 0 60.6 MPa ab 上的应力。应力的 x y 2 70 70 2 xy Sin2 0 35 MPa 坐标系,取比例1cm=70MPa,由 xy 定Dx 点, yx 定Dy 点,连

2 解(a)受力如图⑻所示 (1)解析法(数P218) 2 x y 2 2 xy 按照主应力的记号规定 1 57 MPa , 2 0 , 3 7 MPa 50 MPa , xy 20 MPa 50 0 50 0 202 57 MPa 7 MPa tan2 0 2 xy 2 20 50 0 19.3 : max 57 7 2 32 MPa ⑵图解法 作应力圆如图(a1)所示。应力圆 与轴的两个交点对应着两个主应 力1、 3的数值。由CD x 顺时针旋 转2 0,可确定主平面的方位。应力 圆的半径即为最大切应力的数值。 主应力单元体如图(a2)所示 (c)受力如图(c)所示 x 0, y 0, xy 25 MPa (1)解析法 max min 2 xy max min

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 4、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 5、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 6、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 7、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 8、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 9、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。【P32】 答: 2 12?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能 1、 解释下列名词。 2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落 后于应力的现象。 3?循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4?包申格效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规 定残余伸长应力降低的 现象。 11. 韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆 性断裂,这种现象称 为韧脆转变 2、 说明下列力学性能指标的意义。 答:E 弹性模量G 切变模量 r 规定残余伸长应力 0.2屈服强度 gt 金属材料拉伸时最大应力下的总伸长率 n 应 变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但 是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏 感。【P4】 4、 现有4 5、40Cr 、35 CrMo 钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么? 选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可 降低成本,提高生产效率。 5、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程 中不断地消耗能量;而脆性断裂是突然发生的断裂, 断裂前基本上不发生塑性变形, 没有明显征兆,因而危害性很大。 6、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形 态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 7、 板材宏观脆性断口的主要特征是什么?如何寻找断裂源? 断口平齐而光亮,常呈放射状或结晶状,板状矩形拉伸试样断口中的人字纹花样的放射方向也 与裂纹扩展方向平行,其尖端指向裂纹源。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1 )应力状态软性系数—— 材料或工件所承受的最大切应力T max 和最大正应力(T max 比值,即: (3)缺口敏感度一一缺口试样的抗拉强度 T bn 的与等截面尺寸光滑试样的抗拉强度 T b 的比值,称为缺口敏感度,即:【P47 P55】 max 1 3 max 2 1 0.5 2 3 【新书P39旧书P46】

思考题2015年材料力学性能(重点标黄)

和。 4.滞弹性是指材料在范围内快速加载或卸载后,随时间延长产生附加 单向静拉伸时实验方法的特征是、、必须确定的。 .韧度是衡量材料韧性大小的力学性能指标,其中又分为、 和。 12.在α值的试验方法中,正应力分量较大,切应力分量较小,应力状态较硬。一般用于塑性变形抗力与切断抗力较低的所谓塑性材料试验;在α值的试验方法中,应力状态较软,材料易产生塑性变形,适用于在单向拉伸时容易发生脆断而不能充分反映其塑性性能的所谓脆性材料; 13.材料的硬度试验应力状态软性系数,在这样的应力状态下,几乎所有金属材料都能产生。 14. 硬度是衡量材料软硬程度的一种力学性能,大体上可以分为 、和三大类;在压入法中,根据测量方式不同又分为 、和。 15. 国家标准规定冲击弯曲试验用标准试样分别为试样 和试样,所测得的冲击吸收功分别用

22. 应力状态软性系数:用试样在变形过程中的测得 和的比值表示。 23.微孔聚集型断裂是包括微孔、直至断裂的过程。 24.缺口试样的与等截面光滑试样的的比值。称为“缺口敏感度”。 25.机件在冲击载荷下的断口形式仍为、和。 26.包申格应变是在给定应力下,正向加载和反向加载两曲线之间的应变差。 27.由于缺口的存在,在载荷作用下,缺口截面上的应力状态将发生变化的现象,被称为“缺口效应”。 28. 洛氏硬度是在一定的实验力下,将120o角的压入工件表面,用所得的来表示材料硬度值的工艺方法。 28.低温脆性是随的下降,材料由转变为的现象。 29. 缺口敏感性是指材料因存在缺口造成的状态和而变脆的 疲劳条带是疲劳断口的特征,贝纹线是断口的特征。 34. 金属材料的疲劳过程也是裂纹的和过程。 35.金属材料抵抗疲劳过载损伤的能力,用或表示。 36.金属在和特定的共同作用下,经过一段时间后所发生的 现象,成为应力腐蚀断裂。 37.应力腐蚀断裂的最基本的机理是和。 38.由于氢和应力的共同作用而导致金属材料产生脆性断裂的现象叫 钢的氢致延滞断裂过程可分为、、三个阶 按磨损模型分为:、、、五大类。 44.韧窝是微孔聚集型断裂的基本特征。其形状视应力状态不同分为下列、、三类。其大小决定于第二相质点的、基体材料的和以及外加应力的大小和形状。

相关主题
文本预览
相关文档 最新文档