当前位置:文档之家› 白光LED用碱土金属硅酸盐荧光粉的制备及光谱性质

白光LED用碱土金属硅酸盐荧光粉的制备及光谱性质

白光LED用碱土金属硅酸盐荧光粉的制备及光谱性质
白光LED用碱土金属硅酸盐荧光粉的制备及光谱性质

检漏荧光粉操作规范

检漏荧光粉操作规范 我们为用户提供荧光粉检测服务,荧光粉检测一般在滤袋全新安装后进行,以检测其气密性。如果检查的是使用过的除尘器,打开清灰系统清灰20min左右,以提高检测准确性。针对这样的情况并结合该除尘器的特点我们拟定如下检测方案,以帮助检测漏灰的确切位置。 客户: 项目: 材质: 规格数量: 过滤面积: 准备事项 -停机清理净气室的灰尘及物料,以免其干扰判断 -荧光粉:按每平米过滤面积5克荧光粉,以1磅折合0.4536KG计算(BHA检测标准) -开始投粉前,将清灰系统打开清灰10-20min左右. -自备专用荧光粉检测用荧光灯、工具(记号笔、彩色粉笔等识别破损位置)、荧光眼镜等 -荧光灯便用前请充满电,以达到最佳识别效果 检漏荧光粉操作指南 检测中,请按以下操作要求为指南,进行检漏操作,如运行现场情况有所变化,请根据实际情况予以调整:

-在清灰系统停止运行的条件下,引风机50%-80%开度运行(以能够将荧光粉吸入不致掉入灰斗为标准),将VKH-11荧光粉按每平米过滤面积为5g的用量投入除尘器的进风管道的开口处。 -荧光粉的投入口位置应距离除尘器进风口约8m以外为合适,否则应考虑将荧光粉从除尘器的灰斗出口或灰斗检修门处投入。 -从喂入口添加荧光粉时不需要特殊的设备,不过投料时间不宜太久,只需要正常将荧光粉倒入喂入口即可;一般50公斤的荧光粉控制在3分钟左右;100公斤增控制在6分钟左右的时间 -荧光粉添加完成后,必须要求引风机在停机后1分钟左右时间内停机。 -约过半小时后,开打开净气室 -荧光粉投入完毕后,关闭主风机,并打开除尘器的顶盖,用荧光灯(紫外线灯),仔细地检测清洁室内的花板接缝处,滤袋与花板的接口点等。检测时,周围环境亮度越暗越有助于泄漏检测工作的进行。-针对除尘器结构,可以除尘器顶部盖一层厚的帆布(要求盖上后净气室不见光) -分析原则:如果在净气室某一位置发现有发亮的粉状物,则说明附近有漏点,应注意查看粉状物的位置分布数量及走向,并用记号笔作标记. -观察重点位置:除尘器四壁,布袋口四周. -如发现问题,应标记清楚,并及时处理,避免二次污染 -注意:人员进除尘器前检查身体不得沾染荧光粉,以免干扰判断。建议投粉人员和检查漏点人员由2人分别担任。 -如果漏点较多,可以更换新滤袋后采用绿色荧光粉(VKH-12)做二次检漏

荧光粉配比技术

你是是否想学习LED白光配粉技术,想要做好暖白,正白,冷白等白光? 那又如何选择芯片和荧光粉,荧光粉的配比又该怎么确认呢?点荧光粉的坐标/色温范围又该怎么定呢?我这是一个建设性的问题,相信很多这样的新手都想了解这个问题,那请看下面详细解答: 首先大家在配粉的过程中有点误区!在配粉之前先在CIE图上看看: (1)寻找需要的荧光粉波长;当我们需要某个色温段或者某个X、Y坐标点的时候,这时需要知道自己所用蓝光芯片的波长。当知道我们使用的芯片波长(图中芯片波长460nm)并且知道要做的坐标点(x0.44 y0.41),这时候在CIE图上将芯片波长点与所要达到的坐标点x、y两点连一条直线并延长到上端的CIE波长点,这个时候这个波长延长点就是我们需要的荧光粉的发光波长了(目标荧光粉波长~585nm)。因此要达到这个色坐标就需要用到这个波长的荧光粉了。

2)当我们找到目标荧光粉的波长之后呢,就要寻找相应的荧光粉来做,但是只使用一种荧光粉的话显色较低,因此我们需要用两种以上荧光粉来调配如红粉+绿粉(红粉+绿粉根据光的叠加混色原理可得到需要的目标荧光粉波长),如何选择两种荧光粉?如何调配两种荧光粉的比例呢?这就涉及到需要做的色坐标的目标荧光粉波长和需要做的显色指数要求是多少了,红绿粉适当的比例可得到需要的荧光粉的波长,如果对Ra要求较高时可选用波长较长的红色荧光粉如650nm的红粉(光谱越宽显色指数越高)配合波长

520nm左右的绿粉,做90以上显指就很容易了。(找需要的目标荧光粉波长时,根据小标题(1)的方法把已经做出来产品进行测试得到一个坐标点并与蓝光芯片波长做一条直线延伸到CIE上方的波长点;如果这个点的波长比目标荧光粉的波长长的话那么需要减小红色荧光粉的比例,如果比目标波长短的话要增加红色荧光粉的比例) 3)当找到合适的红绿粉并且也找到了目标荧光粉的比例后(红粉与绿粉的比例不要变),如果产品的坐标点仍然偏离需要的坐标点的时候,你可以在CIE上观察到此时产品的色坐标与你要的色坐标点、蓝光芯片的波长点、目标荧光粉的波长点基本在一条直线上,这时只需要调节硅胶与荧光粉的比例(红粉+绿粉),当色坐标低于目标坐标时增加荧光粉浓度,当色坐标高于目标坐标时减少荧光粉浓度。

LED荧光粉种类

LED荧光粉产业以及市场调研报告 1 LED荧光粉概述 LED荧光粉近几年的发展非常迅速,美国GE公司持有多项专利,国内也有一些专利报道。蓝光LED激发的黄色荧光粉基本上能满足目前白光LED产品的要求。但还需要进一步提高效率,降低粒度。最好能制备出直径3~4nm之间的球形的荧光粉。 20世纪90年代中期,日本日亚化学公司的Nakamura等人经过不懈努力,突破了制造蓝光发光二极管(LED)的关键技术,并由此开发出以荧光材料覆盖蓝光LED 产生白光光源的技术。半导体照明具有绿色环保、寿命超长、高效节能、抗恶劣环境、结构简单、体积小、重量轻、响应快、工作电压低及安全性好的特点,因此被誉为继白炽灯、日光灯和节能灯之后的第四代照明电光源,或称为21世纪绿色光源。美国、日本及欧洲均注入大量人力和财力,设立专门的机构推动半导体照明技术的发展。 2 LED荧光粉的种类 2.1 YAG铝酸盐荧光粉(Y3Al5O12:Ce) 描述:淡黄色粉末,点涂于蓝光芯片,受蓝光芯片激发产生黄光。黄光与剩于蓝光合成白光。 优点:亮度高,发射峰宽,成本低,应用广泛,黄粉效果较好。 缺点:激发波段窄,光谱中缺乏红光的成分,显色指数不高,很难超过85,特别是低色温白光LED中,必须使用优质的红色荧光体 2.1.1 文摘1:YAG粉合成工艺

2.2 硅酸盐荧光粉 优点:激发波段宽,绿粉和橙粉较好。 缺点:发射峰窄,对湿度较敏感,缺乏好的红粉,不太耐高温,不适合做大功率LED,适合用在小功率LED。 2.2.1硅酸盐绿色荧光粉 传统的硫化物基质荧光粉在空气中化学稳定性差,容易被气化,亮度也低,在应用中受到很大的限制,现已逐步被替代;而铝酸盐体系具有 2.3 氮化物荧光粉 优点:激发波段宽,温度稳定性好,非常稳定.红粉、绿粉较好。 缺点:制造成本较高,发射峰较窄。 2.3.1 氮化物荧光粉的主要类型及制造 摘文1:LED氮化物荧光粉主要类型及制造

LED荧光粉的分析测试方法分析

评估方案 一、荧光粉的分析测试方法 1、发射光谱和激发光谱的测定 把样粉装好后,放到样品室里,选定一个激发波长,作发射光谱扫描,读出发射光谱的发射主峰。给定发射光谱的发射主峰,作激发光谱扫描,读出激发光谱峰值波长。重新装样,测试3次,各次之间峰值波长的差值不超过±1nm,取算术平均值。 2、外量子效率的测定 把样粉装好后,放到样品室里,选定一个激发波长,激发荧光粉发光,利用光谱辐射分析仪测试得到荧光粉的发射光谱功率分布。计算荧光粉在该激发波长下的外量子效率。重新装样,测试3次,各次之间的相对差值不大于1%,取算术平均值。 3、相对亮度的测定 将试样和参比样品分别装满样品盘,用平面玻璃压平,使表面平整。用激发光源分别激发试样和参比样品。用光电探测器将试样和参比样品发出的光转换成光电流,并记录数值。试样和参比样品连续重复读数3次,各次之间相对差值不大于1%,取算术平均值。 4、色品坐标的测定 把试样装好放入样品室中。选定激发光源的发射波长,使其垂直激发样品室里的荧光粉样品。利用光谱辐射分析仪按一定的波长间隔(不大于5nm)测试得到荧光粉的发射光谱功率分布。按GB 3102.6-1993中“6.39 色品坐标”的公式求出荧光粉的色品坐标。 重复测试3次,各次之间x、y的差值均不超过±0.001,取算术平均值。 5、温度特性的测定 把试样装好放入样品室中,于室温下测试其激发、发射主峰波长,相对亮度及色品坐标等。每一试样按测定步骤平行测3次,各次之间激发、发射主峰波长的差值均不超过±1 nm,相对亮度的差值不超过±1%,色品坐标的差值不超过±0.001。启动加热装置,将被测的荧光粉试样加热并稳定在设定的温度值10min。稳定在预定的温度下,测定荧光粉试样的激发、发射主峰波长,相对亮度及色品坐标等。每一试样按测定步骤平行测3次,各次之间激发、发射主峰波长的差值均不超过±1nm,相对亮度的差值不超过±1%,色品坐标的差值不超过±0.001。冷却荧光粉试样至室温,测试其激发、发射主峰波长,相对亮度及色

LED荧光粉

在制作白光LED的方法中,有两种方法都与荧光粉有关,因此在制作白光LED时,必须对荧光粉进行仔细研究。 荧光粉是一个非常关键的材料,它的性能直接影响白光LED的亮度、色坐标、色温及显色性等。 因而开发具有良好发光特性的荧光粉是得到高亮度、高发光效率、高显色性白光LED的关键所在。 所谓荧光粉是指那些可以吸收能量(这些所吸收的能量包括电磁波(含可见光、X射线、紫外线)、电子束或离子束、热、化学反应等),再经由能量转换后放出可见光的物质,也称之为荧光体或夜光粉。 目前发光材料的发光机理基本是用能带理论进行解释的。不论采用那一种形式的发光,都包含了: ?激发; ?能量传递; ?发光; 三个过程 一、激发与发光过程 ?激发过程: 发光体中可激系统(发光中心、基质和激子等)吸收能量以后,从基态跃迁到较高能量状态的过程称为激发过程。 ?发光过程: 受激系统从激发态跃回基态,而把激发时吸收的一部分能量以光辐射的形式发射出来的过程,称为发光过程。 一般有三种激发和发光过程 1. 发光中心直接激发与发光 (1). 自发发光 过程1:发光中心吸收能量后,电子从发光中心的基态A跃迁到激发态G 过程2:当电子从激发态G回到基态A,激发时吸收的一部分能量以光辐射的形式发射出来的过程。 发光只在发光中心内部进行。 (2). 受迫发光 若发光中心激发后,电子不能 从激发态G直接回到基态A(禁戒的跃迁),而是先经过亚稳态M(过程2),然后通过热激发从亚稳态M跃迁回激发态G(过程3),最后回到基态A(过程4)发射出光子

的过程,成为受迫发光。 受迫发光的余辉时间比自发发光长,发光衰减和温度有关。 2. 基质激发发光 基质吸收了能量以后, 电子从价带激发到导带 (过程1); 在价带中留下空穴,通 过热平衡过程,导带中的电子很快降到导带底(过程2); 价带中的空穴很快上升到价带顶(过程2’), 然后被发光中俘获(过程3’), 导带底部的电子又可 以经过三个过程产生发光。 (1). 直接落入发光中心激发 态的发光 导带底的电子直接落入发光中心的激发态G(过程3),然后又跃迁回基态A,与发光中上的空穴复合发光(过程4)

LED白光荧光粉配比浅析

白光荧光粉配比浅析 萤光粉在LED制造过程起着至关重要的作用。使用绿色萤光粉配合黄色萤光粉和蓝色LED芯片,可获得高亮度白光LED;若使用绿色萤光粉配合蓝光LED芯片,可以直接获得绿光;若使用绿色萤光粉配合黄色萤光粉与蓝色LED芯片,可以获得冷色调白光;绿色萤光粉也可配合红色萤光粉与蓝色LED芯片而获得白光。白光LED 的显色指数(CRI)与蓝光芯片、YAG萤光粉、相关色温等有关,其中最重要的是YAG粉,不同色温区的LED,用的粉及蓝光芯片不一样。目标色温越低的管子用的粉发射峰值要越长,芯片的峰值也要长,低于4000K色温,还要另外加入发红光的粉,以弥补红成分的不足,达到提高显色指数的目的,在保持的芯片及粉不变的条件下,色温越高显色指数越高。 在生产中总结出来的经验来看,蓝光与YAG的最佳匹配关係如下: YAG发射峰值/nm 蓝光峰值波长/nm 530±5 450-455 540±5 455-460 550±5 460-465 555±5 465-470 这样做出的白光比较白,一般芯片厂家提供的都是主波长,峰值波长要用专门仪器测试,测出来的值一般都比主波长短5nm左右。萤光粉与芯片波长决定了色座标中一条直线,确定了萤光粉与芯片波长。只要增加减少配比都可以调节色座标在此一条直线上位置。

常见的LED芯片如下: 材料波长材料波长 InGaN 475-485nm InGaN 525nm InGaN 465-475nm InGaN 505nm InGaN 455-465nm InGaN 515nm InGaAlP 620-640nm GaAlAs/GaAs 660nm InGaAlP 610-620nm GaAlAs/GaAlAs 660nm InGaAlP 600-610nm GaP 700nm InGaAlP 592-600nm GaP 570-575nm InGaAlP 580-593nm GaP 565-570nm InGaAlP 567-577nm GaP 550-565nm InGaAlP 550-565nm PY---GaAlAs 585nm 由于萤光粉目前有无机类和有机类萤光粉。若不添加有机类萤光粉之情况,YAG萤光粉和AB胶之比例一般为1:6 ~ 10(重量比)。至于AB胶应为 6 ~10g之间的多少数量,必须视蓝色芯片的功率大小做调整。芯片功率大者,在萤光粉数量固定不变下,AB胶数量应较为少(例如1:6)。反之,功率小者AB胶数量应较为多(例如:1:10)。

led荧光粉

LED荧光粉是制造白色LED的必须材料。 首先,我们要了解白色LED的发光原理。白色LED芯片是不存在的。我们见到的白色LED 一般是蓝光芯片激发黄色荧光粉发出白色光的。好比:蓝色涂料和黄色涂料混在一起就变成了白色。 其次,不同波长的LED蓝光芯片需要配合不同波长的黄色荧光粉能够最大化的发出白光。 所以说,LED荧光粉是制造白色LED必须的东西(白色LED也有另外几种发光方式,但是市面上白色LED95%都是蓝光芯片激发黄色荧光粉的原理)。 黑体(热力学) 任何物体都具有不断辐射、吸收、发射电磁波的本领。辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布。这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射。为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。 所谓黑体是指入射的电磁波全部被吸收,既没有反射,也没有透射( 当然黑体仍然要向外辐射)。显然自然界不存在真正的黑体,但许多地物是较好的黑体近似( 在某些波段上)。黑体辐射情况只与其温度有关,与组成材料无关. 基尔霍夫辐射定律(Kirchhoff),在热平衡状态的物体所辐射的能量与吸收的能量之比与物体本身物性无关,只与波长和温度有关。按照基尔霍夫辐射定律,在一定温度下,黑体必然是辐射本领最大的物体,可叫作完全辐射体。用公式表达如下: Er =α*Eo Er——物体在单位面积和单位时间内发射出来的辐射能; α——该物体对辐射能的吸收系数; Eo——等价于黑体在相同温度下发射的能量,它是常数。 普朗克辐射定律(Planck)则给出了黑体辐射的具体谱分布,在一定温度下,单位面积的黑体在单位时间、单位立体角内和单位波长间隔内辐射出的能量为 B(λ,T)=2hc2 /λ5 ·1/exp(hc/λRT)-1 B(λ,T)—黑体的光谱辐射亮度(W,m-2 ,Sr-1 ,μm-1 ) λ—辐射波长(μm) T—黑体绝对温度(K、T=t+273k) C—光速(2.998×108 m·s-1 ) h—普朗克常数,6.626×10-34 J·S K—波尔兹曼常数(Bolfzmann),1.380×10-23 J·K-1 基本物理常数 由图2.2可以看出: ①在一定温度下,黑体的谱辐射亮度存在一个极值,这个极值的位置与温度有关,这就是维恩位移定律(Wien) λm T=2.898×103 (μm·K) λm —最大黑体谱辐射亮度处的波长(μm) T—黑体的绝对温度(K) 根据维恩定律,我们可以估算,当T~6000K时,λm ~0.48μm(绿色)。这就是太阳辐射中大致的最大谱辐射亮度处。 当T~300K,λm~9.6μm,这就是地球物体辐射中大致最大谱辐射亮度处。 ②在任一波长处,高温黑体的谱辐射亮度绝对大于低温黑体的谱辐射亮度,不论这个波长是

白光LED如何调色和调比例

白光LED如何高速准确地调色和调比例 LED白光的发展速度和往后在生活上的影响(未来前景),一般业内人事都心知肚明,我就不哆嗦了,白光最有前途但最复杂,现就LED白光上第一道难关:如何快速的调准色温和调配比进行个人自述: 1,如何准确选荧光粉: 一般客户只会给一个出货格规,当然色温范围是一定要有的,其次就是IV(亮度)范围值,一般作出口的产品CRI(显色指数)值也有要求,当然国内比较讲究的客户也对CRI值有要求。现就举例说明:若一客户需要5050正白色温5500-6500,亮度5000mcd以上。CRI要求80以上。看到这规格,第一步:选晶片,晶片波段最好选450-452.5nm这段晶片在荧光粉的激发下亮度发挥得最高,第二步:选粉,把CIE图打开,将自已选要的色温范围诱在CIE图上,然后将colour temp(K)诱上去,看看是不是在能源区内,如此在CIE图上将你的晶片值那里引一条曲线,这条曲线及要穿过你所要的色温区又要贴近那条colour temp(K)线,如此曲线最终落在CIE右边黄色部分就是你要选的荧光粉的波段(大概而已),这些图我都有,如有需要的朋友可以QQ找我要,现正白一般都选560nm左右的荧光粉。 2:如何速调配比 要想快速调出你想要的色温,本人自已想了一些小法子,下面就一步一步地往下说:先根据以前配正白的经验5050,5%比例配一个(以前可以配出),3%和7%各配一个(以防晶片波段有偏差)。三种同时配好后,用同气压和时间点各点一到2颗材料。不烘烤马上进行测试,拿流明638测试机来说,测试前一定要效准机。将三种配比的数据测出来后诱在CIE图上,这三组数据联接起来一定能描出一条斜线,此时需要注意的是:是否斜线穿过你想要的色温区,是:那证明你的荧光粉选对了(数据点落不落在色区不要紧,只要斜线有穿过就够了),否:证明你粉选择失败,不过不要紧,还可以往下看,如果斜线落在色区上,证明你的粉的波长选低了,则需要选更高一点红或褐的粉,加在黄粉中混合用(混合粉粉粉比例需求救的也可以QQ我),若斜线落在色区以下,证明你的粉波长选高了。需要更低些的绿粉啊等。混合粉与A+B的比例经过上一次三种状态配比后,可以用一公试直截算出,我们想要的粉胶比例,此公式较复杂,有需要的朋友可以QQ索求。如此我们这次点胶只需点一种状态就可以了。点完一颗马上去测(这时你一定要记住你的气压和时间),测出的数据刚好落在你的色区,恭喜你完成一半的任务了(因为客户提供样板的话,你得去把材料烤干后对照颜色)。若不落,看看是偏上还是偏下。偏上则用棉签吸一部分胶出来,再测,直到你想要的色区,注意所测的数据一定要占在客户的规格值中间 (5500-6500,配得数据是6000最好),为什么这么做,就因为考虑到产线批量生产时给他们一定的幅动空间,提高良率。将上述材料取下后再去点胶机上进行实物对比点胶(调节气压时间)后面点的材料所调的胶量调到跟这个测数据的胶量一样,再看看气压时间在第一次记录的时间上少了多少?其实做久的人都知道,气压时间的多少与粉胶比例是有关系的。举例气压时间由0.500毫秒降到0.450毫秒相当于粉胶比例从5%降到4.8%.故都有一定的规律可循,如此就可提高配胶速度,当然还有很多种提速的方法就不一一在此献丑了。

阐述LED荧光粉的用途和工作原理

阐述LED荧光粉的用途和工作原理 近年来,在照明领域最引人关注的事件是半导体照明的兴起。20世纪90年代中期,日本日亚化学公司的Nakamura等人经过不懈努力,突破了制造蓝光发光二极管(LED)的关键技术,并由此开发出以荧光材料覆盖蓝光LED产生白光光源的技术。半导体照明具有绿色环保、寿命超长、高效节能、抗恶劣环境、结构简单、体积小、重量轻、响应快、工作电压低及安全性好的特点,因此被誉为继白炽灯、日光灯和节能灯之后的第四代照明电光源,或称为21世纪绿色光源。美国、日本及欧洲均注入大量人力和财力,设立专门的机构推动半导体照明技术的发展。 LED实现白光有多种方式,而开发较早、已实现产业化的方式是在LED芯片上涂敷荧光粉而实现白光发射。 LED采用荧光粉实现白光主要有三种方法,但它们并没有完全成熟,由此严重地影响白光LED在照明领域的应用。 第一种方法是在蓝色LED芯片上涂敷能被蓝光激发的(YAG)黄色荧光粉,芯片发出的蓝光与荧光粉发出的黄光互补形成白光。该技术被日本Nichia公司垄断,而且这种方案的一个原理性的缺点就是该荧光体中Ce3+离子的发射光谱不具连续光谱特性,显色性较差,难以满足低色温照明的要求,同时发光效率还不够高,需要通过开发新型的高效荧光粉来改善。 第二种实现方法是蓝色LED芯片上涂覆绿色和红色荧光粉,通过芯片发出的蓝光与荧光粉发出的绿光和红光复合得到白光,显色性较好。但是,这种方法所用荧光粉有效转换效率较低,尤其是红色荧光粉的效率需要较大幅度的提高。

第三种实现方法是在紫光或紫外光LED芯片上涂敷三基色或多种颜色的荧光粉,利用该芯片发射的长波紫外光(370nm-380nm)或紫光(380nm -410nm)来激发荧光粉而实现白光发射,该方法显色性更好,但同样存在和第二种方法相似的问题,且目前转换效率较高的红色和绿色荧光粉多为硫化物体系,这类荧光粉发光稳定性差、光衰较大,因此开发高效的、低光衰的白光LED用荧光粉已成为一项迫在眉睫的工作。 我们是国内率先进行LED用高效低光衰荧光粉研究的研究机构。最近,通过与我国台湾合作伙伴的联合攻关,多种采用荧光粉的彩色LED被开发出来了。 采用荧光粉来制作彩色LED有以下优点: 首先,虽然不使用荧光粉,就能制备出红、黄、绿、蓝、紫等不同颜色的彩色LED,但由于这些不同颜色LED的发光效率相差很大,采用荧光粉以后,可以利用某些波段LED发光效率高的优点来制备其他波段的LED,以提高该波段的发光效率。例如有些绿色波段的LED效率较低,台湾厂商利用我们提供的荧光粉制备出一种效率较高,被其称为"苹果绿"的LED用于手机背光源,取得了较好的经济效益。 其次,LED的发光波长现在还很难精确控制,因而会造成有些波长的LED得不到应用而出现浪费,例如需要制备470nm的LED时,可能制备出来的是从455nm到480nm范围很宽的LED,发光波长在两端的LED只能以较低廉的价格处理掉或者废弃,而采用荧光粉可以将这些所谓的"废品"转化成我们所需要的颜色而得到利用。 第三,采用荧光粉以后,有些LED的光色会变得更加柔和或鲜艳,以适应不同的应用需要。当然,荧光粉在LED上最广泛的应用还是在白光领域,但由于其特殊的优点,在彩色LED 中也能得到一定的应用,但荧光粉在彩色LED上的应用还刚刚起步,需要进一步进行深入的研究和开发。

荧光粉的配比 LED封装

浅谈LED荧光粉配胶程序 荧光粉在LED制造过程起着至关重要的作用。使用绿色荧光粉配合黄色荧光粉和蓝色LED芯片,可获得高亮度白光LED;若使用绿色荧光粉配合蓝光LED芯片,可以直接获得绿光;若使用绿色荧光粉配合黄色荧光粉与蓝色LED芯片,可以获得冷色调白光;绿色荧光粉也可配合红色荧光粉与蓝色LED芯片而获得白光。白光LED的显色指数(CRI)与蓝光芯片、Y AG荧光粉、相关色温等有关,其中最重要的是Y AG粉,不同色温区的LED,用的粉及蓝光芯片不一样。目标色温越低的管子用的粉发射峰值要越长,芯片的峰值也要长,低于4000K色温,还要另外加入发红光的粉,以弥补红成分的不足,达到提高显色指数的目的,在保持的芯片及粉不变的条件下,色温越高显色指数越高。 在生产中总结出来的经验来看,蓝光与Y AG的最佳匹配关系如下: Y AG发射峰值/nm 蓝光峰值波长/nm 530±5 450-455 540±5 455-460 550±5 460-465 555±5 465-470 这样做出的白光比较白,一般芯片厂家提供的都是主波长,峰值波长要用专门仪器测试,测出来的值一般都比主波长短5nm左右。荧光粉与芯片波长决定了色坐标中一条直线,确定了荧光粉与芯片波长。只要增加减少配比都可以调节色坐标在此一条直线上位置。 常见的LED晶粒如下: 材料波长材料波长 InGaN 475-485nm InGaN 525nm InGaN 465-475nm InGaN 505nm InGaN 455-465nm InGaN 515nm InGaAlP 620-640nm GaAlAs/GaAs 660nm InGaAlP 610-620nm GaAlAs/GaAlAs 660nm InGaAlP 600-610nm GaP 700nm InGaAlP 592-600nm GaP 570-575nm InGaAlP 580-593nm GaP 565-570nm InGaAlP 567-577nm GaP 550-565nm InGaAlP 550-565nm PY---GaAlAs 585nm 由于荧光粉目前有无机类和有机类荧光粉。若不添加有机类荧光粉之情况,Y AG荧光粉和AB胶之比例一般为1:6 ~ 10(重量比)。至于AB胶应为 6 ~10g之间的多少数量,必须视蓝色芯片的功率大小做调整。芯片功率大者,在荧光粉数量固定不变下,AB胶数量应较为少(例如1:6)。反之,功率小者AB胶数量应较为多(例如:1:10)。 LED荧光粉配胶程序是LED工艺中,相当基础的一环,我们来看看是怎么做的。 准备工作: 1、开启并检查所有的LED生产使用设备(烤箱、精密电子称、真空箱) 2、用丙酮清洗配胶所用的小烧杯。 3、准备所需的量产规格书或相应的联络单,及相应型号胶水等并确认其都在有效的使用期内。

荧光粉通用测试方法

荧光粉通用测试方法 1 水溶性氯化物的测定 1.1仪器 架盘天平:感量为0.1g; 烧杯:100m1; 比色管:25m1或50m1。 1.2 试剂和溶液硫酸锌溶液:5%,称取5.0g分析纯硫酸锌,用去离子水稀释至100m1,摇匀。 硝酸:5N,按GB 603—77《化学试剂制剂及制品制备方法》配制。 硝酸银:0.1N,按GB 603—77配制。 氯化物标准液:见GB 602—77《化学试剂杂质标准液制备方法》。 1.3 测定 称取2.0g试样,放人烧杯中,加入20m1去离子水及l一2滴5%硫酸锌溶液,加热至沸,冷却至室温。然后用定性滤纸过滤,乳液盛于比色管中,并用少量热去离子水洗涤滤渣2或3次,洗液并人滤液中,用去离子水稀释至25ml。加0.5ml 5N硝酸及2ml 0.1N硝酸银,摇匀,放置10min,所呈浊度不应大于标准。 标准是按产品技术标准要求取一定数量的氯化钠标准液,加入1—2滴5%硫酸锌溶液,用去离子水稀释至25m1后,与试样同时同样处理。 2 机械杂质的测定 称取10g试样,在白色瓷板上摊开,用目测或放大镜观测。 3 密度的测定 3.1 定义 单位体积荧光粉的质量,称作密度。 3. 2 仪器分析天平:感量不小于0.00lg; 温度计:分度不大于0.5℃, 比重瓶:25m1或50ml。

3.3 测定步骤3.3.1 称量比重瓶。 3.3.2 将3-5g干燥的试样,放入比重瓶中,称量。 3.3.3 往瓶中注入约2/3体积的去离子水,排除气泡,再注满水,并擦干瓶的外表面,称量。然后测量瓶中的水温t 。 3.3.4 将比重瓶洗净,用相同温度的去离子水注满比重瓶,擦干瓶的外表面,称量。 3.4 计算 荧光粉密度按式(1)计算: 计算结果取至小数点后两位。 每个试样做两次,平行结果之差不应大于0.02,取算术平均值。 4 粒度分布的测定4.1 定义 荧光粉颗粒的数目或团粒的重量按粒径的分布,称作粒度分布。 4.2 测定方法 4.2.1 观察法 取少量试样,分散在载片上,用显微镜按垂直投影法依次测量单个颗粒的尺寸。每批试样的颗粒读数不应少于300粒。 4.2.2 沉降法 4.2.2.1 仪器 粒度分布测定仪: 要求测定范围从l—100μ,误差不大于3%。 4.2.2.2 测定 按仪器规定的要求将一定量的试样放人搅拌器内,按产品技术标准的要求加入不同的分散溶液,搅拌一定时间后,立即用仪器进行测定(具体操作按不同仪器测定方法的要求进行),记录试样在不同粒径的累积重量曲线。 4.3 粒度分布的表示方法 4.3.1 百分比表示法一定粒径间隔内荧光粉的重量(或颗粒数)对总量之比,用百分数表示。 4.3.2 对数正态分布参数表示法

国标《白光LED用荧光粉量子效率测试方法》送审稿编制说明

国标《白光LED用荧光粉量子效率测试方法》(送审稿) 编制说明 一、工作简况 1.1立项目的及意义 以LED(Light Emitting Diode,发光二极管)为代表的半导体照明技术因其具有节能、环保、体积小、全固态、使用寿命长等优点,是继白炽灯、荧光灯、高强度气体放电灯之后的第四代光源。国际调研机构LED inside发布的《2017全球LED照明市场趋势》指出,2017年LED照明市场规模已经达到331亿美金。随着半导体照明应用层面的不断创新及新兴市场的崛起,LED市场将进一步扩大。 常见的LED照明获取方式多采用“芯片+荧光粉”的组合,因而荧光粉的性能在很大程度上决定了LED器件的出光效率和照明效果。量子效率是衡量荧光粉性能的最重要指标,能够直接体现荧光粉的质量。目前,国际上已就荧光粉量子效率的测试方法和测试意义达成一致,国际知名LED荧光粉及器件厂商和研究机构均已采用该指标。关于荧光粉量子效率的测定,国内起步虽然相对较晚,但发展速度很快,已经有相关厂商推出了测试设备。不过由于尚未就量子效率的测试标准和方法做出统一标准,其测试数据偏差值较大且公信力较差,因此急需通过与国际研发先进水平接轨,制定相关标准,明确量子效率的测试方法和标准,为提升白光LED用荧光粉的研发水平和产品质量,增强国际市场竞争力,推进我国相关产业的快速健康发展做出贡献。 1.2任务来源 根据稀土标委关于下达的11项稀土国家标准、14项稀土行业标准制修订计划的通知(稀土标委〔2018〕03号),《白光LED用荧光粉量子效率测试方法》国家标准制定计划正式下达,项目编号为20173581-T-469,完成年限为2019年。本标准制定任务由有研稀土新材料股份有限公司牵头起草,参与起草单位为厦门大学、天津东方科捷科技有限公司、广东稀有金属研究所、安徽芯瑞达电子科技有限公司、江门科恒实业股份有限公司和江苏博睿光电有限公司。 1.3起草单位 有研稀土新材料股份有限公司(简称有研稀土)是2001年由北京有色金属研究总院作为发起人,对稀土材料国家工程研究中心进行整体改制而设立的股份公司,是我国最早从事稀土研究开发的单位之一。60年来共取得400多项稀土科技成果,获得省部以上科技奖励159项,其中国家级39项;研究成果50%以上应用于工业生产,全世界生产的60%以上的稀土产品均采用有研稀土的技术,行业影响力不断提升。 近几年,公司利用新开发的技术成果开展科技成果转化27项,其中专利实施许可3项,

led灯的发光原理及荧光粉改善技术

led灯的发光原理及荧光粉改善技术 led的发光原理。led是由ⅲ一v族化合物,如gaas(砷化镓)、gaasp(磷化镓砷)、a1gaas(砷化铝镓)等半导体制成,其核心是p-n结,因此它具有一般p-n结的伏一安特性,即正向导通、反向截止、击穿特性。当p型半导体和n型半导体结合时,由于交界面处存在的载流子浓度差。于是电子和空穴都会从高浓度区域向低浓度区域扩散。这样,p区一侧失去空穴剩下不能移动的负离子,n区一侧失去电子而留下不能移动的正离子。这些不能移动的带电粒子就是空间电荷。空间电荷集中在p区和n区交界面附近,形成了一很薄的空间电荷区,就是p-n结。当给p-n结1个正向电压时。便改变了p-n结的动态平衡。注入的少数载流子(少子)与多数载流子(多子)复合时,便将多余的能量以光的形式释放出来,从而把电能直接转换为光能。如果给pn结加反向电压,少数载流子(少子)难以注入,故不发光。 白光led的主要实现方法。目前,氮化镓基led获得白光主要有:蓝光led+黄色荧光粉、三色led合成白光、紫光led+三色荧光粉3种办法。最为常见形成白光的技术途径是蓝光led芯片和可被蓝光有效激发的荧光粉结合组成白光led.led辐射出峰值为470nm 左右的蓝光,而部分蓝光激发荧光粉发出峰值为570nm左右的黄绿

光。与另一部分的蓝光与激发荧光粉产生的黄绿光混合产生ylo:ce 白光。目前采用的荧光粉多为稀土激活的铝酸盐ylo:ce(yag),当有蓝光激发它时发出黄绿色光,所以称作黄绿色荧光粉。该方法发光,发光效率高,制备简单,工艺成熟。但色彩随角度而变。光一致性差,而且荧光粉与led的寿命也不一致,随着时问的推移,显色指数和色温都会变化,影响了发光光源的发光质量。 采用红、绿、蓝三原色led芯片或三原色led管混合实现白光。前者为三芯片型,后者为3个发光管组装型。红、绿、蓝led 封装在1个管内,光效可达20lm/w,发光效率较高,显色性较好。不过,这种合成白光方法的不足之处就是led的驱动电路较为复杂。三芯片型三原色混合成本较高,而且由于红绿蓝3种led的光衰特性不一致,随着使用时间的增加,三色的混合比例会变化。显色指数也会相应变化紫外光或紫光led激发三原色荧光粉,产生白光。采用这种方法更容易获得颜色一致的白光,因为颜色仅仅由荧光粉的配比决定,此外,还可以获得很高的显色指数。但其最大的难点在于如何获得高转换效率的三色荧光粉,特别是高效红色荧光粉。而且防止紫外线泄露也是很重要的。 添加红色荧光粉对大功率白光led光效和显色指数的影响 白光led是最具吸引力的21世纪绿色照明光源,日亚发明的制

LED荧光粉种类详述

作者:陈登铭 LED照明商用化的快速发展,预计将会加大白光LED荧光粉的市场需求,在各界持续投入荧光粉的研发能量之下,目前已发展出的三大主流白光LED荧光粉,将可望因应不同应用,满足对于性能的多样性与严苛度的要求。 为控制全球温室气体排放,节约地球有限的能源资源,近年来各国制定能源政策同时,无不竞相提出“节能减碳”计划,其中白炽灯已为澳洲、欧盟以及美国加州等陆续宣布淘汰的照明设施。发光二极管(LED)具有发热量低、耗电量小、寿命长、反应速度快、以及体积小等优点,目前全球白光LED照明产业持续蓬勃发展,尤其在手机面板背光源、照明以及汽车产业的应用更有无穷潜力。近年来,国内外多家面板厂商已将白光LED导入作为笔记本电脑液晶显示器背光源,取代使用汞的传统冷阴极荧光灯管。从解决环保及能源问题观点而言,白炽灯泡向来存在低能源效率与发热问题;至于含汞荧光灯,则存在汞污染的缺点,为此LED照明无疑将成为全球照明大厂全力以赴的目标。虽然白光LED使用于民生照明还存在诸多问题亟待解决,然可预见的将来,在制造成本逐渐降低、照明应用领域陆续开发之下,未来10年内,白光LED预期将成为极具潜力的照明商品。自1993年日本日亚化学成功开发出全球第一个商业化以氮化铟镓(InGaN)为材质的蓝、紫光LED之后,更加速以白光LED作为照明新世代的来临。日亚化学更在1996年发表InGaN/Y3Al5O12:Ce3+(简称YAG:Ce)荧光粉的单芯片白光LED,自此全球热烈展开白光LED相关技术研发的竞逐。日亚化学已在2007年内量产发光效率达每瓦150流明的白光LED,该公司同时表示第一阶段将先量产顺向电流20毫安的产品,此项LED发光效率堪称目前全球业界最高纪录。目前市场上白光LED 生产技术主要分为两大主流,第一为利用荧光粉将蓝光LED或紫外UV-LED所产生的蓝光或紫外光分别转换为双波长(Dichromatic)或三波长(Trichromatic)白光,此项技术称之为荧光粉转换白光LED(Phosphor Converted-LED);第二类则为多芯片型白光LED,经由组合两种(或以上)不同色光的LED组合以形成白光,目前市场上白光LED商品以蓝光LED芯片搭配黄光荧光粉最为普遍,主要应用于汽车照明与手机面板等领域,以目前白光LED产品市场分析,荧光粉转换白光LED可谓主流。图1简要归纳并比较多种白光LED构装原理和优劣点,其中(a)型构装方式、演色性最佳,但成本最高,尚未能普及;构装方式(b)则具有技术最成熟且成本低廉之优势,但色偏、演色性不佳,须以适当红、黄光荧光粉加以改善,此外,最严重者为日亚化学专利限制难以规避;而构装方式(c)与(d)两者所制作的白光LED演色性俱佳、色偏小、成本低且专利局限较不严重,因此未来深具发展潜力。图1 利用发光二极管产生白光的原理与优劣点

我国稀土荧光粉标准体系的概况

我国稀土荧光粉标准体系概况 目前,只有我国具备较完整的稀土荧光粉标准体系,其他国家均没有稀土荧光粉方面的国家标准和行业标准,国外只有一些稀土方面的企业标准。经标准审定会专家确认,这一系列灯粉标准内大部分标准都达到了国际先进水平,如《白光LED灯用稀土黄色荧光粉》、《灯用稀土三基色荧光粉》、《稀土长余辉荧光粉》等3项产品标准及相关的8项试验方法标准,达到了国际先进标准,其余标准也都达到了国际一般水平。

一批灯粉标准颁布和实施,满足了我国稀土荧光粉产业进展的需要,建立了稀土荧光粉标准体系,体系中包括产品标准、分析测试方法标准、标准样品等,从而为建立先进、完善与国际接轨的稀土标准体系打下了良好的基础。在标准制的修订工作中,标准起草单位充分调研国内外生产和贸易情况,调查收集相关数

据,搜集国内外标准资料及技术报告、技术协议及定货合同等,以我国稀土荧光粉行业的生产实际情况为基础,充分考虑到标准的先进性、科学性、合理性、适用性以及与国际接轨的原则,标准差不多上满足了行业的需求。 目前,只有我国具备较完整的稀土荧光粉标准体系,其他国家均没有稀土荧光粉方面的国家标准和行业标准,国外只有一些稀土方面的企业标准。经标准审定会专家确认,这一系列灯粉标准内大部分标准都达到了国际先进水平,如《白光LED灯用稀土黄色荧光粉》、《灯用稀土三基色荧光粉》、《稀土长余辉荧光粉》等3项产品标准及相关的8项试验方法标准,达到了国际先进标准,其余标准也都达到了国际一般水平。 一、灯用稀土三基色荧光粉及其试验方法 于1993我国建立了国家标准,2002年进行了修订。此次修订对该标准的红粉、蓝粉、绿粉中的相对亮度、发射光谱和色度性能、热稳定性、密度、比表面积等指标分不进行了调整;同时考核混合粉的色度性能和中心粒径。值得一提的是,此次修订的

LED荧光粉配胶的过程

LED荧光粉配胶的过程 准备工作: 1、开启并检查所有的LED生产使用设备(烤箱、精密电子称、真空箱) 2、用丙酮清洗配胶所用的小烧杯。 3、准备所需的量产规格书或相应的联络单,及相应型号胶水等并确认其都在有效的使用期内。 开始配胶: 1、配胶顺序说明:增亮剂+A胶按比例混合(可以按订单一次性配好),最后再加入荧光粉+ B胶按比例混合物体(须搅拌均匀)。在后再抽真空。 2、根据《量产规格书》或工程通知单中荧光粉配比和生产数量,计算出各种物料所需的重量。 3、调整精密电子称四个底座使电子称呈水平状态。 4、将干净的小烧杯放置于精密的电子磅秤上,归零后,根据量产规格书中荧光粉的配比,分别称取所需重量的荧光粉和A、B胶。 5、将配好的荧光粉手动搅拌20分钟至30分钟不等,直到荧光粉分布均匀为止。 6、把配好的荧光胶抽真空至看不见气泡的状态,取出后,放在室温下用干净的玻璃盖上使用,使用前需按同一方向缓慢搅拌2分钟到3分钟,搅拌速度每转2秒至3秒。 LED喷射式点胶製程的优点 [来源:LED显示屏专家][作者:LED显示屏][日期:10-01-18][热度:71] 目前,针筒式点胶正被喷射式点胶所替代。所谓的喷射(jetting),属於新技术,它採用喷嘴式替代针筒,解决了许多难题。Jetting喷嘴可在需要进行底部填充的器件上方进行点胶,无需到达其顶面以下的位置。Jetting 喷嘴在整个电路板上方沿x、y方向运动,而无需垂直运动。

与点胶针筒不同,喷嘴并不是形成连续的底充胶液流,而代之以每秒鐘喷射200点以上经过精确测量的胶点。随著喷嘴的水準移动,胶点可形成各种需要的线型与图案,如实线、虚线等以及其他各种不同图形。每次喷射都经精确控制,一次喷射所形成的胶点直径最小可达0.33mm,这对於涂敷贴片胶等需要对面积进地精确控制的场合非常重要。 喷射技术是把胶水以很快的速度从喷嘴喷出,依靠胶水的动量使胶水脱离喷嘴。每次喷射都会喷射出一定数量的胶水。目前普遍的喷射频率是100赫兹到200赫兹,但是很快就会达到1000hz。喷射点胶与针头点胶有几处区别。当胶水从喷嘴喷出时,接触基板之前胶水已和喷嘴分离。每一个胶点喷射到基板可以形成点、线和图形。在点胶位置的移动过程中,点胶头没有Z轴方向的运动,这样节约了相当多的时间。针头在点胶时,机械手在X、Y、Z轴运动,胶水从针头流出来接触基板,靠重力及基板表面张力把胶水从针头分离。在每个点胶完成之后,沿Z轴有一个明显的运动,然后移动到下个点胶位置。 LED 市场同样从喷胶技术中受益。喷胶工艺可以喷涂包括硅胶、UV 固化的掺磷导电胶等范围宽广的光学材料,能够在高速点胶中进行位置精确的点胶和胶量控制。喷胶的精确度可以改善价值很高的大功率LED 器件的成品率。应用于白光的製作,萤光粉及混合胶水的点胶,使其一致性得到良好的改善。 中国LED封装技术与国外的差异 [来源:LED显示屏专家][作者:LED显示屏][日期:10-03-12][热度:31] LED产业链总体分为上、中、下游,分别是LED外延芯片、LED封装及LED应用。作为LED产业链中承上启下的LED封装,在整个产业链中起着无可比拟的重要作用。基于LED器件的各类应用产品大量使用LED器件,如大型LED显示屏、液晶显示器的LED背光源、LED照明灯具、LED交通灯和汽车灯等,LED器件在应用产品总成本上占了40%至70%,且LED应用产品的各项性能往往70%以上由LED器件的性能决定。

材料——荧光粉资料整理

荧光粉资料整理 一、同种芯片+不同荧光粉规律 (2) 二、不同芯片+同荧光粉规律 (2) 三、小规律 (3) 3.1荧光粉点胶浓度 (3) 3.2 荧光粉粒度 (3) 3.3 荧光粉越接近球形亮度越高。 (3) 3.4 色座标一样的灯眼睛看有可能光色是不一样的 (3) 3.5 发光效率和色温的平衡 (3) 3.6 荧光粉位置与发光效率 (3) 四、LED荧光粉的种类 (4)

一、同种芯片+不同荧光粉规律 用同种芯片封装不同种荧光粉会有这样的规律:粉的波长越短回归直线斜率越大,且相交于色度图下线上,反之亦然。如下图,四款我们的硅酸盐荧光粉数据。 二、不同芯片+同荧光粉规律 用同荧光粉封装不同种芯片波长时会有这样的规律:芯片波长增加,(x,y)这条回归直线斜率基本不变,可近似看作向上平移,反之亦然。如下图,我们的一款YAG荧光粉数据。

根据以上两大规律,可以进行两种荧光粉的混合使用,这样的话基本色座标图中的每一点我们都可以调配出来了。 三、小规律 3.1荧光粉点胶浓度 荧光粉点胶浓度加大,上面两个图中的对应的直线点会上移,与此同时光效会先增大再减小,我们叫每个最大值时的荧光粉浓度为该种荧光粉的极限浓度,这个浓度与荧光粉本身及芯片波长亮度有关。 3.2 荧光粉粒度 荧光粉粒度越大光效越高,但根据我们的经验,每种不同粒度的荧光粉光效存在抛物线规律,即太大和太小都不是最亮的。比如我们的YAG荧光粉只有在6-7微米时是最亮的。 3.3 荧光粉越接近球形亮度越高。 3.4 色座标一样的灯眼睛看有可能光色是不一样的 色座标一样的灯眼睛看有可能光色是不一样的,这是因为荧光粉的发射光谱不一样,这需要根据各种荧光粉的发射光谱进行选择。 3.5 发光效率和色温的平衡 浓度会影响到发光效率。色温偏移到3000-4000K 已经不是效率最佳的点。 光通量和波长之间有关系,555nm处是光功率转化为流明的最佳点,做白光的时,需要考察光谱的分布。估计5000K 左右为发光效率最佳点。 3.6 荧光粉位置与发光效率 所以我认为荧光粉的浓度直接关系到发光效率!至于和芯片的距离当然是适当远一些较好,这样荧光粉的衰减会好很多!芯片自身的散热也会好!

相关主题
文本预览
相关文档 最新文档