当前位置:文档之家› 希尔伯特的23个问题

希尔伯特的23个问题

希尔伯特的23个问题
希尔伯特的23个问题

希尔伯特的23个问题

希尔伯特(Hilbert D,1862.1.23~1943.2.14)是二十世纪上半叶德国乃至全世界最伟大的数学家之一。他在横跨两个世纪的六十年的研究生涯中,几乎走遍了现代数学所有前沿阵地,从而把他的思想深深地渗透进了整个现代数学。希尔伯特是哥廷根数学学派的核心,他以其勤奋的工作和真诚的个人品质吸引了来自世界各地的年青学者,使哥廷根的传统在世界产生影响。希尔伯特去世时,德国《自然》杂志发表过这样的观点:现在世界上难得有一位数学家的工作不是以某种途径导源于希尔伯特的工作。他像是数学世界的亚历山大,在整个数学版图上,留下了他那显赫的名字。

1900年,希尔伯特在巴黎数学家大会上提出了23个最重要的问题供二十世纪的数学家们去研究,这就是著名的希尔伯特23个问题。

1975年,在美国伊利诺斯大学召开的一次国际数学会议上,数学家们回顾了四分之三个世纪以来希尔伯特23个问题的研究进展情况。当时统计,约有一半问题已经解决了,其余一半的大多数也都有重大进展。

1976年,在美国数学家评选的自1940年以来美国数学的十大成就中,有三项就是希尔伯特第1、第5、第10问题的解决。由此可见,能解决希尔伯特问题,是当代数学家的无上光荣。

下面摘录的是1987年出版的《数学家小辞典》以及其它一些文献中收集的希尔伯特23个问题及其解决情况:

1.连续统假设1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。1938年,哥德尔证明了连续统假设和世界公认的策梅洛--弗伦克尔集合论公理系统的无矛盾性。1963年,美国数学家科亨证明连续假设和策梅洛--伦克尔集合论公理是彼此独立的。因此,连续统假设不能在策梅洛--弗伦克尔公理体系内证明其正确性与否。希尔伯特第1问题在这个意义上已获解决。

2.算术公理的相容性欧几里得几何的相容性可归结为算术公理的相容性。希尔伯特曾提出用形式主义计划的证明论方法加以证明。1931年,哥德尔发表的不完备性定理否定了这种看法。1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。

1988年出版的《中国大百科全书》数学卷指出,数学相容性问题尚未解决。

3.两个等底等高四面体的体积相等问题

问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等。M.W.德恩1900年即对此问题给出了肯定解答。

4.两点间以直线为距离最短线问题此问题提得过于一般。满足此性质的几何学很多,因而需增加某些限制条件。1973

年,苏联数学家波格列洛夫宣布,在对称距离情况下,问题获得解决。

《中国大百科全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。

5.一个连续变换群的李氏概念,定义这个群的函数不假定是可微的这个问题简称连续群的解析性,即:是否每一个局部欧氏群都有一定是李群?中间经冯诺伊曼(1933,对紧群情形)、邦德里雅金(1939,对交换群情形)、谢瓦荚(1941,对可解群情形)的努力,1952年由格利森、蒙哥马利、齐宾共同解决,得到了完全肯定的结果。

6.物理学的公理化希尔伯特建议用数学的公理化方法推演

出全部物理,首先是概率和力学。1933年,苏联数学家柯尔莫哥洛夫实现了将概率论公理化。后来在量子力学、量子场论方面取得了很大成功。但是物理学是否能全盘公理化,很多人表示怀疑。

7.某些数的无理性与超越性1934年,A.O.盖尔方德和T.施奈德各自独立地解决了问题的后半部分,即对于任意代数数0 ,1,和任意代数无理数证明了的超越性。

8.素数问题包括黎曼猜想、哥德巴赫猜想及孪生素数问题等。一般情况下的黎曼猜想仍待解决。哥德巴赫猜想的最佳结果属于陈景润(1966),但离最解决尚有距离。目前孪生素数问题的最佳结果也属于陈景润。

9.在任意数域中证明最一般的互反律该问题已由日本数学家高木贞治(1921)和德国数学家E.阿廷(1927)解决。10.丢番图方程的可解性能求出一个整系数方程的整数根,称为丢番图方程可解。希尔伯特问,能否用一种由有限步构成的一般算法判断一个丢番图方程的可解性?1970年,苏联的IO.B.马季亚谢维奇证明了希尔伯特所期望的算法不存在。

11.系数为任意代数数的二次型H.哈塞(1929)和C.L.西格尔(1936,1951)在这个问题上获得重要结果。

12.将阿贝尔域上的克罗克定理推广到任意的代数有理域上去这一问题只有一些零星的结果,离彻底解决还相差很远。

13.不可能用只有两个变数的函数解一般的七次方程七次方程的根依赖于3个参数a、b、c,即x=x (a,b,c)。这个函数能否用二元函数表示出来?苏联数学家阿诺尔德解

决了连续函数的情形(1957),维士斯金又把它推广到了连续可微函数的情形(1964)。但如果要求是解析函数,则问题尚未解决。

14.证明某类完备函数系的有限性这和代数不变量问题有关。1958年,日本数学家永田雅宜给出了反例。

15.舒伯特计数演算的严格基础一个典型问题是:在三维空间中有四条直线,问有几条直线能和这四条直线都相交?

舒伯特给出了一个直观解法。希尔伯特要求将问题一般化,并给以严格基础。现在已有了一些可计算的方法,它和代数几何学不密切联系。但严格的基础迄今仍未确立。

16.代数曲线和代数曲线面的拓扑问题这个问题分为两部分。前半部分涉及代数曲线含有闭的分枝曲线的最大数目。后半部分要求讨论的极限环的最大个数和相对位置,其中X、Y是x、y的n次多项式.苏联的彼得罗夫斯基曾宣称证明了n=2时极限环的个数不超过3,但这一结论是错误的,已由中国数学家举出反例(1979)。

17.半正定形式的平方和表示一个实系数n元多项式对一切数组(x1,x2,...,xn) 都恒大于或等于0,是否都能写成平方和的形式?1927年阿廷证明这是对的。

18.用全等多面体构造空间由德国数学家比勃马赫(1910)、荚因哈特(1928)作出部分解决。

19.正则变分问题的解是否一定解析对这一问题的研究很少。C.H.伯恩斯坦和彼得罗夫斯基等得出了一些结果。20.一般边值问题这一问题进展十分迅速,已成为一个很大的数学分支。目前还在继续研究。

21.具有给定单值群的线性微分方程解的存在性证明已由希尔伯特本人(1905)和H.罗尔(1957)的工作解决。22.由自守函数构成的解析函数的单值化它涉及艰辛的黎曼曲面论,1907年P.克伯获重要突破,其他方面尚未解决。

死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。23.变分法的进一步发展出这并不是一个明确的数学问题,只是谈了对变分法的一般看法。20世纪以来变分法有了很大的发展。

“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实《国策》中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。

这个工作可让学生分组负责收集整理,登在小黑板上,每周一

换。要求学生抽空抄录并且阅读成诵。其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。如此下去,除假期外,一年便可以积累40多则材料。如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?这23问题涉及现代数学大部分重要领域,推动了20世纪数学的发展。

希尔伯特的23个问题-精选教学文档

希尔伯特的23个问题 希尔伯特(Hilbert D,1862.1.23~1943.2.14)是二十世纪上半叶德国乃至全世界最伟大的数学家之一。他在横跨两个世纪的六十年的研究生涯中,几乎走遍了现代数学所有前沿阵地,从而把他的思想深深地渗透进了整个现代数学。希尔伯特是哥廷根数学学派的核心,他以其勤奋的工作和真诚的个人品质吸引了来自世界各地的年青学者,使哥廷根的传统在世界产生影响。希尔伯特去世时,德国《自然》杂志发表过这样的观点:现在世界上难得有一位数学家的工作不是以某种途径导源于希尔伯特的工作。他像是数学世界的亚历山大,在整个数学版图上,留下了他那显赫的名字。1900年,希尔伯特在巴黎数学家大会上提出了23个最重要的问题供二十世纪的数学家们去研究,这就是著名的希尔伯特23个问题。 1975年,在美国伊利诺斯大学召开的一次国际数学会议上,数学家们回顾了四分之三个世纪以来希尔伯特23个问题的研究进展情况。当时统计,约有一半问题已经解决了,其余一半的大多数也都有重大进展。 1976年,在美国数学家评选的自1940年以来美国数学的十大成就中,有三项就是希尔伯特第1、第5、第10问题的解决。由此可见,能解决希尔伯特问题,是当代数学家的无上光荣。

下面摘录的是1987年出版的《数学家小辞典》以及其它一些文献中收集的希尔伯特23个问题及其解决情况: 1.连续统假设 1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。1938年,哥德尔证明了连续统假设和世界公认的策梅洛--弗伦克尔 集合论公理系统的无矛盾性。1963年,美国数学家科亨证明连续假设和策梅洛--伦克尔集合论公理是彼此独立的。因此,连续统假设不能在策梅洛--弗伦克尔公理体系内证明其正确性与否。希尔伯特第1问题在这个意义上已获解决。2.算术公理的相容性欧几里得几何的相容性可归结为算术公理的相容性。希尔伯特曾提出用形式主义计划的证明论方法加以证明。1931年,哥德尔发表的不完备性定理否定了这种看法。1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。 1988年出版的《中国大百科全书》数学卷指出,数学相容性问题尚未解决。 3.两个等底等高四面体的体积相等问题 问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等。M.W.德恩1900年即对此问题给出了肯定解答。 4.两点间以直线为距离最短线问题此问题提得过于一般。满足此性质的几何学很多,因而需增加某些限制条件。1973

希尔伯特23个数学问题7大数学难题

世界数学十大未解难题 (其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决 的问题”) 一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数 13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。 二:霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。 三:庞加莱(Poincare)猜想

希尔伯特空间

一百年前的数学界有两位泰斗:庞加莱和希尔伯特,而尤以后者更加出名,我想主要原因是他曾经在1900 年的世界数学家大会上提出了二十三个著名的希尔伯特问题,指引了本世纪前五十年数学的主攻方向,不过还有一个原因呢,我想就是著名的希尔伯特空间了。 希尔伯特空间是希尔伯特在解决无穷维线性方程组时提出的概念,原来的线性代数理论都是基于有限维欧几里得空间的,无法适用,这迫使希尔伯特去思考无穷维欧几里得空间,也就是无穷序列空间的性质。 大家知道,在一个欧几里得空间R^n 上,所有的点可以写成为:X= (x1,x2,x3,..., xn )。那么类似的,在一个无穷维欧几里得空间上点就是:X= (x1,x2,x3 ,xn,.................................................................... ),一个 点的序列。 欧氏空间上有两个重要的性质,一是每个点都有一个范数(绝对值,或者说是一个点到原点的距离),||X||^2= ∑xn^2,可是这一重要性质在无穷维时被破坏了:对于无穷多个xn,∑xn^2 可以不存在(为无穷大)。于是希尔伯特将所有∑ xn^2 为有限的点做成一个子空间,并赋以X*X'= ∑ xn*xn' 作为两点的内积。这个空间我们现在叫做l^2 ,平方和数列空间,这是最早 的希尔伯特空间了。 注意到我只提了内积没有提范数,这是因为范数可以由点与自身的内积推出,所以内积是一个更加强的条件,有内积必有范数,反之不然。只有范数的空间叫做Banach 空间,(以后有时间再慢慢讲:- )。 如果光是用来解决无穷维线性方程组的话,泛函就不会被称为现代数学的支柱了。 Hilbert 空间中我只提到了一个很自然的泛函空间:在无穷维欧氏空间上∑ xn^2 为有限的点。这个最早的Hilbert space 叫做l^2 (小写的l 上标2,又叫小l2 空间),非常类似于有限维的欧氏空间。

几种时频分析方法综述2——希尔伯特黄变换

几种时频分析方法综述2——希尔伯特—黄变换 夏巨伟 (浙江大学空间结构研究中心) 摘要:希尔伯特—黄变换由经验模态分解(empirical mode decomposition ,简称EMD )和Hilbert 谱分析两部分组成。经验模态分解方法是一种自适应的、高效的数据分解方法。由于这种分解是以局部时间尺度为基础,因此,它适应于非线性、非平稳过程。通过经验模型分解,任何复杂的数据集都可以被分解为个数有限的、而且常常是为数不多的几个固有模函数(intrinsic mode functions ,简称IMF)的线性叠加。通过分解得到IMF 后,就可以对每一个分量做希尔伯特变换,得到其瞬时频率和幅度。本文详细对Hilbert-Huang Transform 的过程进行了阐述,并用算例分析指出了其优势所在。 关键词:希尔伯特—黄变换;时频分析技术; 1 希尔伯特—黄变换(Hilbert-Huang Transform ) 1.1 希尔伯特变换与瞬时频率(Hilbert Transform and instantaneous frequency ) 对于任意一个时间序列X(t),它的希尔伯特变换具有如下形式: -1 ()(t)=,-X Y P d t ττπτ ∞∞? 其中,P ——积分的柯西主值; 希尔伯特变换对于任何属于L p 空间中的函数都存立,即上式中X(t)∈L p (— ∞,+∞)。 通过上述定义,X(t)和Y(t)成为一组复共轭对,同时能够构造一个实部和虚部分为X(t)和Y(t)的解析信号(Analytic Signal)Z(t),Z(t)表示为: ()()(t)=(t)(t)=a ,i t Z X iY t e θ+ 其中, ()()1/222 (t)a =(t)+(t),arctan .X(t)Y t X Y t θ????= ????? 理论上讲有无数种方式去定义虚部,但是希尔伯特变换是唯一能够得到解析 信号结果的方法。 X(t)的Hilbert 变换实质上是将X(t)与函数1/t 在时域上做卷积,这就决定了通过X(t)的Hilbert 变换能够考察其局部特性。得到X(t)的瞬时相位函数后,其瞬时频率为: ()() (t).d w t dt θ= 1.2 经验模态分解与固有模态函数(Empiricalmode decomposition/EMD and Intrinsic mode function/IMF ) 固有模态函数需要满足两个条件:(1)极值与零点的数量必须相等或最多相差一个;(2)由局部极大值包络和局部极小值包络定义的平均包络曲线上任何一点的值为0;

希尔伯特的二十三个数学问题

希尔伯特的二十三个数学问题 1900年,德国数学家D.希尔伯特在巴黎第二届国际数学家大会上作了题为《数学问题 》的著名讲演,其中对各类数学问题的意义、源泉及研究方法发表了精辟的见解,而整个 讲演的核心部分则是希尔伯特根据19世纪数学研究的成果与发展趋势而提出的23个问题。 ①连续统假设1963年,P.J.科恩证明了:连续统假设的真伪不可能在策梅洛-弗伦克尔公理系统内判明。 ②算术公理的相容性1931年,K.哥德尔的“不完备定理”指出了用希尔伯特“元数学”证明算术公理相容性之不可能。数学相容性问题尚未解决。 ③两等高等底的四面体体积之相等M.W.德恩1900年即对此问题给出了肯定解答。 ④直线作为两点间最短距离问题希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。 ⑤不要定义群的函数的可微性假设的李群概念A.M.格利森、D.蒙哥马利和L.齐平等于1952年对此问题作出了最后的肯定解答。 ⑥物理公理的数学处理公理化物理学的一般意义仍需探讨。至于希尔伯特问题中提到的概率论公理化,已由А.Н.柯尔莫哥洛夫(1933)等人建立。 ⑦某些数的无理性与超越性1934年,A.O.盖尔丰德和T.施奈德各自独立地 解决了问题的后半部分,即对于任意代数数□≠0,1,和任意代数无理数□证明了□□的超越性。 ⑧素数问题包括黎曼猜想、哥德巴赫猜想及孪生素数问题等。一般情况下的黎曼猜想仍待解决。哥德巴赫猜想最佳结果属于陈景润(1966),但离最终解决尚有距离。 ⑨任意数域中最一般的互反律之证明已由高木□治(1921)和E.阿廷(1927)解决。 ⑩丢番图方程可解性的判别1970年,□.В.马季亚谢维奇证明了希尔伯特所期望的一般算法不存在。 11 系数为任意代数数的二次型H.哈塞(1929)和C.L.西格尔(1936,1951)在这问题上获得重要结果。 12 阿贝尔域上的克罗内克定理推广到任意代数有理域尚未解决。 13 不可能用只有两个变数的函数解一般的七次方程连续函数情形于1957年由В.И.阿诺尔德解决。解析函数情形则尚未解决。 14 证明某类完全函数系的有限性1958年,永田雅宜给出了否定解决。 15 舒伯特计数演算的严格基础代数几何基础已由B.L.范·德·瓦尔登(1938~1940)与A.韦伊(1950)建立,但舒伯特演算的合理性仍待解决。 16 代数曲线与曲面的拓扑对该问题的后半部分,И.Г.彼得罗夫斯基曾声明证明了□=2时极限环个数不超过3,但这一结论是错误的,已由中国数学家举出反例(1979)。

希尔伯特23个数学问题及其解决情况

希尔伯特23个数学问题及其解决情况 已有 95 次阅读2011-10-3 21:02|个人分类:Mathematics&Statistics|系统分类:科研笔记|关键词:数学世纪亚历山大希尔伯特全世界 希尔伯特(HilbertD.,1862.1.23~1943.2.14)是二十世纪上半叶德国乃至全世界最伟大的数学家之一。他在横跨两个世纪的六十年的研究生涯中,几乎走遍了现代数学所有前沿阵地,从而把他的思想深深地渗透进了整个现代数学。希尔伯特是哥廷根数学学派的核心,他以其勤奋的工作和真诚的个人品质吸引了来自世界各地的年青学者,使哥廷根的传统在世界产生影响。希尔伯特去世时,德国《自然》杂志发表过这样的观点:现在世界上难得有一位数学家的工作不是以某种途径导源于希尔伯特的工作。他像是数学世界的亚历山大,在整个数学版图上,留下了他那显赫的名字。 1900年,希尔伯特在巴黎数学家大会上提出了23个最重要的问题供二十世纪 的数学家们去研究,这就是著名的“希尔伯特23个问题”。 1975年,在美国伊利诺斯大学召开的一次国际数学会议上,数学家们回顾了四分之三个世纪以来希尔伯特23个问题的研究进展情况。当时统计,约有一半问题已经解决了,其余一半的大多数也都有重大进展。 1976年,在美国数学家评选的自1940年以来美国数学的十大成就中,有三项 就是希尔伯特第1、第5、第10问题的解决。由此可见,能解决希尔伯特问题,是当代数学家的无上光荣。 下面摘录的是1987年出版的《数学家小辞典》以及其它一些文献中收集的希尔伯特23个问题及其解决情况: (1)康托的连续统基数问题。 1874年,康托猜测在可数集基数和实数集基数之间没有别的基数,即著名的连续统假设。1938年,侨居美国的奥地利数理逻辑学家哥德尔证明连续统假设与ZF 集合论公理系统的无矛盾性。1963年,美国数学家科恩(P.Choen)证明连续统假设与ZF公理彼此独立。因而,连续统假设不能用ZF公理加以证明。在这个意义下,问题已获解决。 (2)算术公理系统的无矛盾性。 欧氏几何的无矛盾性可以归结为算术公理的无矛盾性。希尔伯特曾提出用形式主义计划的证明论方法加以证明,哥德尔1931年发表不完备性定理作出否定。 根茨(G.Gentaen,1909-1945)1936年使用超限归纳法证明了算术公理系统的

emd 希尔伯特黄变换程序

(一)简单的EMD程序 function imf = emd(x) % Empiricial Mode Decomposition (Hilbert-Huang Transform) % imf = emd(x) % Func : findpeaks x = transpose(x(:));%转置 imf = []; while ~ismonotonic(x) %当x不是单调函数,分解终止条件 x1 = x; sd = Inf;%均值 %直到x1满足IMF条件,得c1 while (sd > 0.1) | ~isimf(x1) %当标准偏差系数sd大于0.1或x1不是固有模态函数时,分量终止条件 s1 = getspline(x1);%上包络线 s2 = -getspline(-x1);%下包络线 x2 = x1-(s1+s2)/2;%此处的x2为文章中的h sd = sum((x1-x2).^2)/sum(x1.^2); x1 = x2; end imf{end+1} = x1; x = x-x1; end imf{end+1} = x; % FUNCTIONS function u = ismonotonic(x) %u=0表示x不是单调函数,u=1表示x为单调的 u1 = length(findpeaks(x))*length(findpeaks(-x)); if u1 > 0, u = 0; else, u = 1; end function u = isimf(x) %u=0表示x不是固有模式函数,u=1表示x是固有模式函数 N = length(x); u1 = sum(x(1:N-1).*x(2:N) < 0); u2 = length(findpeaks(x))+length(findpeaks(-x)); if abs(u1-u2) > 1, u = 0; else, u = 1; end function s = getspline(x) %三次样条函数拟合成元数据包络线 N = length(x); p = findpeaks(x); s = spline([0 p N+1],[0 x(p) 0],1:N);

希尔伯特23个问题

连续统假设
提示:本条目的主题不是连续体假设。 在数学中,连续统假设(英语:Continuum hypothesis,简称 CH)是一个猜想, 也是希尔伯特的 23 个问题的第一题,由康托尔提出,关于无穷集的可能大小。 其为:
在一个基数绝对大于可列集而绝对小于实数集的集合。
康托尔引入了基数的概念以比较无穷集间的大小, 也证明了整数集的基数绝对小 于实集的基数。康托尔也就给了出连续统假设,就是说,在无限集中,比自然数 集{0,1,2,3,4......}基数大的集合中,基数最小的集合是实数集。而连续 统就是实数集的一个旧称。 更加形式地说,自然数集的基数为 为 。而连续统假设的观点认为实数集的基数
。由是,康托尔定义了绝对无限。
等价地,整数集的序数是 出不存在一个集合 使得
("艾礼富数")而实数的序数是
,连续续假设指
假设选择公理是对的, 那就会有一个最小的基数 连续统假设也就等价于以下的等式:
大于
, 而
连续统假设有个更广义的形式,叫作广义连续统假设(GCH),其命题为:
对于所有的序数 ,
库尔特·哥德尔在 1940 年用内模型法证明了连续统假设与 ZFC 的相对协调性, 保罗·柯恩在 1963 年用力迫法证明了连续统假设不能由 ZFC 推导。也就是说连 续统假设成立与否无法由 ZFC 确定。
作为希尔伯特第一问题
主条目:希尔伯特的 23 个问题

1900 年, 大卫· 希尔伯特以 “连续统假设是否成立” 作为 “希尔伯特第一问题” 。 Kurt Godel 和 Paul Cohen 确定了连续统假设在 ZFC 系统下,加上了选择公理, 也不能证明或证否。 Cohen 的结果并没有被广泛认同作为连续统假设问题的解决,而希尔伯特的问题 依然为当代研究的热门课题。(见 Woodin 2001a).
集合的大小
主条目:基数 要正式地列出这个猜想, 我们需要一些定义:假如两个集合 S 与 T 之间存在着一 个双射,我们会说这两个集合拥有相同的基数。直观的意思是在“T 的每个元素 只能配上仅仅一个 S 的元素,反之亦然”这个前提下,把 S 与 T 的元素拿出来配 对是可能的。因此,集合{蕉, 苹果, 橙}与集合{黄, 红, 绿}拥有相同基数。 当情况去到如整数集或有理数集等无穷集的情况时,事件就变得复杂得多。当考 虑所有有理数的集合时, 有些门外汉可能会天真地认为有理数理所当然地多于整 数,而有理数又显然少于实数,因此把连续统假设证否。但透过简单集合论的方 法, 我们能证明有理数集能与整数集形成一双射,因此有理集跟整数集有着一样 的大小, 而它们都被称为可列集。 对角论证法则证明了整数集跟连续统 (实数集) 的基数并不一样。 连续统假设亦指出,实数集中每一个子集,要么和整数集有相同的基数,要么和 实数集有相同的基数。
证明或证否的不可能性(在 ZFC 系统下)
康托尔相信连续统假设是对的,花了很多年尝试证明它,结果徒劳无功。它成为 了希尔伯特那重要难题名单中的第一条,并在 1900 年巴黎的国际数学家大会上 宣布此事。在那个时候,还没有公理化集合论的概念。 库尔特·哥德尔在 1940 年指出连续统假设不能在 ZFC 系统下证否,即使接受了 选择公理为前提。这个定理称为哥德尔定理。Paul Cohen 在 1963 年证明了连续 统假设同样不能在 ZFC 下被证明。因此,连续统假设“逻辑地独立于”ZFC。这 些结果都是以 ZFC 的公设系统本身并不存在自相矛盾(相容性)为假设大前提, 而这个大前提是被广泛接受为对的。 连续统假设并非被证明跟 ZFC 互相独立的第一个命题。 哥德尔不完备定理一个立 即的结论在 1931 年被发表,那是“‘存在着一个正式命题表达 ZFC 的相容性’ 乃独立于 ZFC”。有别于纯粹数学的,这个一致的命题乃是有着在数学之上的特 性。连续统假设和选择公理乃是最先被证明跟 ZF 集合论独立的命题。在 Paul Cohen 在 1960 年代发展出力迫法以前,这些独立性的证明并没有完成。

希尔伯特_黄变换谱及其在地震信号分析中的应用

第34卷第2期福州大学学报(自然科学版)Vol.34No.2 2006年4月Journal of Fuzhou University(Natural Science)Apr.2006 文章编号:1000-2243(2006)02-0260-05希尔伯特-黄变换谱及其在地震信号分析中的应用 陈子雄,吴琛,周瑞忠 (福州大学土木建筑工程学院,福建福州350002) 摘要:介绍了希尔伯特-黄变换(HHT)这一非线性、非平稳信号处理方法,并利用HHT处理了地震工程中 常用的El Centro地震波,得到了该信号的Hilbert谱、边际谱和能量谱,提取了该信号的主要动力特性,并与 该信号的Fourier分析结果进行了对比,显示出HHT这一方法的优越性. 关键词:希尔伯特-黄变换;经验模态分解;固有模态函数;地震信号 中图分类号:TU311.3文献标识码:A Hilbert-Huang transform spectru m and its application in seismic signal analysis CHEN Zi-xiong,W U Chen,ZHOU Rui-zhong (College of Civil Engineering and Architecture,Fuzhou University,Fuzhou,Fujian350002,China) Abstract:HHT is a ne w method to deal with non-linear and non-stationary data.El Centro earth- quake wave is analyzed by HHT.Through the way,Hilbert spectrum,marginal spectrum and energy spec trum are got and dynamic property is extrac ted.The comparison between HHT spectrum and Fourier spec trum is made and the superiority of HHT is demonstrated. Keyw ords:Hilbert-Huang transform;empirical mode decomposition;intrinsic mode function;seismic signal 地震信号具有短时、突变等特点,是一种典型的非平稳随机信号,必须对其进行分析与处理,才可以提取信号的主要特征.传统的Fourie r变换能够表述信号的频率特性,但不提供任何时域信息[1],而小波分析虽然在时域和频域都具有很好的局部化性质,但本质上仍是一种窗口可调的Fourier变换,在小波窗内的信号必须是平稳的,因而没有根本摆脱Fourier分析的局限[2].小波基的选择也是信号分析中的一个重要问题,另外,小波基的有限长会造成信号能量的泄漏,使信号的能量-频率-时间分布很难定量表述. Hilbert-Huang变换(HH T)的信号处理方法被认为是近年来对以Fourier变换为基础对线性和稳态谱分析的一个重大突破[2].它由经验模态分解(E mpirical Mode Decomposition,E MD)方法和Hilbert变换(H T)两部分组成,其核心是E MD分解.该方法采用了固有模态函数(Intrinsic Mode Function,I MF)概念以及将任意信号分解为I MF组成的思想,即E MD法,使得瞬时频率具有实际的物理意义[3].它不受Fourier分析的局限,可依据数据本身的时间尺度特征进行模态分解,分解过程中保留了数据本身的特性,再对各I MF分量进行Hilbert变换,得到信号能量在时间尺度上的分布规律,实现地震动力特性的提取. 1Hilbert-Huang变换 1.1经验模态分解和固有模态函数 经验模态分解(EMD)的目的是通过对非线性非平稳信号的分解获得一系列表征信号特征时间尺度的固有模态函数(I MF),使得各个I MF是窄带信号,可以进行Hilbert分析.首先设定两个条件:1整个时间序列的极大极小值数目与过零点数目相等或最多相差一个;o时间序列的任意点上,由极大值确 收稿日期:2005-07-27 作者简介:陈子雄(1981-),男,硕士研究生;通讯联系人:周瑞忠,教授. 基金项目:教育部博士点专项科研基金资助项目(20040386004)

希尔伯特的23个问题

希尔伯特(Hilbert D,1862.1.23~1943.2.14)是二十世纪上半叶德国乃至全世界最伟大的数学家之一。他在横跨两个世纪的六十年的研究生涯中,几乎走遍了现代数学所有前沿阵地,从而把他的思想深深地渗透进了整个现代数学。希尔伯特是哥廷根数学学派的核心,他以其勤奋的工作和真诚的个人品质吸引了来自世界各地的年青学者,使哥廷根的传统在世界产生影响。希尔伯特去世时,德国《自然》杂志发表过这样的观点:现在世界上难得有一位数学家的工作不是以某种途径导源于希尔伯特的工作。他像是数学世界的亚历山大,在整个数学版图上,留下了他那显赫的名字。 1900年,希尔伯特在巴黎数学家大会上提出了23个最重要的问题供二十世纪的数学家们去研究,这就是著名的"希尔伯特23个问题"。 1975年,在美国伊利诺斯大学召开的一次国际数学会议上,数学家们回顾了四分之三个世纪以来希尔伯特23个问题的研究进展情况。当时统计,约有一半问题已经解决了,其余一半的大多数也都有重大进展。 1976年,在美国数学家评选的自1940年以来美国数学的十大成就中,有三项就是希尔伯特第1、第5、第10问题的解决。由此可见,能解决希尔伯特问题,是当代数学家的无上光荣。 下面摘录的是1987年出版的《数学家小辞典》以及其它一些文献中收集的希尔伯特23个问题及其解决情况: 1.连续统假设 1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。1938年,哥德尔证明了连续统假设和世界公认的策梅洛--弗伦克尔集合论公理系统的无矛盾性。1963年,美国数学家科亨证明连续假设和策梅洛--伦克尔集合论公理是彼此独立的。因此,连续统假设不能在策梅洛--弗伦克尔公理体系内证明其正确性与否。希尔伯特第1问题在这个意义上已获解决。 2.算术公理的相容性欧几里得几何的相容性可归结为算术公理的相容性。希尔伯特曾提出用形式主义计划的证明论方法加以证明。1931年,哥德尔发表的不完备性定理否定了这种看法。1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。 1988年出版的《中国大百科全书》数学卷指出,数学相容性问题尚未解决。 3.两个等底等高四面体的体积相等问题 问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等。M.W.德恩1900年即对此问题给出了肯定解答。 4.两点间以直线为距离最短线问题此问题提得过于一般。满足此性质的几何学很多,因而需增加某些限制条件。1973年,苏联数学家波格列洛夫宣布,在对称距离情况下,问题获得解决。 《中国大百科全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。 5.一个连续变换群的李氏概念,定义这个群的函数不假定是可微的这个问题简称连续群的解析性,即:是否每一个局部欧氏群都有一定是李群?中间经冯·诺伊曼(1933,对紧群情形)、邦德里雅金(1939,对交换群情形)、谢瓦荚(1941,对可解群情形)的努力,1952年由格利森、蒙哥马利、齐宾共同解决,得到了完全肯定的结果。 6.物理学的公理化希尔伯特建议用数学的公理化方法推演出全部物理,首先是概率和力

用希尔伯特黄变换(HHT)求时频谱和边际谱

用希尔伯特黄变换(HHT)求时频谱和边际谱 1.什么是HHT? HHT就是先将信号进行经验模态分解(EMD分解),然后将分解后的每个IMF分量进行Hilbert变换,得到信号的时频属性的一种时频分析方法。 2.EMD分解的步骤。

EMD分解的流程图如下:

3.实例演示。 给定频率分别为10Hz和35Hz的两个正弦信号相叠加的复合信号,采样频率fs=2048Hz的信号,表达式如下:y=5sin(2*pi*10t)+5*sin(2*pi*35t) (1)为了对比,先用fft对求上述信号的幅频和相频曲线。 代码: function fftfenxi clear;clc; N=2048; %fft默认计算的信号是从0开始的

t=linspace(1,2,N);deta=t(2)-t(1);1/deta x=5*sin(2*pi*10*t)+5*sin(2*pi*35*t); % N1=256;N2=512;w1=0.2*2*pi;w2=0.3*2*pi;w3=0.4*2*pi; % x=(t>=-200&t<=-200+N1*deta).*sin(w1*t)+(t>-200+N1*deta&t<=-200+N2*det a).*sin(w2*t)+(t>-200+N2*deta&t<=200).*sin(w3*t); y = x; m=0:N-1; f=1./(N*deta)*m;%可以查看课本就是这样定义横坐标频率范围的 %下面计算的Y就是x(t)的傅里叶变换数值 %Y=exp(i*4*pi*f).*fft(y)%将计算出来的频谱乘以exp(i*4*pi*f)得到频移后[-2,2]之间的频谱值 Y=fft(y); z=sqrt(Y.*conj(Y)); plot(f(1:100),z(1:100)); title('幅频曲线') xiangwei=angle(Y); figure(2) plot(f,xiangwei) title('相频曲线') figure(3) plot(t,y,'r') %axis([-2,2,0,1.2]) title('原始信号')

希尔伯特-黄变换(Hilbert-Huang Transform,HHT)

希尔伯特-黄变换(Hilbert-Huang Transform,HHT) 0 前言 传统的数据分析方法都是基于线性和平稳信号的假设,然而对实际系统,无论是自然的还是人为建立的,数据最有可能是非线性、非平稳的。 希尔伯特-黄变换(Hilbert-Huang Transform,HHT)是一种经验数据分析方法,其扩展是自适应性的,所以它可以描述非线性、非平稳过程数据的物理意义。 1 HHT简介[贺礼平.希尔伯特-黄变换在电力谐波分析中的应用研究[D].湖南:中南大学,2009]HHT的发展。 1995年,Norden E.Huang为研究水表面波构思出一种所谓“EMD--HSA”的时间序列分析法,通过这种方法他发现水波的演化不是连续的,而是突变、离散、局部的。 1998年,Norden E.Huang等人提出了经验模态分解方法,并引入了Hilbert谱的概念和Hilbert谱分析的方法,美国国家航空和宇航局(NASA)将这一方法命名为Hilbert-Huang Transform,简称HHT,即希尔伯特-黄变换。 HHT是一种新的分析非线性非平稳信号的时频分析方法,由两部分组成: 第一部分为经验模态分解(Empirical Mode Decomposition,EMD)(the sifting process,筛选过程),它是由Huang提出的,基于一个假设:任何复杂信号都可以分解为有限数目且具有一定物理定义的固有模态函数(Intrinsic Mode Function,IMF;也称作本征模态函数);EMD方法能根据信号的特点,自适应地将信号分解成从高到低不同频率的一系列IMF;该方法直接从信号本身获取基函数,因此具有自适应性,同时也存在计算量大和模态混叠的缺点。 第二部分为Hilbert谱分析(Hilbert Spectrum Analysis,HSA),利用Hilbert变换求解每一阶IMF 的瞬时频率,从而得到信号的时频表示,即Hilbert谱。 简单说来,HHT处理非平稳信号的基本过程是:首先,利用EMD方法将给定的信号分解为若干IMF,这些IMF是满足一定条件的分量;然后,对每一个IMF进行Hilbert变换,得到相应的Hilbert谱,即将每个IMF表示在联合的时频域中;最后,汇总所有IMF的Hilbert谱就会得到原始信号的时间-频率-能量分布,即Hilbert谱。 在HHT中,为了能把复杂的信号分解为简单的单分量信号的组合,在进行EMD方法时,所获得的IMF 必须满足下列两个条件: 1)在整个信号长度上,一个IMF的极值点和过零点数目必须相等或至多只相差一点。 2)在任意时刻,由极大值点定义的上包络线和由极小值点定义的下包络线的平均值为零,也就是说IMF的上下包络线对称于时间轴。

希尔伯特23个问题

希尔伯特23问 希尔伯特(Hilbert D.,1862.1.23~1943.2.14)是二十世纪上半叶德国乃至全世界最伟大的数学家之一。他在横跨两个世纪的六十年的研究生涯中,几乎走遍了现代数学所有前沿阵地,从而把他的思想深深地渗透进了整个现代数学。希尔伯特是哥廷根数学学派的核心,他以其勤奋的工作和真诚的个人品质吸引了来自世界各地的年青学者,使哥廷根的传统在世界产生影响。希尔伯特去世时,德国《自然》杂志发表过这样的观点:现在世界上难得有一位数学家的工作不是以某种途径导源于希尔伯特的工作。他像是数学世界的亚历山大,在整个数学版图上,留下了他那显赫的名字。 1900年,希尔伯特在巴黎数学家大会上提出了23个最重要的问题供二十世纪的数学家们去研究,这就是著名的"希尔伯特23个问题"。 1975年,在美国伊利诺斯大学召开的一次国际数学会议上,数学家们回顾了四分之三个世纪以来希尔伯特23个问题的研究进展情况。当时统计,约有一半问题已经解决了,其余一半的大多数也都有重大进展。 1976年,在美国数学家评选的自1940年以来美国数学的十大成就中,有三项就是希尔伯特第1、第5、第10问题的解决。由此可见,能解决希尔伯特问题,是当代数学家的无上光荣。 下面摘录的是1987年出版的《数学家小辞典》以及其它一些文献中收集的希尔伯特23个问题及其解决情况: 1.连续统假设1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。1938年,哥德尔证明了连续统假设和世界公认的策梅洛--弗伦克尔集合论公理系统的无矛盾性。1963年,美国数学家科亨证明连续假设和策梅洛--伦克尔集合论公理是彼此独立的。因此,连续统假设不能在策梅洛--弗伦克尔公理体系内证明其正确性与否。希尔伯特第1问题在这个意义上已获解决。 2.算术公理的相容性欧几里得几何的相容性可归结为算术公理的相容性。希尔伯特曾提出用形式主义计划的证明论方法加以证明。1931年,哥德尔发表的不完备性定理否定了这种看法。1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。 1988年出版的《中国大百科全书》数学卷指出,数学相容性问题尚未解决。 3.两个等底等高四面体的体积相等问题 问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等。M.W.德恩1900年即对此问题给出了肯定解答。 4.两点间以直线为距离最短线问题此问题提得过于一般。满足此性质的几何学很多,因而需增加某些限制条件。1973年,苏联数学家波格列洛夫宣布,在对称距离情况下,问题获得解决。 《中国大百科全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。 5.一个连续变换群的李氏概念,定义这个群的函数不假定是可微的这个问题简称连续群的解析性,即:是否每一个局部欧氏群都有一定是李群?中间经冯·诺伊曼

希尔伯特·黄变换

HHT-希尔伯特·黄变换 1998年,Norden E. Huang等人提出了经验模态分解方法,并引入了Hilbert谱的概念和Hilbert谱分析的方法,美国国家航空和宇航局(NASA)将这一方法命名为Hilbert-Huang Transform,简称HHT,即希尔伯特-黄变换。 HHT主要内容包含两部分,第一部分为经验模态分解(Empirical Mode Decomposition,简称EMD),它是由Huang提出的;第二部分为Hilbert谱分析(Hilbert Spectrum Analysis,简称HAS)。简单说来,HHT处理非平稳信号的基本过程是:首先利用EMD方法将给定的信号分解为若干固有模态函数(以Intrinsic Mode Function或IMF 表示,也称作本征模态函数),这些IMF是满足一定条件的分量;然后,对每一个 IMF进行Hilbert变换,得到相应的Hilbert谱,即将每个IMF表示在联合的时频域中;最后,汇总所有IMF的Hilbert谱就会得到原始信号的Hilbert谱。 与传统的信号或数据处理方法相比,HHT具有如下特点: (1)HHT能分析非线性非平稳信号。 传统的数据处理方法,如傅立叶变换只能处理线性非平稳的信号,小波变换虽然在理 论上能处理非线性非平稳信号,但在实际算法实现中却只能处理线性非平稳信号。历 史上还出现过不少信号处理方法,然而它们不是受线性束缚,就是受平稳性束缚,并 不能完全意义上处理非线性非平稳信号。HHT则不同于这些传统方法,它彻底摆脱了 线性和平稳性束缚,其适用于分析非线性非平稳信号。 (2)HHT具有完全自适应性。 HHT能够自适应产生“基”,即由“筛选”过程产生的IMF。这点不同于傅立叶变换 和小波变换。傅立叶变换的基是三角函数,小波变换的基是满足“可容性条件”的小 波基,小波基也是预先选定的。在实际工程中,如何选择小波基不是一件容易的事, 选择不同的小波基可能产生不同的处理结果。我们也没有理由认为所选的小波基能够 反映被分析数据或信号的特性。 (3)HHT不受Heisenberg测不准原理制约——适合突变信号。 傅立叶变换、短时傅立叶变换、小波变换都受Heisenberg测不准原理制约,即时间窗口与频率窗口的乘积为一个常数。这就意味着如果要提高时间精度就得牺牲频率精度,反之亦然,故不能在时间和频率同时达到很高的精度,这就给信号分析处理带来一定 的不便。而HHT不受Heisenberg测不准原理制约,它可以在时间和频率同时达到很 高的精度,这使它非常适用于分析突变信号。 (4)HHT的瞬时频率是采用求导得到的。

(完整版)Hilbert希尔伯特环变换

黄锷院士在《On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data》中提出一种高维全息谱分析理论HHSA(Holo-Hilbert spectral analysis) 要理解HHSA方法,首先要了解希尔伯特变换、经验模态分解(EMD)、与希尔伯特-黄变换(HHT)。 学术背景: 在信号处理与频谱分析的目的是要描述信号的频谱含量在时间上变化,以便能在时间和频谱上同时表示信号的能量或者强度。傅里叶频谱并没有告诉我们哪些频率在什么时候出现。因此傅里叶变换无法表现信号频率成分的时变性,因此学术界先后发展出了短时傅里叶变换、窗口傅里叶变换、小波等手段,近似的求信号某一时刻的瞬时频率。 希尔伯特变换: 希尔伯特变换是以著名数学家大卫·希尔伯特(David Hilbert)来命名。通过希尔伯特变换,使得我们对短信号和复杂信号的瞬时参数的定义及计算成为可能,能够实现真正意义上的瞬时频率的提取,因而希尔伯特变换在信号处理上具有十分重要的地位,使得希尔伯特变换具有广泛的工程应用。 但在进一步的工程应用中,希尔伯特变换具有以下缺陷: (1)希尔伯特变换只能近似应用于窄带信号。但实际应用中,存在 许多非窄带信号,希尔伯特变换对这些信号无能为力。即便是 窄带信号,如果不能完全满足希尔伯特变换条件,也会使结果

发生错误。而实际信号中由于噪声的存在,会使很多原来满足 希尔伯特变换条件的信号无法完全满足; (2)对于任意给定时刻,通过希尔伯特变换运算后的结果只能在 一个频率值,即只能处理任何时刻为单一频率的信号; (3)对于一个非平稳的数据序列,希尔伯特变换得到的结果很大 程度上失去了原有的物理意义。 图1 傅立叶、小波与希尔伯特-黄变换对瞬时频率的分辨率 希尔伯特-黄变换: 针对上述的三个问题,黄锷院士在1998年提出希尔伯特-黄变换(HHT)。其基本思想是:讲一个非稳态、非线性的信号分解为若干个稳态信号,在对分解后的信号进行希尔伯特变换,分别求取对应的瞬时频率。 在这里将非稳态、非线性信号分解为多个稳态信号的算法成为经

关于希尔伯特第21个数学问题的故事

关于希尔伯特第21个数学问题的故事 ——一段七十多年的公案

李文林 希尔伯特问题的解决过程,有一些是具有戏剧性的,第21问题(具有给定单值群的线性微分方程的存在性)就是其中之一。这个早在1908年就已被认为获得解决的问题,七十多年之后竟被翻了案,成为希尔伯特问题研究史上饶有趣味和富有教益的一章。

七十多年的误解  普莱梅依在1908年发表的论文《具有给定单值群的黎曼型》,对黎曼-希尔伯特问题做出了肯定回答。普莱梅依的途径是化为积分方程来处理,借助于当时方兴未艾的弗雷德霍姆(Fredholm)理论。1913年,美国数学家伯克霍夫(G. Birkhoff)又采用某种逼近方法独立证明了普莱梅依的结果,并研究了他自己提出的一系列推广性问题。1957年,罗尔利用向量丛概念,从代数几何的观点将普莱梅依的结果推广到一般的黎曼曲面上去。研究黎曼-希尔伯特问题的代数几何途径在六、七十年代又被德利涅(P. Deligne)大大发展和完善了。 因此,长期以来,人们一直认为希尔伯特第21问题早已被解决了,答案是肯定的。然而,到了1980年代,柯恩(T. Kohn)、阿诺德(V.I. Arnold)等数学家开始发现并指出了普莱梅依的工作存在着缺陷。原来,普莱梅依定理涉及的实际上并不是真正的富克斯型方程组,而是比富克斯型范围更宽的所谓“正则”(regular)型方程组。
姗姗来迟的否定解答

文本预览