当前位置:文档之家› 常微分方程教程(丁同仁、李承治第二版)第四章 奇解

常微分方程教程(丁同仁、李承治第二版)第四章 奇解

常微分方程教程(丁同仁、李承治第二版)第四章 奇解
常微分方程教程(丁同仁、李承治第二版)第四章 奇解

第四章 奇解

习题4-1

1.求解下列微分方程:

(通解)

特解)(特解)解:2

212

22

)(22222

2

222

2)(2101.(42202..

0)1)(2(0)2()2(2222);

(,242).1(C Cx y x x C x y C x p b x x x x y x p x p a x p x p x p x

x p p p x px y p x px p y x C x dx

dp dx dp dx dp dx dp dx dp

dx dp p dx

dy ++-

=

?++-+=

?+-=?-=?=+-=+-=?-=?=+=++?=+++?+++=++=

=++=+-

2

2

4ln 4

ln 2ln 22ln 2ln 2ln 222ln )

(ln 0x .)]([ln 2ln 02ln ..

0))(2(ln 22)1(ln ln );

(,)(ln ).2(2

22

C x C y x x x y p p x b y x x x y p xp x xp x a p x xp x p x xp x p x x p p xp x px y x C x

C x

C

dx dp x

x

x x x x x x x dp dx

dp dx dp dx

dy

+=?+=

?=?=+-=+

-=?-+-=?-=?-=?=+=++?++++==+=(特解)

解:

dy

dq q

y

q

y y dy dq q y dy

dx p

y

p p y q y q y q x q y x y p y xp 3

2

2

2

222cos 2)

sin (cos 22

2cos 12

cos 123sec tan ,

tan ,

,tan .cos tan 22).3(-++=+

==

=

+=+=-令解:

y

y y y x q q y b y C x y C q y q y q a y y q y q y q y y q y y

y y t y

y

y

y q

y C dy

dq

dy dq q y dy dq dy dq

q y dy dq dy

dq q

y

q

y

y dy dq 3

2

32

32

32sin cos 23

13

1322

32

323

2

2

sin sin sin tan 0tan .sin cos tan 0tan .0

))(tan tan (0)tan ()tan (tan 0

tan tan 23212

cos sin cos sin cos cos 3

cos 21cos cos cos sin cos 2=+=+

=

?=

?=

?=-

+

=?=?-=?=+=-+?=+-+?=-+

+?-(通解)

2.用参数法求解下列微分方程:

(特解)当当由解:令21cos 0sin )]

(cos[2)](cos[

20sin .sin ,

,sin ,cos 2,sin ,cos 4)(52)1(5

2102

102

10sin sin 2)

cos 2(sin 5

525

525

2222

25

525

525

52±=?±=?=+-=+-=?+-

=?-

==

?

=?≠=

=

+∞<<-∞=

====+y t t b C x C x y C

dt x dt dx t a t

p x t p t y t p t y y t

tdt

t d t

dy

dx

dy

dx

dy

解:令dt t

sh xht d sht dx sht dy sht dx dy e e sht e e cht sht

p cht x dx

dy x t

t t t 3)(3332,2,3

,.1)(

3).2(22

2===?=-=

+==

==---

C

t t sh C

t e e C t d e e C

dt t sh y t t t t +-=+-+=

+-+=+=--?

?)224

1(31)4(381

)2()2(381

322222

C

dt t t t C

dt t

t t v dt

v v t t vt u t vdv du v u vdu vdv udu pdx dy v u y v p u x x y t

t t v

dv t t

t dv dt

t dv dt

t dv

vdt tdv t vdt

tdv dv

v u v

u v

v u du

dv

dx

dy u v u

++---=++--==

?=

?=+?=

?

=

-=?

===

-==

?

=-?=-=-====-+??

+---+---+-+--2

21

2221

2ln ,,2)2(22,,,.0)).(3(2222121

2221

22

1221

1221222

122222

222令齐次方程

解:令

?????

-----=+--+-=+---16

17

241

1617241222)(221)(212222212

212t tdt t dt dt t t t

dt t t dt t t t

????--+---=--+--------=16

17

241

16

17

241

1617241161724116172

41)(411617)41(ln 21)(21)(41)(])[(21t dt

t t dt t dt t t d

α

ββαβαβαβαβαβαβαβααβα)()()

()

()()()()

()

()

(1)()()()()

()(,

)

(,,)

4

1741()41741()(

1

.

||

ln )(ln |

|ln 17

21)11

(

17241)

)((41

)(414

17414

174117411717

41

17411741411741

4

1

1741

4

1

1741

1741414

1

1741

1741414

1

1741

41174141174

14

1

1741

4

11741

2

1

1721

4

17414174117

2

1

4

1741417414

17

414

17

414

1741

4174117

211617

2

4

1212

2124

174

1

417414

174141741

4

1741417411617

2412

1

2

117212117212v u C v u v u C v u v u C v u v u C v u v u v u C v

v u v

v u C

v

u

v

u

C t t C v t C v t t C t t t t e

v t t t dt t t dt

t t t t dt

t dt C

t t t +=++=++=++=+++=++=++=++=+=-

-=+

-=+---=+

-----+

-=+

---+---=-+

---=

+

----=+

--

-=--+---+-+-+---+

--

-

--

-

-

-

----

-

---+--????故

令故

(通解),)()(2

2???+=+-=α

ββαp x C p x p x y (特解)故特解:???=====?==

=

=

==++=±-=±-

=?±=?±=?±=?=+---+-+-+--+++++,,..17

2181722))161(161()171(1617

14

41714171022221

2

1

21

217218172222

1

241712128

171264

17882

64

)

179)(171(217917

1217

21817

2222

2

2222x y x y x x y b ax x x x x x x y a x x x x y u v v u t t t βαβ

(通解)故令解:??

???++-==++-=?===?-=?-=?==

-=-==++++++++++,,),()(,4),4(,).4(4)(.

4)().4(3233

3

23332

33

11

32)1(81411

32)1(81414141432332333

C y x C

y d xtd dy x x t xt x t x t x xt p x x x x x x t t t t

t t t t

t t t t t t

dx

dy

dx

dy dx dy dx dy dy dy 习题4-2

1. 利用p-判别式求下列微分方程的奇解:

的奇解。

为故的解,而为而解:’

)1(4

,0,02F 0112)1(44020),,(F ;)().1(2

4

'

"

pp

4

42

222

|

||2

22x y x x F

dy dp p dy dp x F x y x y p x y p xp p y x dx

dy dx dy x y x

y p x y x y p -==-=≠=≠-=-+=-

=-=???

?=+=-+=+=-=-=-=

的解不是解:)2(02202),,(F ;)(2).2(222

x y p x y p xp p y x dx

dy dx dy x

y -=???

?=+=-+=+=

的奇解。

为故的解为(解:)3(0,

0,02)1(2.09

4

94)1(2)3(00)1(209

4)1(;9

4)()1).(3(||0

'20

"2'2

2222==≠=-≠-=-

-==??????

=-=--=-==y F y F p y F y p y y p y y dx dy y y p y pp p

习题4-3

1.试求克莱洛方程的通解及其包络: .0)("),(),(≠=+=p dx

dy

p p xp y ?? 解:通解为)(),(C C Cx y ?+=?

).(':),()('),('),(),().0,0()1,(),0,0())('),("()

()('),(')),(()(,:))(()()()('.0)(',

0)())(()()).

(()(),(),()('),('C x p p p y p x C C Cx y dx

dy

C C C C C C y C x C C C y y C x x x x y x C C x C x C Cx y x x x y x x x y x p p p p y p x ??????????ω?ωω?ωω???ω?ωω?ωω???-=∧+-=-=?+=≠+

-≠--+-=-=∧+===∧+=?=?-=??

?

?=--=+-+=+==+-=-=特解为故通解为其中;是否为奇解。(是)

判断特解为

克莱洛方程的包络。)()('C C C y ??+-= 2试求一微分方程,使它有奇解为x y sin =

.

sin 1arccos 1arccos .4)(cos sin ,4)(cos )(,0cos )(2,

0sin )().0,0()1,cos )(2(),0,0()cos ,1(,sin ,0)(2,0sin )(,

sin ,22

222

22x y p p p xp y p p p xp y p x x y p x C x x dx dy C x x y C x x dx dy

C x C x y C x C y C x C y C x =-+-=-+-=?--=?--=-???

??

?=-+--=-+-≠-+-≠=??

?

?=--=-+-==有奇解为故微分方程解:领

一阶常微分方程的奇解

摘要.................................................... 错误!未定义书签。 1.何谓奇解.............................................. 错误!未定义书签。 2.奇解的产生............................................ 错误!未定义书签。 3.包络跟奇解的关系...................................... 错误!未定义书签。 4.理论上证明C-判别曲线与P-判别曲线方法................. 错误!未定义书签。 克莱罗微分方程 ..................................... 错误!未定义书签。 5.奇解的基本性质........................................ 错误!未定义书签。 定理1 ............................................. 错误!未定义书签。 定理2 ............................................. 错误!未定义书签。 定理3 ............................................. 错误!未定义书签。 6.小结.................................................. 错误!未定义书签。参考文献:.............................................. 错误!未定义书签。

总结一阶常微分方程奇解的求法

总结一阶微分方程奇解的求法 摘要:利用有关奇解的存在定理,总结出求一阶微分方程奇解的几种方法,并通过一些具体的例题说明这几种方法的应用 Using relevant theorems to develop several methods of finding singular solution of ordinary differential equation. In addition, illustrate the application of these methods through the concrete examples. 关键词:常微分方程 奇解 c-判别式 p-判别式 方法一:利用c-判别式求奇解 设一阶微分方程0, ,=?? ? ?? dx dy y x F ① 可求出方程①的通解为()0,,=c y x φ ② 如果()()???==0 ,,0,,' c y x c y x c φφ ③ 是微分方程①的解,且对③式满足:()()02 '2 '≠+y x φφ ④ 则③是微分方程①的奇解,且是通解②的包络。 例1:方程() 2 2 2 x x y dy dx dy dx + -= 的奇解 解:首先,本具题意求出该微分方程的通解为2 2 2 c cx y x ++= 与4 2 x y = 其中c 为任意常数 当时2 2 2 c cx y x ++= , ()y c cx x c y x -++= 2 2 2 ,,φ 其相应的c -判别式为 ? ??=+=-++02022x 2 c x y c cx 易得到: ? ??=-=2 2c y c x

代入原微分方程,可知? ??=-=2 2c y c x 不是原微分方程的解; 当4 2 x y = 时,易求出2 ,1''x y x ==φφ,则有()()02 '2 '≠+y x φφ 故4 2 x y = 为原微分方程的奇解 例2:试求微分方程() () y y dy dx 9 42 2 1= -的奇解 解:首先,根据题意求出微分方程的通解为:()()0322=---y y c x 其中c 为任意常数 再由相应的c-判别式: ()()()? ??=--=---020 322c x y y c x 易求出:? ??==0y c x 或 ???==3y c x 当???==0y c x 时,代入原微分方程成立; 所以? ??==0y c x 为原微分方程的解 且有()02'=--=c x x φ;()()93232 '-=---=y y y y φ 满足(Φ‘ x )2 +(Φ‘ y )2≠0 易验证???==3y c x 不是原微分方程的解 故x=c, y=0 是元微分方程的奇解。 方法二:利用p-判别法求奇解 在微分方程①中,设y ′=p,则此方程的p-判别式为: ()()?????==0,,0 ,,' p y x F p y x F p ⑤ 消去p 之后得到的函数y=?(x)是微分方程①身为解,

一阶常微分方程解法总结

页脚内容1 第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )()(=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(11212 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(1212 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有dy y N y Q dx x P x M ) ()()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x

页脚内容2 解:当0)1)(1(22≠--y x 时,有dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如)(x y g dx dy = 解法:令x y u = ,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(222111c y b x a c y b x a f dx dy ++++= 解法:01、02211 =b a b a ,转化为)(by ax G dx dy +=,下同①; 02、0221 1 ≠b a b a ,???=++=++00222111c y b x a c y b x a 的解为),(00y x ,令???-=-=00y y v x x u

常微分方程简明教程-王玉文等编-习题解答-(1)

1.4习题答案 1. (1) 12150, (2) 2.52. 2(1) 0,200P P = =, (2) 0200P <<, (3) 200P >. 3.(1) 0,50,200P P P = = =, (2) 50200P <<, (3) 050,200P P << >. 4.解: 因为当 0dy dt =时, ()y t 将保持不变; 当0dy dt >时, ()y t 将增加; 当0dy dt <时, ()y t 将减少. 由3220dy y y y dt =--知, (1) 当3 2 200y y y --=, 即0,4,5y y y = =-=时, ()y t 将保持不变. (2) 当3 2 200y y y -->, 即40y -<< 或5y > 时, ()y t 将增加. (3) 当3 2 200y y y --<, 即4y <- 或05y << 时, ()y t 将减少. 5. 7071. 6.解: (1) 设 ()N t 为在时刻t 的放射性同位素质量. 则模型为dN kN dt =-, 0k >为比例系数, 方程的解为 ()kt N t ce -=, 由0t = 时, (0)50N =, 得(0)50N c ==,于是 ()50kt N t e -=, 又因为 2t = 时, (2)50(110%)45N =?-=, 得 24550k e -=, 110 ln 0.05329 k =≈, 因此 0.053()50t N t e -=. (2) 当 4t = 时, 0.0534 (4)5040.5N e -?== (3) 质量减半时 ()25N t =, 得1 0.053ln 2 t -=, 13t ≈. 7. (1) ln 20.000125730≈, (2) ln 2 0.866438 ≈, (3) 一样. 8.(1) 1065, (2) 17669, (3) 32600, (4) 168 9. 解: (1) (1)10dS S k S dt N =--. (2) 1 (1)3dS S k S S dt N =--. (3) (1)dS S k S dt N =--其中 l 是捕获量与总量平方根的比例系数. 10.(1) 趋向于2000, (2) 鱼的数量递减趋于0. 11.2()23y t t =+. 12.()ln ,0g t t t t =- >.

一阶常微分方程解法总结

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x 解:当0)1)(1(22≠--y x 时,有 dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程:

①、形如 )(x y g dx dy = 解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得 到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程, 得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(2 221 11c y b x a c y b x a f dx dy ++++= 解法:0 1、 02 2 11=b a b a ,转化为 )(by ax G dx dy +=,下同①; 02、 022 1 1≠b a b a ,???=++=++00 222111 c y b x a c y b x a 的解为),(00y x ,令???-=-=0 0y y v x x u 得到,)()( )(221 12211u v g u v b a u v b a f v b u a v b u a f du dv =++=++=,下同②; 还有几类:xy u dy xy xg dx xy yf ==+,0)()( 以上都可以化为变量可分离方程。 例2.1、 2 5--+-=y x y x dx dy 解:令2--=y x u ,则du dx dy -=,代入得到u u dx du 7 1+= - ,有dx udu 7-= 所以)(72 2 为常数C C x u +-=,把u 代入得到)(72 22 为常数) (C C x y x =+--。 例2.2、 1 212+-+-=y x y x dx dy 解:由???=+-=+-012012y x y x 得到?????=-=3131y x ,令?? ???-=+=3131y v x u ,有???==du dx dv dy ,代入得到

一阶常微分方程的奇解

摘要 (2) 1.何谓奇解 (2) 2.奇解的产生 (3) 3.包络跟奇解的关系 (4) 4.理论上证明C-判别曲线与P-判别曲线方法 (5) 4.1 克莱罗微分方程 (9) 5.奇解的基本性质 (12) 5.1 定理1 (12) 5.2 定理2 (14) 5.3 定理3 (14) 6.小结 (14) 参考文献: (15)

一阶常微分方程的奇解 摘要 在常微分方程中,我们知道方程的解可以有多种,现在我们来讨论求奇解的方法。我们看到某些微分方程,会存在一些特殊的积分曲线,他并不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。从而我们引出了积分曲线族的包络,而为了求微分方程的奇解,,我们应先求出他的通解,然后求通解的包络。 关键词:奇解,包络,C-判别式,P-判别式 1.何谓奇解 设一阶隐式方程),,(,y y x F =0有一特解

)(:x y ψ=Γ,j x ∈ 如果对每一点Γ∈P ,在P 点的任何一个领域,方程),,(,y y x F =0都有一个不同于Γ的解在P 点与Γ相切,则称Γ是微分方程的),,(,y y x F =0的奇解 定义:如果一个一阶微分方程的一个特解的积分曲线上的每一点都至少和这个微分方程的不同的积分曲线相切,并且这相切的积分曲线在切点的任何邻域都不重合,则称这个特解为这个微分方程的奇解 2.奇解的产生 先看一个例子,求方程 033=-?? ? ??y dx dy (1) 或与它等价的方程 3y dx dy = 的解。 经分离变量后,可得(1)的通解 3)(27 1c x y += 容易看出,y=0也是原方程的一个解。现在来研究这个解y=0有什么特殊的地方。由图我们看到,在解y=0上的每一 点)0,(0x 处相切,这种特殊的积分曲线y=0 称为奇积分曲线,他所对应的解就是奇 解,这就是奇解的产生。 我们现在给出曲线族包络的定义 某些微分方程,存在一些特殊的积分 曲线,会存在一些特殊的积分曲线,他并 不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。在几何学里,这些特殊的积分曲线称为上述积分曲线族的包络,在微分方程里,这些特殊的积分曲线所对应的解酒称为方程的奇解。

一阶常微分方程的奇解

摘要 (4) 1.何谓奇解 (5) 2.奇解的产生 (5) 3.包络跟奇解的关系 (6) 4.理论上证明C-判别曲线与P-判别曲线方法 (7) 4.1 克莱罗微分方程 (11) 5.奇解的基本性质 (14) 5.1 定理1 (14) 5.2 定理2 (16) 5.3 定理3 (16) 6.小结 (17) 参考文献: (17)

一阶常微分方程的奇解 摘要 在常微分方程中,我们知道方程的解可以有多种,现在我们来讨论求奇解的方法。我们看到某些微分方程,会存在一些特殊的积分曲线,他并不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。从而我们引出了积分曲线族的包络,而为了求微分方程的奇解,,我们应先求出他的通解,然后求通解的包络。 关键词:奇解,包络,C-判别式,P-判别式

1.何谓奇解 设一阶隐式方程) x F=0有一特解 y , , (,y

)(:x y ψ=Γ,j x ∈ 如果对每一点Γ∈P ,在P 点的任何一个领域内,方程),,(,y y x F =0都有一个不同于Γ的解在P 点与Γ相切,则称Γ是微分方程的),,(,y y x F =0的奇解 定义:如果一个一阶微分方程的一个特解的积分曲线上的每一点都至少和这个微分方程的不同的积分曲线相切,并且这相切的积分曲线在切点的任何邻域内都不重合,则称这个特解为这个微分方程的奇解 2.奇解的产生 先看一个例子,求方程 033=-?? ? ??y dx dy (1) 或与它等价的方程 3y dx dy = 的解。 经分离变量后,可得(1)的通解 3)(27 1c x y += 容易看出,y=0也是原方程的一个解。现在来研究这个解y=0有什么特殊的地方。由图我们看到,在解y=0上的每一 点)0,(0x 处相切,这种特殊的积分曲线y=0 称为奇积分曲线,他所对应的解就是奇 解,这就是奇解的产生。 我们现在给出曲线族包络的定义 某些微分方程,存在一些特殊的积分 曲线,会存在一些特殊的积分曲线,他并 不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。在几何学里,这些特殊的积分曲线称为上述积分曲线族的包络,在微分方程里,这些特殊的积分曲线所对应的解酒称为方程的奇解。

常微分方程第三版答案2.2[1]1

习题2.2 求下列方程的解 1.dx dy =x y sin + 解: y=e ?dx (?x sin e ?-dx c dx +) =e x [- 2 1e x -(x x cos sin +)+c] =c e x -21 (x x cos sin +)是原方程的解。 2.dt dx +3x=e t 2 解:原方程可化为: dt dx =-3x+e t 2 所以:x=e ?-dt 3 (?e t 2 e -? -dt 3c dt +) =e t 3- (5 1e t 5+c) =c e t 3-+5 1e t 2 是原方程的解。 3.dt ds =-s t cos +21t 2sin 解:s=e ?-tdt cos (t 2sin 2 1?e dt dt ?3c + ) =e t sin -(?+c dt te t t sin cos sin ) = e t sin -(c e te t t +-sin sin sin ) =1sin sin -+-t ce t 是原方程的解。 4. dx dy n x x e y n x =- , n 为常数. 解:原方程可化为:dx dy n x x e y n x += )(c dx e x e e y dx x n n x dx x n +??=?- )(c e x x n += 是原方程的解.

5. dx dy +1212--y x x =0 解:原方程可化为:dx dy =-1212+-y x x ?=-dx x x e y 21 2(c dx e dx x x +?-221) )21(ln 2+=x e )(1 ln 2?+--c dx e x x =)1(1 2 x ce x + 是原方程的解. 6. dx dy 234xy x x += 解:dx dy 234xy x x += =23y x +x y 令 x y u = 则 ux y = d x d y =u dx du x + 因此:dx du x u +=2u x 21u dx du = dx du u =2 c x u +=33 1 c x x u +=-33 (*) 将x y u =带入 (*)中 得:3433cx x y =-是原方程的解.

编译原理简明教程答案.doc

编译原理简明教程答案 【篇一:8000 份课程课后习题答案与大家分享~~】 > 还有很多,可以去课后答案网 (/bbs )查找。 ################## 【公共基础课-答案】 #################### 新视野大学英语读写教程答案(全) 【khdaw 】 /bbs/viewthread.php?tid=108fromuid=1429267 概率论与数理统 计教程(茆诗松著) 高等教育出版社课后答案 /bbs/viewthread.php?tid=234fromuid=1429267 高等数学(第五 版)含上下册高等教育出版社课后答案 d.php?tid=29fromuid=1429267 新视野英语听力原文及答案课后答 案 【khdaw 】 /bbs/viewthread.php?tid=586fromuid=1429267 线性代数(同济 大学应用数学系著) 高等教育出版社课后答案 /bbs/viewthread.php?tid=31fromuid=1429267 21 世纪大学英语 第3 册(1-4)答案 【khdaw 】 /bbs/viewthread.php?tid=285fromuid=1429267 概率与数理统计 第二,三版(浙江大学盛骤谢式千潘承毅著) 高等教育出版社课后答案 d.php?tid=32fromuid=1429267 复变函数全解及导学[西安交大第四版] 【khdaw 】 /bbs/viewthread.php?tid=142fromuid=1429267 大学英语精读第 三版2 册课后习题答案 /bbs/viewthread.php?tid=411fromuid=1429267 线性代数(第二版) 习题答案 /bbs/viewthread.php?tid=97fromuid=1429267 21 世纪(第三册) 课后答案及课文翻译(5-8)【khdaw 】 /bbs/viewthread.php?tid=365fromuid=1429267 大学英语精读第 2 册课文翻译(上外)

试论常微分方程的奇解

试论常微分方程的奇解 摘要: 一阶微分方程拥有含有一个任意常数的通解,另外可能还有个别不含于通解的特解,即奇解,利用P-判别法和C-判别法可以求出奇解,而这两种判别法是否适用于求每一个一阶微分方程的奇解?此文中举了几个例子来说明这个问题.并给出另外三种求奇解的方法. 关键词: 一阶微分方程,奇解,P-判别式,C-判别式,C-P消去法,拾遗法,自然法. Discussing Singular Solution about First Order Differential Equation ZHU Yong-wang (Class 1, Grade 2006, College of Mathematics and Information Science) Advisor: Professor LI Jian-min Abstract: First order differential equation has a general solution which contains an arbitrary constant, but sometimes it has special solution that is singular solution, which can be solved by the P-judgment method and C-judgment method.While whether the two judgments can be applied to get every singular solution to the first order differential equation? This paper intends to illustrate this problem with several examples. Key words: Singular solution, P-judgment, C-judgment, C-P elimination method, The supplement method, Natural method. 1.引言 一般来说一阶常微分方程拥有任意常数的通解,另外还有个别不含于通解的特解.这种特解可以理解为通解的一种蜕化现象.它在几何上往往表现为解的唯一性遭到破坏.早在1649年莱布尼兹就已经观察到解族的包络也是一个解.克莱络

常微分方程考研讲义第三章-一阶微分方程解的存在定理

第三章一阶微分方程解的存在定理 [教学目标] 1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解 的误差估计式。 2.了解解的延拓定理及延拓条件。 3.理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一阶微分方 程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。 而实际问题中所需要的往往是要求满足某种初始条件的解。因此初值问题的研究就显 得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的 条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在 常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理 论的基础。 例如方程

dy dx =过点(0,0)的解就是不唯一,易知0y =是方程过(0,0)的解,此外,容易验证,2y x =或更一般地,函数 2 0 0() c<1 x c y x c x ≤≤?=?-≤? 都是方程过点(0,0)而且定义在区间01x ≤≤上的解,其中c 是满足01c <<的任一数。 解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性和唯一性。另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。而解的存在唯一性定理保证了所求解的存在性和唯一性。 1.存在性与唯一性定理: (1)显式一阶微分方程 ),(y x f dx dy = (3.1) 这里),(y x f 是在矩形域:00:||,||R x x a y y b -≤-≤ (3.2) 上连续。 定理1:如果函数),(y x f 满足以下条件:1)在R 上连续:2)在R 上关于变量y 满足李普希兹(Lipschitz )条件,即存在常数0L >,使对于R 上任何一对点1(,)x y , 2(,)x y 均有不等式1212(,)(,)f x y f x y L y y -≤-成立,则方程(3.1)存在唯一的解()y x ?=,在区间0||x x h -≤上连续,而且满足初始条件 00()x y ?= (3.3) 其中,min(, ),max (,)x y R b h a M f x y M ∈==,L 称为Lipschitz 常数.

常微分方程简明教程王玉文等编习题解答

第三章 二阶线性常系数微分方程 1.考虑两个参数的线性方程组 .Y a b b a dt dY ??? ? ??= 若)0,0(分别是鞍点、汇、源,试在平面上确定出相应的区域。 解:方程的特征方程为0)(22 22=-+-b a a λλ. 解得特征根为b a b a ±=±=2 2,1λ。 需分类讨论: (I )当0>b 时,知b a b a +=<-=21λλ。 (i )当0<+<-b a b a ,即b a -<时,)0,0(是汇。 (ii )当b a b a +<<-0,即b a b <<-时,)0,0(是鞍点。 (ii )当b a b a +<-<0,即b a >时,)0,0(是源。 (II )当0-=21λλ。 (i )当0<-<+b a b a ,即b a <时,)0,0(是汇。 (ii )当b a b a -<<+0,即b a b -<<时,)0,0(是鞍点。 (ii )当b a b a -<+<0,即b a ->时,)0,0(是源。 图3-1

2.求解下列给定二阶微分方程的通解: (1)076 22=--y dt dy dt y d 解:方程的特征方程为0762 =--λλ. 解得特征根为1,721-==λλ. 因此,t t e t y e t y -==)(,)(271 为齐次方程的两个解。 设21,k k 为常数,使得 0271≡+-t t e k e k 。 将上式两端求导得 07271≡-t t e k e k 。 令0=t 得???=-=+. 07,02121k k k k 由此得021==k k 。因此,t e t y 71)(=与t e t y -=)(2线性无 关。则由二阶齐次常系数微分方程解的线性原理知,原方程的通解为 t t e c e c t y -+=271)(。 (2)096 22=++y dt dy dt y d 解:特征方程:0962 =++λλ. 解得特征根为321-==λλ. 因此,t t te t y e t y 3231)(,)(--== 为齐次方程的两个解。 设21,k k 为常数,使得 03231≡+--t t te k e k 。 将上式两端求导得 03)3(32312≡----t t te k e k k 。 令0=t ,得021==k k 。因此,t e t y 31)(-=与t te t y 32)(-=线性无关。则由二阶齐次 常系数微分方程解的线性原理知,原方程的通解为 t t te c e c t y 3231)(--+=。 (3)0258 22=++y dt dy dt y d 解:特征方程:02582 =++λλ. 解得特征根为.34,3421i i --=+-=λλ. 因此,t e t y t e t y t t 3sin )(,3cos )(4241--== 为齐次方程的两个解。 设21,k k 为常数,使得 03sin 3cos 4241≡+--t e k t e k t t 。

一阶微分方程的奇解及其逆问题

一阶微分方程的奇解及其逆问题 摘要介绍了导数已解出的一阶微分方程和导数未解出的一阶微分方程的奇解问题,通过相关实例进行了说明.同时.考虑了常微分方程奇解的逆问题. 关键词奇解;包络;通解;P-判别曲线;C-判别曲线;逆问题 The singular solution of first oder ordinary differential equation and its inverse problem Abstract In this paper, we introduce the singular solution of the first oder ordinary differential equation by giving corresponding examples. Meanwhile, we also consider the inverse problem of the singular solution of ordinary differential equation. Keywords Singular solution; envelope; general solution; P-judging curve; inverse problem

一阶微分方程的奇解及其逆问题 1 概念 例1.1.1 求微分方程 2 -)(2 2 x dx dy x dx dy y + = 的解. 解 令 dx dy p = 代入方程得 2 -2 2 x xp p y + =. (1) 两边对x 求导 0)-2)(1-( --2=→+=x p dx dp x p dx dp x dx dp p p . 由c x p x p +=→=0-2 代入(1)得方程的通解 2 2 2 c cx x y ++= . (2) 由2 0-2x p x p = →=代入(1)得4 2 x y = , 经验证此为原方程的解. 从图1中我们可以看到,此解与方程通解(2)中的每一条积分曲线均相切.对某些微分方程,存在一条特殊的积分曲线,它并不属于这方程的积分曲线族中,但是,在这条特殊的积分曲线上的每个点处,都有积分曲线族的一条曲线和它在此点相切,在几何中,这条特殊的积分曲线称为上述积分曲线族的包络,在微分方程里,这条特殊的积分曲线所对应的解称为微分方程的奇解. 下面我们分别给出曲线族包络和微分方程奇解的定义. 定义1 设给定单参数曲线族 Φ(x,y,c )=0其中c 是参数,Φ(x,y,c )是x,y,c 的连续可微函数,曲线族Φ(x,y,c )=0 的包络是指这样的曲线,它本身并不包含在这曲线族Φ(x,y,c )=0 中但这曲线的每一点,都有曲线族Φ(x,y,c )=0 中的一条曲线和它在这点相切 .

徐芝纶编《弹性力学简明教程》第四版,全部章节课后答案详解

弹性力学简明教程(第四版)课后习题解答 徐芝纶 第一章绪论 【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体 【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。 【解答】均匀的各项异形体如:竹材,木材。 非均匀的各向同性体如:混凝土。 【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体一般的岩质地基和土质地基能否作为理想弹性体 【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。 【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。 【1-3】五个基本假定在建立弹性力学基本方程时有什么作用 【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。 均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整

个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。 各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。 小变形假定:假定位移和变形是微小的。亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。这样在建立物体变形以后的平衡方程时,就可以方便的用变形以前的尺寸来代替变形以后的尺寸。在考察物体的位移与形变的关系时,它们的二次幂或乘积相对于其本身都可以略去不计,使得弹性力学中的微分方程都简化为线性的微分方程。 【1-4】应力和面力的符号规定有什么区别试画出正坐标面和负坐标面上的正的应力和正的面力的方向。 【解答】应力的符号规定是:当作用面的外法线方向指向坐标轴方向时(即正面时),这个面上的应力(不论是正应力还是切应力)以沿坐标轴的正方向为正,沿坐标轴的负方向为负。当作用面的外法线指向坐标轴的负方向时(即负面时),该面上的应力以沿坐标轴的负方向为正,沿坐标轴的正方向为负。 面力的符号规定是:当面力的指向沿坐标轴的正方向时为正,沿坐标轴的负方向为负。 由下图可以看出,正面上应力分量与面力分量同号,负面上应力分量与面力分量符号相反。 正的应力正的面力 【1-5】试比较弹性力学和材料力学中关于切应力的符号规定。

一阶常微分方程的奇解

摘要 (2) 1.何谓奇解 (3) 2.奇解的产生 (3) 3.包络跟奇解的关系 (5) 4.理论上证明C-判别曲线与P-判别曲线方法 (6) 4.1 克莱罗微分方程 (11) 5.奇解的基本性质 (14) 5.1 定理1 (14) 5.2 定理2 (17) 5.3 定理3 (17) 6.小结 (17) 参考文献: (18)

一阶常微分方程的奇解 摘要 在常微分方程中,我们知道方程的解可以有多种,现在我们来讨论求奇解的方法。我们看到某些微分方程,会存在一些特殊的积分曲线,他并不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。从而我们引出了积分曲线族的包络,而为了求微分方程的奇解,,我们应先求出他的通解,然后求通解的包络。 关键词:奇解,包络,C-判别式,P-判别式

1.何谓奇解 设一阶隐式方程),,(,y y x F =0有一特解 )(:x y ψ=Γ,j x ∈ 如果对每一点Γ∈P ,在P 点的任何一个领域,方程),,(,y y x F =0都有一个不同于Γ的解在P 点与Γ相切,则称Γ是微分方程的),,(,y y x F =0的奇解 定义:如果一个一阶微分方程的一个特解的积分曲线上的每一点都至少和这个微分方程的不同的积分曲线相切,并且这相切的积分曲线在切点的任何邻域都不重合,则称这个特解为这个微分方程的奇解 2.奇解的产生 先看一个例子,求方程

033 =-?? ? ??y dx dy (1) 或与它等价的方程 3y dx dy = 的解。 经分离变量后,可得(1)的通解 3)(271c x y += 容易看出,y=0也是原方程的一个 解。现在来研究这个解y=0有什么特殊 的地方。由图我们看到,在解y=0上的 每一点)0,(0x 处相切,这种特殊的积分曲 线y=0称为奇积分曲线,他所对应的解 就是奇解,这就是奇解的产生。 我们现在给出曲线族包络的定义 某些微分方程,存在一些特殊的积分曲线,会存在一些特殊的积分曲线,他并不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。在几何学里,这些特殊的积分曲线称为上述积分曲线族的包络,在微分方程里,这些特殊的积分曲线所对应的解酒称为方程的奇解。 设给定单参数曲线族 0),,(=Φc y x (1)

一阶常微分方程的解法

一阶常微分方程的解法

一阶常微分方程的解法 摘要:常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中,在整个数学中占有重要的地位。本文对一阶常微分方程的解法作了简要的总结,并举例加以分析了变量可分离方程,线性微分方程,积分因子,恰当微分方程,主要归纳了一阶微分方程的初等解法,并以典型例题加以说明。 关键词:变量分离;积分因子;非齐次微分方程;常数变易法 Solution of first-order differential equation Abstract: Differential equations, important parts of calculus, are widely used in the research of practical problems, which also play important role in mathematics. The solution of a differential equation is summarized briefly, and illustrates the analysis of variable separable equation, linear differential equation, integral factor, exact differential equation, mainly summarizes the elementary solution of first

例1:求解方程2211y dy dx x -=-. 解:当1y ≠±时,方程的通积分为 2 2 11C y x =+--,即 arcsin arcsin y x C =+ 即 sin(arcsin )y x C =+. 另外,方程还有解1y =±,不包含在通解中. (2) 微分形式变量可分离方程的解法 方程 1122()()()()M x N y dx M x N y dy = (1.2) 是变量可分离方程的微分形式表达式.这时,x 和y 在方程中的地位是“平等”的,即x 和y 都可以被认为是自变量或函数[1]. 在求常数解时,若10()0N y =,则0y y =为方程(1.2)的解.同样,若 20()0M x =,则0x x =也是方程(1.2)的解. 当()()120N y M x ≠时,用它除方程(1.2)两端,分离变量,得 ()() ()() 2112N y M x dy dx N y M x = 上式两端同时积分,得到方程(1.2)的通积分 () () ()() 211 2N y M x dy dx C N y M x =+?? 例2:求解方程 ()() 22110x y dx y x dy -+-= 解:首先,易见1,1y x =±=±为方程的解.其次,当() 22(1)10x y --≠时,分离变量得 221 1 0ydy xdx x y --+ =

解一阶常微分方程范文

解一阶常微分方程 1.知识准备 1. 1 变量分离方程 形如 ()()dy f x y dx ?= (1) 的方程,称为变量分离方程,()f x ,()y ?分别是x ,y 的连续函数.这是一类最简单的一阶函数. 如果()0y ?≠,我们可将(1)改写成 ()() dy f x dx y ?=,这样变量就分离开来了.两边积分,得到 ()()dy f x dx c y ?=+??, c 为任意常数.由该式所确定的函数关系式(,)y y x c =就是常微分方程(1)的解. 1. 2 积分因子 恰当微分方程可以通过积分求出它的通解.因此能否将一个非恰当微分方程化为恰当微分方程就有很大的意义.积分因子就是为了解决这个问题引进的概念. 如果存在连续可微函数(),0x y μμ=≠,使得 ()()()(),,,,0x y M x y dx x y N x y dy μμ+= 为一恰当微分方程,即存在函数u ,使 Mdx Ndy du μμ+=, 则称(),x y μ为方程()(),,0M x y dx N x y dy +=的积分因子. 函数(),x y μ为()(),,0M x y dx N x y dy +=积分因子的充要条件是 ()() M N y x μμ??=??, 即

()M N N M x y y x μμμ????-=-????. 假设原方程存在只与x 有关的积分因子()x μμ=,则 0x μ ?=?,则μ为原方程的积分因子的充要条件是()M N x y x μμ???=-???,即()( ) M N y x x N φ??-??= 仅是关于x 的函数.此时可求得原方程的一个积分因子为()x dx e φμ? =.同样有只与y 有关的积分 因子的充要条件是()( )M N y x y M ???-??=-是仅为y 的函数,此时可求得方程(11)的一 个积分因子为()y dy e ?μ? = 1. 3恰当微分方程 考虑微分形式的一阶微分方程()(),,0M x y dx N x y dy +=(11),如果该式的左端恰好是某个二元函数(),u x y 的全微分,即 ()()(),,,u u M x y dx N x y dy du x y dx dy x y ??+== +?? 则称(11)为恰当微分方程. 对于一阶微分方程 ()(),,0M x y dx N x y dy +=, 若有 M N y x ??=??,则该方程必为恰当微分方程.我们接着讨论如何求得该恰当微分方程的解.我们可以把 (),u M x y x ?=?看作只关于自变量x 的函数,对它积分可得()(),u M x y dx y ?=+?,由此式可得 ()(),d y u M x y dx x x dy ??? =+ ???, 又因为有 (),u N x y x ?=?,故

相关主题
相关文档 最新文档