当前位置:文档之家› 高中数学解题思路全部内容完整版

高中数学解题思路全部内容完整版

高中数学解题思路全部内容完整版
高中数学解题思路全部内容完整版

一、配方法

配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。

最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。

配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式,如:

a2+b2=(a+b)2-2ab=(a-b)2+2ab;

a2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b

2

)2+(

3

2

b)2;

a2+b2+c2+ab+bc+ca=1

2

[(a+b)2+(b+c)2+(c+a)2]

a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如:

1+sin2α=1+2sinαcosα=(sinα+cosα)2;

x2+1

2

x

=(x+

1

x

)2-2=(x-

1

x

)2+2 ;……等等。

Ⅰ、再现性题组:

1. 在正项等比数列{a

n }中,a

1

?a

5

+2a

3

?a

5

+a

3

?a

7

=25,则 a

3

+a

5

=_______。

2. 方程x2+y2-4kx-2y+5k=0表示圆的充要条件是_____。

A. 1

4

4

或k>1 C. k∈R D. k=1

4

或k=1

3. 已知sin4α+cos4α=1,则sinα+cosα的值为______。

A. 1

B. -1

C. 1或-1

D. 0

4. 函数y=log

1

2

(-2x2+5x+3)的单调递增区间是_____。

A. (-∞, 5

4] B. [5

4

,+∞) C. (-1

2

,5

4

] D. [5

4

,3)

5. 已知方程x2+(a-2)x+a-1=0的两根x

1、x

2

,则点P(x

1

,x

2

)在圆x2+y2=4上,则

实数a=_____。

【简解】 1小题:利用等比数列性质a

m p

-a

m p

+

=a

m

2,将已知等式左边后配方(a

3

a

5

)2易求。答案是:5。

2小题:配方成圆的标准方程形式(x-a)2+(y-b)2=r2,解r2>0即可,选B。

3小题:已知等式经配方成(sin2α+cos2α)2-2sin2αcos2α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。

4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。

5小题:答案3-11。

Ⅱ、示范性题组:

例1. 已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。

A. 23

B. 14

C. 5

D. 6

【分析】 先转换为数学表达式:设长方体长宽高分别为x,y,z ,则

211

424()()xy yz xz x y z ++=++=??

?

,而欲求对角线长x y z 222++,将其配凑成两已知式的组合形式

可得。

【解】设长方体长宽高分别为x,y,z ,由已知“长方体的全面积为11,其12条棱的长度

之和为24”而得:211

424()()xy yz xz x y z ++=++=???

长方体所求对角线长为:

x y z 222++=()()x y z xy yz xz ++-++22=

6112-=5

所以选B 。

【注】本题解答关键是在于将两个已知和一个未知转换为三个数学表示式,观察和分析三个数学式,容易发现使用配方法将三个数学式进行联系,即联系了已知和未知,从而求解。这也是我们使用配方法的一种解题模式。

例2. 设方程x 2

+kx +2=0的两实根为p 、q ,若(p q )2+(q p

)2

≤7成立,求实数k 的取值范围。

【解】方程x 2+kx +2=0的两实根为p 、q ,由韦达定理得:p +q =-k ,pq =2 ,

(p q )2+(q p )2=p q pq 44

2+()=()()

p q p q pq 2222222+-=[()]()p q pq p q pq +--2222222=()k 2248

4

--≤7, 解得k ≤-10或k ≥10 。

又 ∵p 、q 为方程x 2

+kx +2=0的两实根, ∴ △=k 2

-8≥0即k ≥22或k ≤-22 综合起来,k 的取值范围是:-10≤k ≤-22 或者 22≤k ≤10。

【注】 关于实系数一元二次方程问题,总是先考虑根的判别式“Δ”;已知方程有两根时,可以恰当运用韦达定理。本题由韦达定理得到p +q 、pq 后,观察已知不等式,从其结构特征联想到先通分后配方,表示成p +q 与pq 的组合式。假如本题不对“△”讨论,结果将出错,即使有些题目可能结果相同,去掉对“△”的讨论,但解答是不严密、不完整的,这一点我们要尤为注意和重视。

例3. 设非零复数a 、b 满足a 2

+ab +b 2

=0,求(

a a

b +)1998+(b a b

+)1998

。 【分析】 对已知式可以联想:变形为(a b )2+(a b )+1=0,则a

b

=ω (ω为1的立方

虚根);或配方为(a +b)2

=ab 。则代入所求式即得。

【解】由a 2

+ab +b 2

=0变形得:(

a b )2+(a

b

)+1=0 ,

设ω=

a b ,则ω2+ω+1=0,可知ω为1的立方虚根,所以:1ω=b a

,ω3=ω3

=1。 又由a 2

+ab +b 2

=0变形得:(a +b)2

=ab ,

所以 (a a b +)1998+(b a b +)1998

=(a ab 2)999+(b ab

2)999=(a b )999+(b a )999=ω

999

ω

999

=2 。

【注】 本题通过配方,简化了所求的表达式;巧用1的立方虚根,活用ω的性质,计算表达式中的高次幂。一系列的变换过程,有较大的灵活性,要求我们善于联想和展开。

【另解】由a 2

+ab +b 2

=0变形得:(

a b )2+(a b )+1=0 ,解出b a =-±132i 后,化成三角形式,代入所求表达式的变形式(a b )999+(b a

)999

后,完成后面的运算。此方法用于

只是未-±132

i 联想到ω时进行解题。

假如本题没有想到以上一系列变换过程时,还可由a 2+ab +b 2

=0解出:a =-±132

i b ,

直接代入所求表达式,进行分式化简后,化成复数的三角形式,利用棣莫佛定理完成最后的计算。

Ⅲ、巩固性题组:

1. 函数y =(x -a)2+(x -b)2

(a 、b 为常数)的最小值为_____。

A. 8

B. ()a b -2

2 C. a b 222

+ D.最小值不存在

2. α、β是方程x 2-2ax +a +6=0的两实根,则(α-1)2 +(β-1)2

的最小值是_____。

A. -494

B. 8

C. 18

D.不存在

3. 已知x 、y ∈R +

,且满足x +3y -1=0,则函数t =2x

+8y

有_____。

A.最大值22

B.最大值22

C.最小值22 B.最小值22

4. 椭圆x 2-2ax +3y 2+a 2

-6=0的一个焦点在直线x +y +4=0上,则a =_____。

A. 2

B. -6

C. -2或-6

D. 2或6 5. 化简:218-sin +228+cos 的结果是_____。

A. 2sin4

B. 2sin4-4cos4

C. -2sin4

D. 4cos4-2sin4 6. 设F 1和F 2为双曲线x 2

4

-y 2

=1的两个焦点,点P 在双曲线上且满足∠F 1PF 2=90°,

则△F 1PF 2的面积是_________。

7. 若x>-1,则f(x)=x 2

+2x +11

x +的最小值为___________。

8. 已知π2

〈β<α〈34

π,cos(α-β)=1213

,sin(α+β)=-35

,求sin2α的值。(92

年高考题)

9. 设二次函数f(x)=Ax 2

+Bx +C ,给定m 、n (m

[(m+n)2

+ m 2

n 2

]+2A[B(m+n)-Cmn]+B 2

+C 2

=0 。

①解不等式f(x)>0;

②是否存在一个实数t,使当t∈(m+t,n-t)时,f(x)<0 ?若不存在,说出理由;若存在,指出t的取值范围。

10. 设s>1,t>1,m∈R,x=log

s t+log

t

s,y=log

s

4t+log

t

4s+m(log

s

2t+log

t

2s),

①将y表示为x的函数y=f(x),并求出f(x)的定义域;

②若关于x的方程f(x)=0有且仅有一个实根,求m的取值范围。

二、换元法

解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。

它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。

三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1-x的值域时,易发现x∈[0,1],设x

=sin2α,α∈[0,π

2

],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中

主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。

均值换元,如遇到x+y=S形式时,设x=S

2

+t,y=

S

2

-t等等。

我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例

中的t>0和α∈[0,π

2

]。

Ⅰ、再现性题组:

1.y=sinx·cosx+sinx+cosx的最大值是_________。

2.设f(x2+1)=log

a

(4-x4) (a>1),则f(x)的值域是_______________。

3.已知数列{a

n }中,a

1

=-1,a

n+1

·a

n

=a

n+1

-a

n

,则数列通项a

n

=___________。

4.设实数x、y满足x2+2xy-1=0,则x+y的取值范围是___________。

5.方程13

13

+

+

-x

x

=3的解是_______________。

6.不等式log

2(2x-1) ·log

2

(2x+1-2)〈2的解集是_______________。

【简解】1小题:设sinx+cosx=t∈[-2,2],则y=t2

2

+t-

1

2

,对称轴t=-1,

当t=2,y

max =

1

2

+2;

2小题:设x2+1=t (t≥1),则f(t)=log

a [-(t-1)2+4],所以值域为(-∞,log

a

4];

3小题:已知变形为

1

1a n +-

1a n =-1,设b n =1a n

,则b 1=-1,b n =-1+(n -1)(-1)=-n ,所以a n =-1

n

4小题:设x +y =k ,则x 2-2kx +1=0, △=4k 2

-4≥0,所以k ≥1或k ≤-1; 5小题:设3x

=y ,则3y 2

+2y -1=0,解得y =

1

3

,所以x =-1; 6小题:设log 2(2x

-1)=y ,则y(y +1)<2,解得-2

4

,log 23)。 Ⅱ、示范性题组:

【分析】 由S =x 2

+y 2

联想到cos 2

α+sin 2

α=1,于是进行三角换元,设

x S y S ==??

???cos sin α

α

代入①式求S max 和S min 的值。 【解】设x S y S ==?????cos sin α

α

代入①式得: 4S -5S ·sin αcos α=5

解得 S =10

852-sin α

∵ -1≤sin2α≤1 ∴ 3≤8-5sin2α≤13 ∴ 1013≤1085-sin α≤10

3

∴ 1S max +1

S min

=310+1310=1610=85

此种解法后面求S 最大值和最小值,还可由sin2α=810

S S

-的有界性而求,即解不等

式:|810S S

-|≤1。这种方法是求函数值域时经常用到的“有界法”。

【另解】 由S =x 2+y 2,设x 2=S 2+t ,y 2

=S 2-t ,t ∈[-S 2,S 2

],

则xy =±S t 22

4-代入①式得:4S ±5S t 224

-=5, 移项平方整理得 100t 2

+39S 2

-160S +100=0 。

∴ 39S 2

-160S +100≤0 解得:1013≤S ≤10

3

∴ 1S max +1

S min =310+1310=1610=85

【注】 此题第一种解法属于“三角换元法”,主要是利用已知条件S =x 2+y 2

与三角公式cos 2

α+sin 2

α=1的联系而联想和发现用三角换元,将代数问题转化为三角函数值域问

题。第二种解法属于“均值换元法”,主要是由等式S =x 2+y 2

而按照均值换元的思路,设x 2

=S 2+t 、y 2

=S 2

-t ,减少了元的个数,问题且容易求解。另外,还用到了求值域的几种

方法:有界法、不等式性质法、分离参数法。

和“均值换元法”类似,我们还有一种换元法,即在题中有两个变量x 、y 时,可以设x =a +b ,y =a -b ,这称为“和差换元法”,换元后有可能简化代数式。本题设x =a +b ,y =a -b ,代入①式整理得3a 2

+13b 2

=5 ,求得a 2

∈[0,

53

],所以S =(a -b)2+(a +b)2=2(a 2

+b 2

)=1013+2013a 2∈[1013,103],再求1S max +1

S min

的值。

例2. △ABC 的三个内角A 、B 、C 满足:A +C =2B ,1cos A +1cos C =-2

cos B

,求cos

A C

-2

的值。(96年全国理) 【分析】 由已知“A +C =2B ”和“三角形内角和等于180°”的性质,可得

A C

B +=??

?12060°=°;由“A +C =120°”进行均值换元,则设A C =°α

=°-α

6060+??? ,再代入可求cos α即cos A C

-2

【解】由△ABC 中已知A +C =2B ,可得 A C B +=???

12060°

=°,

由A +C =120°,设A C =°α

=°-α6060+???

,代入已知等式得:

1cos A +1cos C =160cos()?+α+160cos()?-α=1123

2

cos sin αα-+

11232

cos sin αα+=cos cos sin ααα143422-=cos cos α

α2

34-=-22, 解得:cos α=22, 即:cos A C -2=2

2

【另解】由A +C =2B ,得A +C =120°,B =60°。所以

1cos A +1cos C =-2

cos B

=-22,设1

cos A =-2+m ,1cos C

=-2-m ,

所以cosA=

1

2

-+m

,cosC=

1

2

--m

,两式分别相加、相减得:

cosA+cosC=2cos A C

+

2

cos

A C

-

2

=cos

A C

-

2

22

2

2

m-

cosA-cosC=-2sin A C

+

2

sin

A C

-

2

=-3sin

A C

-

2

2

2

2

m

m-

即:sin A C

-

2

=-

2

32

2

m

m

()

-

,=-

22

2

2

m-

,代入sin2

A C

-

2

+cos2

A C

-

2

=1整理

得:3m4-16m-12=0,解出m2=6,代入cos A C

-

2

22

2

2

m-

2

2

【注】本题两种解法由“A+C=120°”、“

1

cos A

1

cos C

=-22”分别进行均值

换元,随后结合三角形角的关系与三角公式进行运算,除由已知想到均值换元外,还要求对三角公式的运用相当熟练。假如未想到进行均值换元,也可由三角运算直接解出:由A+C=

2B,得A+C=120°,B=60°。所以

1

cos A

1

cos C

=-

2

cos B

=-22,即cosA+cosC

=-22cosAcosC,和积互化得:

2cos A C

+

2

cos

A C

-

2

=-2[cos(A+C)+cos(A-C),即cos

A C

-

2

2

2

-2cos(A-C)

2

2

-2(2cos2

A C

-

2

-1),整理得:42cos2

A C

-

2

+2cos

A C

-

2

-32=0,

解得:cos A C

-

2

2

2

例3. 设a>0,求f(x)=2a(sinx+cosx)-sinx·cosx-2a2的最大值和最小值。【解】设sinx+cosx=t,则t∈[-2,2],由(sinx+

cosx)2=1+2sinx·cosx得:sinx·cosx=t21 2 -

∴ f(x)=g(t)=-1

2

(t-2a)2+

1

2

(a>0),t∈[-2,2]

t=-2时,取最小值:-2a2-22a-1 2

当2a≥2时,t=2,取最大值:-2a2+22a-1

2

当0<2a≤2时,t=2a,取最大值:1

2

y

, ,

-22 x

∴ f(x)的最小值为-2a 2

-22a -12,最大值为1202222212222

()()<<-+-≥?????

??a a a a 。

【注】 此题属于局部换元法,设sinx +cosx =t 后,抓住sinx +cosx 与sinx ·cosx 的

内在联系,将三角函数的值域问题转化为二次函数在闭区间上的值域问题,使得容易求解。换元过程中一定要注意新的参数的范围(t ∈[-2,2])与sinx +cosx 对应,否则将会出错。本题解法中还包含了含参问题时分类讨论的数学思想方法,即由对称轴与闭区间的位置关系而确定参数分两种情况进行讨论。

一般地,在遇到题目已知和未知中含有sinx 与cosx 的和、差、积等而求三角式的最大值和最小值的题型时,即函数为f(sinx ±cosx ,sinxcsox),经常用到这样设元的换元法,转化为在闭区间上的二次函数或一次函数的研究。

例4. 设对所于有实数x ,不等式x 2

log 241()a a ++2x log 221a a ++log 2()a a +142

2

>0

恒成立,求a 的取值范围。(87年全国理)

【分析】不等式中log 241()a a +、 log 221a a +、log 2()a a +142

2

三项有何联系?进行对

数式的有关变形后不难发现,再实施换元法。

【解】 设log 2

21a a +=t ,则log 241()a a +=log 2812()a a +=3+log 2a a

+12=3-

log 221a a +=3-t ,log 2()a a +142

2

=2log 2

a a +12=-2t , 代入后原不等式简化为(3-t )x 2

+2tx -2t>0,它对一切实数x 恒成立,所以:

304830

2

->=+-???306或 ∴ t<0即log 221a

a +<0 0<21

a a +<1,解得0

设元,关键是发现已知不等式中log 241()a a +、 log 221a a +、log 2()a a +142

2

三项之间的联

系。在解决不等式恒成立问题时,使用了“判别式法”。另外,本题还要求对数运算十分熟

练。一般地,解指数与对数的不等式、方程,有可能使用局部换元法,换元时也可能要对所给的已知条件进行适当变形,发现它们的联系而实施换元,这是我们思考解法时要注意的一点。

例5. 已知sin θx =cos θy ,且c o s 22θx +sin 22

θ

y

=10322()x y + (②式),求x y 的值。

【解】 设

sin θx =cos θy

=k ,则sin θ=kx ,cos θ=ky ,且sin 2θ+cos 2

θ=k 2

(x 2

+y 2

)=1,代入②式得: k y x 222+k x y

222=10

322

()x y +=1032k 即:y x 22+x y 22=103

设x y

22=t ,则t +1t =103 , 解得:t =3或1

3 ∴x y =±3或±33

【另解】 由x y =sin cos θθ=tg θ,将等式②两边同时除以cos 22

θ

x ,再表示成含tg θ的

式子:1+tg 4θ=()()

1103112

2+?+tg tg θθ

=103tg 2θ,设tg 2θ=t ,则3t 2—10t +3=0,

∴t =3或

1

3, 解得x y

=±3或±33。 【注】 第一种解法由sin θx =cos θ

y

而进行等量代换,进行换元,减少了变量的个数。第二种解法将已知变形为

x y =sin cos θθ

,不难发现进行结果为tg θ,再进行换元和变形。两种解法要求代数变形比较熟练。在解高次方程时,都使用了换元法使方程次数降低。

例6. 实数x 、y 满足()x -192+()y +1162

=1,若x +y -k>0恒成立,求k 的范围。

【分析】由已知条件()x -192+()y +116

2=1,可以发现它与a 2+b 2

=1有相似之处,于

是实施三角换元。

【解】由()x -192+()y +116

2

=1,设x -13=cos θ,y +14=sin θ,

即:x y =+=-+???

1314cos sin θθ 代入不等式x +y -k>0得:

3cos θ+4sin θ-k>0,即k<3cos θ+4sin θ=5sin(θ+ψ) 所以k<-5时不等式恒成立。

【注】本题进行三角换元,将代数问题(或者是解析几何问题)化为了含参三角不等式恒成立的问题,再运用“分离参数法”转化为三角函数的值域问题,从而求出参数范围。一般地,在遇到与圆、椭圆、双曲线的方程相似的代数式时,或者在解决圆、椭圆、双曲线等有关问题时,经常使用“三角换元法”。

本题另一种解题思路是使用数形结合法的思想方法:在平面直角坐标系,不等式ax +by +c>0 (a>0)所表示的区域为直线ax +by +c =0所分平面成两部分中含x 轴正方向的一部分。此题不等式恒成立问题化为图形问题:椭圆上的点始终

位于平面上x +y -k>0的区域。即当直线x +y -k =0在与椭圆下部相切的切线之下时。当直线与椭圆相切时,方程组161911440

22()()x y x y k -++=+-=???有相等的一组实数解,消元后由△=0可求得k =-3,所以k<-3时原不等式恒成立。

Ⅲ、巩固性题组:

1. 已知f(x 3

)=lgx (x>0),则f(4)的值为_____。 A. 2lg2 B. 13

lg2 C. 23

lg2 D. 23

lg4

2. 函数y =(x +1)4

+2的单调增区间是______。

A. [-2,+∞)

B. [-1,+∞) D. (-∞,+∞)

C. (-∞,-1]

3. 设等差数列{a n }的公差d =12

,且S 100=145,则a 1+a 3+a 5+……+a 99的值为

_____。

A. 85

B. 72.5

C. 60

D. 52.5 4. 已知x 2

+4y 2

=4x ,则x +y 的范围是_________________。

5. 已知a ≥0,b ≥0,a +b =1,则a +12

+b +12

的范围是____________。

6. 不等式x >ax +32

的解集是(4,b),则a =________,b =_______。

7. 函数y =2x +x +1的值域是________________。

8. 在等比数列{a n }中,a 1+a 2+…+a 10=2,a 11+a 12+…+a 30=12,求a 31+a 32+…+a 60。

9. 实数m 在什么范围内取值,对任意实数x ,不等式sin 2

x +2mcosx +4m -1<0恒成立。 10. 已知矩形ABCD ,顶点C(4,4),A 点在曲线

x 2+y 2

=2 (x>0,y>0)上移动,且AB 、AD 始终平行x 轴、y 轴,求矩形ABCD 的最小面积。

y x

x +y -k>0 k 平面区域

y D C A B

O x

三、待定系数法

要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)≡g(x)的充要条件是:对于一个任意的a值,都有f(a)≡g(a);或者两个多项式各同类项的系数对应相等。

待定系数法解题的关键是依据已知,正确列出等式或方程。使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。

使用待定系数法,它解题的基本步骤是:

第一步,确定所求问题含有待定系数的解析式;

第二步,根据恒等的条件,列出一组含待定系数的方程;

第三步,解方程组或者消去待定系数,从而使问题得到解决。

如何列出一组含待定系数的方程,主要从以下几方面着手分析:

①利用对应系数相等列方程;

②由恒等的概念用数值代入法列方程;

③利用定义本身的属性列方程;

④利用几何条件列方程。

比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。

Ⅰ、再现性题组:

1.设f(x)=x

2

+m,f(x)的反函数f-1(x)=nx-5,那么m、n的值依次为_____。

A. 5

2

, -2 B. -

5

2

, 2 C.

5

2

, 2 D. -

5

2

,-2

2.二次不等式ax2+bx+2>0的解集是(-1

2

,

1

3

),则a+b的值是_____。

A. 10

B. -10

C. 14

D. -14

3.在(1-x3)(1+x)10的展开式中,x5的系数是_____。

A. -297

B.-252

C. 297

D. 207

4.函数y=a-bcos3x (b<0)的最大值为3

2

,最小值为-

1

2

,则y=-4asin3bx的最小

正周期是_____。

5.与直线L:2x+3y+5=0平行且过点A(1,-4)的直线L’的方程是_______________。

6.与双曲线x2-y2

4

=1有共同的渐近线,且过点(2,2)的双曲线的方程是

____________。

【简解】1小题:由f(x)=x

2

+m求出f-1(x)=2x-2m,比较系数易求,选C;

2小题:由不等式解集(-

12,13),可知-12、13

是方程ax 2

+bx +2=0的两根,代入两根,列出关于系数a 、b 的方程组,易求得a +b ,选D ;

3小题:分析x 5

的系数由C 105与(-1)C 102

两项组成,相加后得x 5

的系数,选D ;

4小题:由已知最大值和最小值列出a 、b 的方程组求出a 、b 的值,再代入求得答案

23

π

; 5小题:设直线L ’方程2x +3y +c =0,点A(1,-4)代入求得C =10,即得2x +3y +10=0;

6小题:设双曲线方程x 2

-y 24=λ,点(2,2)代入求得λ=3,即得方程x 23-y 212

=1。

Ⅱ、示范性题组:

例1. 已知函数y =mx x n

x 22431

+++的最大值为7,最小值为-1,求此函数式。

【分析】求函数的表达式,实际上就是确定系数m 、n 的值;已知最大值、最小值实际是就是已知函数的值域,对分子或分母为二次函数的分式函数的值域易联想到“判别式法”。

【解】 函数式变形为: (y -m)x 2

-43x +(y -n)=0, x ∈R, 由已知得y -m ≠0 ∴ △=(-43)2

-4(y -m)(y -n)≥0 即: y 2

-(m +n)y +(mn -12)≤0 ① 不等式①的解集为(-1,7),则-1、7是方程y 2

-(m +n)y +(mn -12)=0的两根,

代入两根得:1120

497120+++-=-++-=???()()m n mn m n mn 解得:m n ==???51或m n ==???

15

∴ y =5431122x x x +++或者y =x x x 22435

1

+++

此题也可由解集(-1,7)而设(y +1)(y -7)≤0,即y 2

-6y -7≤0,然后与不等式①比较系数而得:m n mn +=-=-??

?

6

127,解出m 、n 而求得函数式y 。

【注】 在所求函数式中有两个系数m 、n 需要确定,首先用“判别式法”处理函数值域

问题,得到了含参数m 、n 的关于y 的一元二次不等式,且知道了它的解集,求参数m 、n 。两种方法可以求解,一是视为方程两根,代入后列出m 、n 的方程求解;二是由已知解集写出不等式,比较含参数的不等式而列出m 、n 的方程组求解。本题要求对一元二次不等式的解集概念理解透彻,也要求理解求函数值域的“判别式法”:将y 视为参数,函数式化成含参数y 的关于x 的一元二次方程,可知其有解,利用△≥0,建立了关于参数y 的不等式,解出y 的范围就是值域,使用“判别式法”的关键是否可以将函数化成一个一元二次方程。

例2. 设椭圆中心在(2,-1),它的一个焦点与短轴两端连线互相垂直,且此焦点与长轴较近的端点距离是10-5,求椭圆的方程。

【分析】求椭圆方程,根据所给条件,确定几何数据a、b、c之值,问题就全部解决了。设a、b、c后,由已知垂直关系而联想到勾股定理建立一

个方程,再将焦点与长轴较近端点的距离转化为a-c的

值后列出第二个方程。

【解】设椭圆长轴2a、短轴2b、焦距2c,则|BF’|

=a

a b c

a a b

a c

222

222

2

105

=+

+=

-=-

?

?

?

?

?

()解得:

a

b

=

=

?

?

?

??

10

5

∴所求椭圆方程是:x2

10

y2

5

=1

也可有垂直关系推证出等腰Rt△BB’F’后,由其性质推证出等腰Rt△B’O’F’,再进行如

下列式:

b c

a c

a b c

=

-=-

=+

?

?

?

?

?

105

222

,更容易求出a、b的值。

【注】圆锥曲线中,参数(a、b、c、e、p)的确定,是待定系数法的生动体现;如何确定,要抓住已知条件,将其转换成表达式。在曲线的平移中,几何数据(a、b、c、e)不变,本题就利用了这一特征,列出关于a-c的等式。

一般地,解析几何中求曲线方程的问题,大部分用待定系数法,基本步骤是:设方程(或几何数据)→几何条件转换成方程→求解→已知系数代入。

例3. 是否存在常数a、b、c,使得等式1·22+2·32+…+n(n+1)2=n n()

+1

12

(an2

+bn+c)对一切自然数n都成立?并证明你的结论。(89年全国高考题)【分析】是否存在,不妨假设存在。由已知等式对一切自然数n都成立,取特殊值n=1、2、3列出关于a、b、c的方程组,解方程组求出a、b、c的值,再用数学归纳法证明等式对所有自然数n都成立。

【解】假设存在a、b、c使得等式成立,令:n=1,得4=1

6

(a+b+c);n=2,得22

=1

2

(4a+2b+c);n=3,得70=9a+3b+c。整理得:

a b c

a b c

a b C

++=

++=

++=

?

?

?

?

?

24

4244

9370

,解得

a

b

c

=

=

=

?

?

?

?

?

3

11

10

于是对n=1、2、3,等式1·22+2·32+…+n(n+1)2=

n n()

+1

12

(3n2+11n+10)成

立,下面用数学归纳法证明对任意自然数n,该等式都成立:

假设对n=k时等式成立,即1·22+2·32+…+k(k+1)2=k k()

+1

12

(3k2+11k+10);y B’

x

A F O’ F’ A’

B

当n=k+1时,1·22+2·32+…+k(k+1)2+(k+1)(k+2)2=k k()

+1

12

(3k2+11k

+10) +(k+1)(k+2)2=k k()

+1

12

(k+2)(3k+5)+(k+1)(k+2)2=

()()

k k

++

12

12

(3k2

+5k+12k+24)=()()

k k

++

12

12

[3(k+1)2+11(k+1)+10],

也就是说,等式对n=k+1也成立。

综上所述,当a=8、b=11、c=10时,题设的等式对一切自然数n都成立。

【注】建立关于待定系数的方程组,在于由几个特殊值代入而得到。此种解法中,也体现了方程思想和特殊值法。对于是否存在性问题待定系数时,可以按照先试值、再猜想、最后归纳证明的步骤进行。本题如果记得两个特殊数列13+23+…+n3、12+22+…+n2求和的公式,也可以抓住通项的拆开,运用数列求和公式而直接求解:由n(n+1)2=n3+2n2+n得S

n

=1·22+2·32+…+n(n+1)2=(13+23+…+n3)+2(12+22+…+n2)+(1

+2+…+n)=n n

22

1

4

()

+

+2×

n n n

()()

++

121

6

n n()

+1

2

n n()

+1

12

(3n2+11n+10),

综上所述,当a=8、b=11、c=10时,题设的等式对一切自然数n都成立。

例4. 有矩形的铁皮,其长为30cm,宽为14cm,要从四角上剪掉边长为xcm的四个小正方形,将剩余部分折成一个无盖的矩形盒子,问x为何值时,矩形盒子容积最大,最大容积是多少?

【分析】实际问题中,最大值、最小值的研究,先由已知条件选取合适的变量建立目标函数,将实际问题转化为函数最大值和最小值的研究。

【解】依题意,矩形盒子底边边长为(30-2x)cm,底边宽为(14-2x)cm,高为xcm。

∴盒子容积 V=(30-2x)(14-2x)x=4(15-x)(7-x)x ,

显然:15-x>0,7-x>0,x>0。

设V=4

ab

(15a-ax)(7b-bx)x (a>0,b>0)

要使用均值不等式,则

--+=

-=-=?

?

?

a b

a ax

b bx x

10

157

解得:a=1

4

, b=

3

4

, x=3 。

从而V=64

3

(

15

4

x

4

)(

21

4

3

4

x)x≤

64

3

(

15

4

21

4

3

+

)3=

64

3

×27=576。

所以当x=3时,矩形盒子的容积最大,最大容积是576cm3。

【注】均值不等式应用时要注意等号成立的条件,当条件不满足时要凑配系数,可以用

“待定系数法”求。本题解答中也可以令V=4

ab

(15a-ax)(7-x)bx 或

4

ab

(15-x)(7a-

ax)bx,再由使用均值不等式的最佳条件而列出方程组,求出三项该进行凑配的系数,本题也体现了“凑配法”和“函数思想”。

Ⅲ、巩固性题组:

1. 函数y =log a x 的x ∈[2,+∞)上恒有|y|>1,则a 的取值范围是_____。

A. 2>a>12

且a ≠1 B. 0

或12或0

2. 方程x 2+px +q =0与x 2

+qx +p =0只有一个公共根,则其余两个不同根之和为_____。

A. 1

B. -1

C. p +q

D. 无法确定 3. 如果函数y =sin2x +a ·cos2x 的图像关于直线x =-π8

对称,那么a =_____。

A. 2

B. -2

C. 1

D. -1

4. 满足C n 0+1·C n 1+2·C n 2+…+n ·C n n

<500的最大正整数是_____。 A. 4 B. 5 C. 6 D. 7 5. 无穷等比数列{a n }的前n 项和为S n =a -12

n , 则所有项的和等于_____。

A. -12

B. 1

C. 12

D.与a 有关

6. (1+kx)9=b 0+b 1x +b 2x 2+…+b 9x 9

,若b 0+b 1+b 2+…+b 9=-1,则k =______。

7. 经过两直线11x -3y -9=0与12x +y -19=0的交点,且过点(3,-2)的直线方程为_____________。

8. 正三棱锥底面边长为2,侧棱和底面所成角为60°,过底面一边作截面,使其与底面成30°角,则截面面积为______________。

9. 设y =f(x)是一次函数,已知f(8)=15,且f(2)、f(5)、(f14)成等比数列,求f(1)+f(2)+…+f(m)的值。

10. 设抛物线经过两点(-1,6)和(-1,-2),对称轴与x 轴平行,开口向右,直线y =2x +7和抛物线截得的线段长是410, 求抛物线的方程。

四、定义法

所谓定义法,就是直接用数学定义解题。数学中的定理、公式、性质和法则等,都是由定义和公理推演出来。定义是揭示概念内涵的逻辑方法,它通过指出概念所反映的事物的本质属性来明确概念。

定义是千百次实践后的必然结果,它科学地反映和揭示了客观世界的事物的本质特点。简单地说,定义是基本概念对数学实体的高度抽象。用定义法解题,是最直接的方法,本讲让我们回到定义中去。

Ⅰ、再现性题组:

1.已知集合A中有2个元素,集合B中有7个元素,A∪B的元素个数为n,则______。

A. 2≤n≤9

B. 7≤n≤9

C. 5≤n≤9

D. 5≤n≤7

2.设MP、OM、AT分别是46°角的正弦线、余弦线和正切线,则_____。

A. MP

B. OM

C. AT<

D. OM

3.复数z

1=a+2i,z

2

=-2+i,如果|z

1

|< |z

2

|,则实数a的取值范围是_____。

A. -1

B. a>1

C. a>0

D. a<-1或a>1

4.椭圆x2

25

y2

9

=1上有一点P,它到左准线的距离为

5

2

,那么P点到右焦点的距离为

_____。

A. 8 C. 7.5 C. 75

4

D. 3

5.奇函数f(x)的最小正周期为T,则f(-T

2

)的值为_____。

A. T

B. 0

C. T

2

D. 不能确定

6.正三棱台的侧棱与底面成45°角,则其侧面与底面所成角的正切值为_____。【简解】1小题:利用并集定义,选B;

2小题:利用三角函数线定义,作出图形,选B;

3小题:利用复数模的定义得a222

+<5,选A;

4小题:利用椭圆的第二定义得到||

PF

5

2

=e=

4

5

,选A;

5小题:利用周期函数、奇函数的定义得到f(-T

2

)=f(

T

2

)=-f(-

T

2

),选B;

6小题:利用线面角、面面角的定义,答案2。Ⅱ、示范性题组:

例1. 已知z=1+i,①设w=z2+3z-4,求w的三角形式;②如果z az b z z

2

21

++

-+

=1-i,求实数a、b的值。(94年全国理)

【分析】代入z进行运算化简后,运用复数三角形式和复数相等的定义解答。

【解】由z=1+i,有w=z2+3z-4=(1+i)2+3()

1+i-4=2i+3(1-i)-4=

-1-i,w的三角形式是2(cos 5

4

π

+isin

5

4

π

);

由z =1+i,有z az b z z 221++-+=()()()()11111

22+++++-++i a i b i i =()()a b a i

i +++2=(a +2)-(a

+b)i。

由题设条件知:(a +2)-(a +b)i=1+i;

根据复数相等的定义,得:a a b +=-+=-???

21

1(),

解得a b =-=??

?1

2

【注】求复数的三角形式,一般直接利用复数的三角形式定义求解。利用复数相等的定义,由实部、虚部分别相等而建立方程组,这是复数中经常遇到的。

例2. 已知f(x)=-x n

+cx ,f(2)=-14,f(4)=-252,求y =log

22

f(x)的定义域,

判定在(

2

2

3

,1)上的单调性。 【分析】要判断函数的单调性,必须首先确定n 与c 的值求出函数的解析式,再利用函数的单调性定义判断。

【解】 f c f c n

n

()()22214

444252

=-+=-=-+=-????? 解得:n c ==???41 ∴ f(x)=-x 4

+x 解f(x)>0得:0

2

2

3

2

<1, 则f(x

1

)-f(x

2

)=-x

1

4

+x

1

-(-x

2

4

+x

2

=(x 1-x 2)[1-(x 1+x 2)( x 12

+x 22

)],

∵ x 1+x 2>23

, x 12

+x 22

>423

∴ (x 1+x 2)( x 12+x 22)〉23

×423

=1

∴ f(x 1)-f(x 2)>0即f(x)在(2

23,1)上是减函数

∵ 2

2<1 ∴ y =log 22

f(x) 在(22

3,1)上是增函数。

【注】关于函数的性质:奇偶性、单调性、周期性

的判断,一般都是直接应用定义解题。本题还在求n 、c

的过程中,运用了待定系数法和换元法。

例3. 如图,已知A ’B ’C ’—ABC 是正三棱柱,D 是AC 中点。

① 证明:AB ’∥平面DBC ’; ② 假设AB ’⊥BC ’,求二面角D —BC ’—C 的度数。(94年全国理)

【分析】 由线面平行的定义来证①问,即通过证AB ’平行平面DBC ’内的一条直线而得;由二面角的平面角的定义作出平面角,通过解三角形而求②问。

A’ A

D

C’ C

O H B’ B

【解】 ① 连接B ’C 交BC ’于O, 连接OD ∵ A ’B ’C ’—ABC 是正三棱柱 ∴ 四边形B ’BCC ’是矩形 ∴ O 是B ’C 中点

△AB ’C 中, D 是AC 中点 ∴ AB ’∥OD ∴ AB ’∥平面DBC ’

② 作DH ⊥BC 于H ,连接OH ∴ DH ⊥平面BC ’C ∵ AB ’∥OD, AB ’⊥BC ’ ∴ BC ’⊥OD

∴ BC ’⊥OH 即∠DOH 为所求二面角的平面角。 设AC =1,作OE ⊥BC 于E ,则DH =12sin60°=3

4

,BH =34,EH =14 ; Rt △BOH 中,OH 2

=BH ×EH =3

16

, ∴ OH =

3

4

=DH ∴∠DOH =45°,即二面角D —BC ’—C 的度数为45°。 【注】对于二面角D —BC ’—C 的平面角,容易误认为∠DOC 即所求。利用二面角的平面角定义,两边垂直于棱,抓住平面角的作法,先作垂直于一面的垂线DH ,再证得垂直于棱的垂线DO ,最后连接两个垂足OH ,则∠DOH 即为所求,其依据是三垂线定理。本题还要求解三角形十分熟练,在Rt △BOH 中运用射影定理求OH 的长是计算的关键。

此题文科考生的第二问为:假设AB ’⊥BC ’,BC =2,求AB ’在侧面BB ’C ’C 的 射影长。解答中抓住斜线在平面上的射影的定义,先作平面的垂线,连接垂足和斜足而得到射影。其解法

如下:作AE ⊥BC 于E ,连接B ’E 即所求,易得到OE ∥B ’B ,所以EF BF =OE

B B '=12,EF =13B ’E 。

在Rt △B ’BE 中,易得到BF ⊥BE,由射影定理得:B ’E ×EF =BE 2即13

B ’E 2

=1,所以B ’E =3。

例4. 求过定点M(1,2),以x 轴为准线,离心率为12的椭圆的

下顶点的轨迹方程。 【分析】运动的椭圆过定点M ,准线固定为x 轴,所以M 到准线

距离为2。抓住圆锥曲线的统一性定义,可以得到||AF 2=1

2

建立一个方程,再由离心率的定

义建立一个方程。

【解】设A(x,y)、F(x,m),由M(1,2),则椭圆上定点M 到准线距离为2,下顶点A 到准线距离为y 。根据椭圆的统一性定义和离心率的定义,得到:

()()x m m y y

-+-=-=???????121221222

× ,消m 得:(x -1)2

+()()y -432322

=1, y

M F

A x

所以椭圆下顶点的轨迹方程为(x -1)2

()()y -433

2

2=1。 【注】求曲线的轨迹方程,按照求曲线轨迹方程的步骤,设曲线上动点所满足的条件,根据条件列出动点所满足的关系式,进行化简即可得到。本题还引入了一个参数m,列出的是所满足的方程组,消去参数m 就得到了动点坐标所满足的方程,即所求曲线的轨迹方程。在建立方程组时,巧妙地运用了椭圆的统一性定义和离心率的定义。一般地,圆锥曲线的点、焦点、准线、离心率等问题,常用定义法解决;求圆锥曲线的方程,也总是利用圆锥曲线的定义求解,但要注意椭圆、双曲线、抛物线的两个定义的恰当选用。

Ⅲ、巩固性题组: 1. 函数y =f(x)=a x

+k 的图像过点(1,7),它的反函数的图像过点(4,0),则f(x)的表

达式是___。 2. 过抛物线焦点F 的直线与抛物线相交于A 、B 两点,若A 、B 在抛物线准线上的射影分别为A 1、B 1,则∠A 1FB 1等于_____。

A. 45°

B. 60°

C. 90°

D. 120° 3. 已知A ={0,1},B ={x|x ?A},则下列关系正确的是_____。 A. A ?B B. A ?B C. A ∈B D. A ?B

4. 双曲线3x 2

-y 2

=3的渐近线方程是_____。

A. y =±3x

B. y =±13

x C. y =±3x D. y =±33

x

5. 已知定义在R 上的非零函数f(x)满足f(x +y)=f(x)+f(y),则f(x)是_____。 A.奇函数 B.偶函数 C.非奇非偶函数 D.既奇既偶函数

6. C 338n n -+C 213+n n

=________。

7. Z =4(sin140°-icos140°),则复数12z

的辐角主值是__________。

8. 不等式ax 2+bx +c>0的解集是(1,2),则不等式bx 2

+cx +a<0解集是__________。 9. 已知数列{a n }是等差数列,求证数列{b n }也是等差数列,其中b n =1n

(a 1+a 2+…

+a n )。

10. 已知F 1、F 2是椭圆x a 2

2+y b

22=1 (a>b>0)的两个焦点,其中F 2与抛物线y 2=12x 的

焦点重合,M 是两曲线的一个焦点,且有cos ∠M F 1F 2·cos ∠MF 2F 1=7

23,求椭圆方程。

高中数学经典例题100道

例1 判定以下关系是否正确 (1){a}{a}? (2){1,2,3}={3,2,1} (3){0}??≠ (4)0∈{0} (5){0}(6){0} ??∈= 分析 空集是任何集合的子集,是任何非空集合的真子集. 解 根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的. 说明:含元素0的集合非空. 例2 列举集合{1,2,3}的所有子集. 分析 子集中分别含1,2,3三个元素中的0个,1个,2个或者3个. 解含有个元素的子集有:; 0? 含有1个元素的子集有{1},{2},{3}; 含有2个元素的子集有{1,2},{1,3},{2,3}; 含有3个元素的子集有{1,2,3}.共有子集8个. 说明:对于集合,我们把和叫做它的平凡子集.A A ? 例已知,,,,,则满足条件集合的个数为≠3 {a b}A {a b c d}A ?? ________. 分析 A 中必含有元素a ,b ,又A 是{a ,b ,c ,d}真子集,所以满足条件的A 有:{a ,b},{a ,b ,c}{a ,b ,d}. 答 共3个. 说明:必须考虑A 中元素受到的所有约束. 例设为全集,集合、,且,则≠ 4 U M N U N M ?? [ ] 分析 作出4图形. 答 选C . 说明:考虑集合之间的关系,用图形解决比较方便.

点击思维 例5 设集合A ={x|x =5-4a +a 2,a ∈R},B ={y|y =4b 2+4b +2,b ∈R},则下列关系式中正确的是 [ ] A A B B A B C A B D A B .=...≠≠ ??? 分析 问题转化为求两个二次函数的值域问题,事实上 x =5-4a +a 2=(2-a)2+1≥1, y =4b 2+4b +2=(2b +1)2+1≥1,所以它们的值域是相同的,因此A =B . 答 选A . 说明:要注意集合中谁是元素. M 与P 的关系是 [ ] A .M = U P B .M =P C M P D M P ..≠?? 分析 可以有多种方法来思考,一是利用逐个验证(排除)的方法;二是利用补 集的性质:M = U N = U ( U P)=P ;三是利用画图的方法. 答 选B . 说明:一题多解可以锻炼发散思维. 例7 下列命题中正确的是 [ ] A . U ( U A)={A}

高中数学必修一求函数解析式解题方法大全及配套练习

高中数学必修一求函数解析式解题 方法大全及配套练习 一、 定义法: 根据函数的定义求解析式用定义法。 【例1】设23)1(2 +-=+x x x f ,求)(x f . 2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f =6)1(5)1(2 ++-+x x 65)(2+-=∴x x x f 【例2】设2 1 )]([++= x x x f f ,求)(x f . 解:设x x x x x x f f ++=+++=++=11111 11 21)]([ x x f += ∴11)( 【例3】设3 3 22 1)1(,1)1(x x x x g x x x x f +=++ =+,求)]([x g f . 解:2)(2)1 (1)1(2222-=∴-+=+=+ x x f x x x x x x f 又x x x g x x x x x x x x g 3)()1(3)1(1)1(3333-=∴+-+=+=+ 故2962)3()]([2 4 6 2 3 -+-=--=x x x x x x g f 【例4】设)(sin ,17cos )(cos x f x x f 求=. 解:)2 ( 17cos )]2 [cos()(sin x x f x f -=-=π π x x x 17sin )172 cos()1728cos(=-=-+ =π π π.

二、 待定系数法:(主要用于二次函数) 已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程, 从而求出函数解析式。 它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 【例1】 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 【解析】设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴????? ?=-===32 1 2b a b a 或 32)(12)(+-=+=∴x x f x x f 或 【例2】已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2 )1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ?? ?=++=+8 2 2b a b b a 解得 ?? ?==. 7, 1b a 故f (x )= x 2+7x. 【例3】已知1392)2(2 +-=-x x x f ,求)(x f . 解:显然,)(x f 是一个一元二次函数。设)0()(2 ≠++=a c bx ax x f 则c x b x a x f +-+-=-)2()2()2(2 )24()4(2c b a x a b ax +-+-+= 又1392)2(2 +-=-x x x f 比较系数得:?????=+--=-=1324942c b a a b a 解得:?? ???=-==312c b a 32)(2 +-=∴x x x f

高中数学解题技巧归纳

高中数学破题技巧 主讲人:徐德桦(绍兴一中) 一、列举法 【方法阐释】列举法就是通过枚举集合中所有的元素,然后根据集合的基本运算进行求解的方法。这种方法适用于数集的有关运算以及集合类型的新定义运算问题,也适用于一些集合元素比较少而且类型比较单一类型的题目,如排列组合等等。 【典型实例】 设P,Q为两个非空实数集合,定义集合P*Q={z|z=a/b,a∈P,b∈Q},若P={-1,0,1},Q={-2,2},则集合P*Q中元素的个数是() A.2 B.3 C.4 D.5 二、定义法 【方法阐释】利用定义判断充分条件和必要条件的方法就是最基本的、最常规的方法(回忆一下这些条件的判断方法),一般拿到陌生的题目或者一些新定义类型的题目都需要从定义和性质出发寻找突破口。 【典型实例】 “(m-1)(a-1)>0”是“logam>0”的()(logam 意思就是以a为底m的对数) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 三、特殊函数法

【方法阐释】对于一些小题目(譬如,选择题和填空题)一般不需要详细的过程和步骤,只要有一种预感和能说服自己的理由可以尝试地使用一些特定的函数或者说特殊值。给定函数f(x)具备的一些性质来研究它另外的一些性质。对于能看出来是定值的题目一般也宜用特殊值法。 【典型实例】 定义在R上的函数f(x)关于(2,0)对称,且在[2,+无穷)上单调递增,如果x1+x2>4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是() A.f(x1)+f(x2)>0 B.f(x1)+f(x2)=0 C.f(x1)+f(x2)<0 D.无法判断 四、换元法 【方法阐释】这是一种高中阶段最常用的数学解题方法,贯穿于高中所有的阶段。解题过程就是将复杂的抽象的难以分辨和讨论的问题转化为简单具体直接而且熟悉的问题。例如,求函数y = x^4+2x^2-8的最值,就可以t=x^2(t>=0),这里t的范围需要特别注意。 【典型实例】 若2=

高中数学九大解题技巧

高中数学九大解题技巧 1、配法 通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。配方法用的最多的是配成完全平方式,它是数学中一种重要的 恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常 用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、 几何、三角等的解题中起着重要的作用。因式分解的方法有许多, 除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相 乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数 学式子中,用新的变元去代替原式的一个部分或改造原来的式子, 使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别, △=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代 数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算 中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个 数的和与积,求这两个数等简单应用外,还可以求根的对称函数,

计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线 的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学 中常用的方法之一。 6、构造法 在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从 而使问题得以解决,这种解题的数学方法,我们称为构造法。运用 构造法解题,可以使代数、三角、几何等各种数学知识互相渗透, 有利于问题的解决。 7、面积法 平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有 时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题 的方法,称为面积方法,它是几何中的一种常用方法。 用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到 求证的结果。所以用面积法来解几何题,几何元素之间关系变成数 量之间的关系,只需要计算,有时可以不添置补助线,即使需要添 置辅助线,也很容易考虑到。 8、几何变换法 在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集 合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变

高中数学解题方法大全

第一章 高中数学解题基本方法 一、 配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy 项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a +b) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 + b 2=(a +b)2 -2ab =(a -b)2 +2ab ; a 2 +a b +b 2 =(a +b)2 -ab =(a -b)2 +3ab ; a 2 + b 2 + c 2 +ab +bc +ca = 2 1[(a +b)2 +(b +c) 2+(c +a) 2] a 2+b 2+c 2=(a +b +c) 2-2(ab +bc +ca)=(a +b -c)2 -2(ab -bc -ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sin αcos α=(sin α+cos α) ; x + =(x + ) -2=(x - ) +2 ;…… 等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a }中,a ?a +2a ?a +a ?a =25,则 a +a =_______。 2. 方程x +y -4kx -2y +5k =0表示圆的充要条件是_____。 A. 1 C. k ∈R D. k = 或k =1 3. 已知sin α+cos α=1,则sin α+cos α的值为______。

高中数学选择题训练10道(含答案)

数学高考选择题训练一 1.给定集合=M {4 |πθθk =,∈k Z },}02cos |{==x x N ,}12sin |{==a a P ,则下列关系式中,成立 的是 A.M N P ?? B.M N P ?= C.M N P =? D.M N P == 2.关于函数2 1)3 2(sin )(||2+-=x x x f ,有下面四个结论: (1))(x f 是奇函数; (2)当2003>x 时,2 1)(>x f 恒成立; (3))(x f 的最大值是2 3; (4))(x f 的最小值是2 1-. 其中正确结论的个数是 A.1个 B.2个 C.3个 D.4个 3.过圆01022=-+x y x 内一点P (5,3)的k 条弦的长度组成等差数列,且最小弦长为数列 的首项1a ,最大弦长为数列的末项k a ,若公差∈d [3 1,2 1],则k 的取值不可能是 A.4 B.5 C.6 D.7 4.下列坐标所表示的点不是函数)6 2 tan(π-=x y 的图象的对称中心的是 (A )(3 π,0) B.(3 5π-,0) C.(3 4π,0) D.(3 2π,0) 5.与向量=l (1,3)的夹角为o 30的单位向量是 A.21(1,3) B.21(3,1) C.(0,1) D.(0,1)或2 1 (3 ,1) 6.设实数y x ,满足10<x 且1>y B.10<x 且10<

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

高中数学50个解题小技巧

高中数学50个解题小技巧 XX:__________ 指导:__________ 日期:__________

1 . 适用条件 [直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。 注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。 2 . 函数的周期性问题(记忆三个) (1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。 注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。 c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。 3 . 关于对称问题(无数人搞不懂的问题)总结如下 (1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a, b)中心对称 4 . 函数奇偶性 (1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空 5 . 数列爆强定律 (1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:

S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q 6 . 数列的终极利器,特征根方程 首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1)+x,这是一阶特征根方程的运用。 二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数) 7 . 函数详解补充 1、复合函数奇偶性:内偶则偶,内奇同外 2、复合函数单调性:同增异减 3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。 8 . 常用数列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2记忆方法 前面减去一个1,后面加一个,再整体加一个2 9 . 适用于标准方程(焦点在x轴)爆强公式 k椭=-{(b2)xo}/{(a2)yo}k双={(b2)xo}/{(a2)yo}k抛=p/yo 注:(xo,yo)均为直线过圆锥曲线所截段的中点。 10 . 强烈推荐一个两直线垂直或平行的必杀技 已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了

高中数学解题的21个典型方法与技巧

高中数学解题的21个典型方法与技巧 2018-12-26 1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。 2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。 3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有: ①()2222a ab b a b ±+=± ②()2 222222a b c ab bc ca a b c +++++=++ ③()()()22222212a b c ab bc ca a b b c c a ??+++++=+++++? ? ④222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ??-????++=++=+??++-=++ ? ? ??????? 4、解某些复杂的特型方程要用到换元法。换元法解题的一般步骤是:设元→换元→解元→还元。 5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。其步骤是:①设②列③解④写 6、复杂代数等式条件的使用技巧:右边化为零,左边变形。 ①因式分解型:()()0---?---=,两种情况为或型。 ②配成平方型:()()22 0---+---=,两种情况为且型。 7、数学中两个最伟大的解题思路: ①求值的思路 ?????→方程思想与方法列欲求值字母的方程或方程组 ②求取值范围的思路??????→不等式思想与方法欲求范围字母的不等式或不等式组

10道经典高中数学题

1.设Sn是等差数列{An}的前n项和,又S6=36,Sn=324,S(n-6)=144,则n=? ①Sn是等差数列 S6=a1*6+6(6-1)/2*d=36,则2a1+5d=12......& 最后六项的和S=an*6-6(6-1)/2*d=6an-15d S(n-6)=Sn-S=324-(6an-15d)=144,则2an-5d=60......@ &+@:a1+an=36 Sn=(a1+an)/2*n n=18 ②解:Sn-S(n-6)=a(n-5)+a(n-4)+......an=324-144=180 而 S6=a1+a2+...a6=36 有 Sn-S(n-6)+S6= a1+a2+...a6+ a(n-5)+a(n-4)+....an =6(a1+an)=180+36=216 那么 (a1+an)=36 Sn=n(a1+an)/2=324 即 36n/2 =324 所以 n=18 2.已知f(x)=(x-1)^2,g(x)=4(x-1),f(an)和g(an)满足,a1=2,且(an+1-an)g(an)+f(an)=0

(1)是否存在常数C,使得数列{an+C}为等比数列?若存在,证明你的结论;若不存在,请说明理由。 (2)设bn=3f(an)-[g(an+1)]^2,求数列{bn}的前n项和Sn (1)存在 C=-1 证明如下 (an+1-an)g(an)+f(an)=0 将f(x)、g(x)带入并化简 得4an+1 - 3an -1 =0 变形为4(an+1 -1)=3(an -1) 所以an-1是以3/4为等比 1为首项的等比数列 (2)an-1=(3/4)^n bn=3f(an)-[g(an+1)]^2 将f(an) g(an+1)带入不要急着化简先将an+1 - 1换成 3/4 (an-1) 化简后bn=-6(an -1)^2=-6*(9/16)^n bn是首项为-27/8等比是9/16的等比数列 Sn=a1(1-q^n)/(1-q)=54/7(9/16)^n-54/7 已知函数f(x)=x^2+ax+b,当实数p,q满足p+q=1,试证明pf(x)+qf(y)>=f(px+qy) pf(x)+qf(y)>=f(px+qy) <=> px^2+pax+pb+qy^2+qay+qb>=(px+qy)^2+apx+aqy+b

高中数学解题的21个典型方法和技巧

高中数学解题的21个典型方法与技巧 1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。 ①零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ①两边平方法:适用于两边非负的方程或不等式。 ①几何意义法:适用于有明显几何意义的情况。 2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。 3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有: ①()2 222a ab b a b ±+=± ①()2 222222a b c ab bc ca a b c +++++=++ ①()()()22222212 a b c ab bc ca a b b c c a ??+++++=+++++?? ①222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ??-????++=++=+??++-=++ ? ? ??????? 4、解某些复杂的特型方程要用到换元法。换元法解题的一般步骤是:设元→换元→解元→还元。 5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。其步骤是:①设①列①解①写

6、复杂代数等式条件的使用技巧:右边化为零,左边变形。 ①因式分解型:()()0---?---=,两种情况为或型。 ①配成平方型:()()22 0---+---=,两种情况为且型。 7、数学中两个最伟大的解题思路: ①求值的思路 ?????→方程思想与方法列欲求值字母的方程或方程组 ①求取值范围的思路 ??????→不等式思想与方法欲求范围字母的不等式或不等式组 8的基本思路:把m 化成完全平方式。 即 2 m a a a =???=??????→按的情况分类讨论结果 9()2 a x y ±=±其中220xy x y a x y =+=>>且。 10、代数式求值的方法有:①直接代入法①化简代入法①适当变形法(和积代入法)。注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用和积代入法求值。 11、方程中除未知数以外,含有的其他字母叫做参数,这种方程叫做含参方程。解含参方程一般要用“分类讨论法”,其原则是:①按照类型求解①根据需要讨论①分类写出结论。 12、恒等成立的条件: ①0ax b +=对于任意x 都成立?关于x 的方程0ax b +=有无数个解?00a b ==且。 ①20ax bx c ++=对于任意x 都成立?关于x 的方程20ax bx c ++=有无数个解?

高中数学经典解题技巧和方法平面向量

高中数学经典解题技巧:平面向量 一、向量的有关概念及运算 解题技巧:向量的有关概念及运算要注意以下几点: (1)正确理解相等向量、共线向量、相反向量、单位向量、零向量等基本概念,如有遗漏,则会出现错误。 (2)正确理解平面向量的运算律,一定要牢固掌握、理解深刻 (3)用已知向量表示另外一些向量,是用向量解题的基础,除了用向量的加减法、实数与向量乘积外,还要充分利用平面几何的一些定理,充分联系其他知识。 例1:(2010·山东高考理科·T12)定义平面向量之间的一种运算“⊙”如下,对任意的a=(m,n),b p,q)= (,令a ⊙b mq np =-,下面说法错误的是( ) A.若a 与b 共线,则a ⊙b 0= B. a ⊙b = b ⊙a C.对任意的R λ∈,有()a λ⊙b = (a λ⊙)b D. (a ⊙b )2222()a b a b +?= 【命题立意】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力. 【思路点拨】根据所给定义逐个验证. 【规范解答】选B ,若a 与b 共线,则有a ⊙b 0mq np =-=,故A 正确;因为b ⊙a pn qm =-,,而a ⊙b mq np =-,所以有a ⊙b ≠ b ⊙a ,故选项B 错误,故选B. 【方法技巧】自定义型信息题 1、基本特点:该类问题的特点是背景新颖,信息量大,是近几年高考的热点题型. 2、基本对策:解答这类问题时,要通过联想类比,仔细分析题目中所提供的命题,找出其中的相似性和一致性 二、与平面向量数量积有关的问题 解题技巧:与平面向量数量积有关的问题 1.解决垂直问题:121200,a b a b x x y y a b ⊥?=?+=其中、均为非零向量。这一条件不能忽视。 2.求长度问题:2||a a a =,特别地1122(,),(,),||(A x y B x y AB x =则 3.求夹角问题:求两非零向量夹角的依据 2 22 222cos(,).||||a b a b a b x x y ==++ 例2:1.(2010·湖南高考理科·T4)在Rt ABC ?中,C ∠=90°AC=4,则AB AC ?uu u r uuu r 等于( )

高中数学函数解题技巧与方法

专题1 函数(理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.

【高二数学的解题的方法介绍】高二数学题库

高二网权威发布高二数学的解题的方法介绍,更多高二数学的解题的方法介绍相关信息请访问高二网。 【导语】掌握正确有效的解题方法会让学生在解题的时候可以节省很多的时间,下面大范文网将为大家带来高中数学的解题的方法介绍,希望能够帮助到大家。 高中数学的解题的方法 确保运算准确,立足一次成功 数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。 讲求规范书写,力争既对又全 考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。 面对难题,讲究方法,争取得分 会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。 缺步解答。 对一个疑难问题,确实啃不动时,一个明智的解题方法是将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。 跳步解答。 解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方

高中数学解题思想方法大全

目录 前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳 和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思 想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

相关主题
文本预览
相关文档 最新文档