当前位置:文档之家› 淀粉在食品加工中的应用

淀粉在食品加工中的应用

酶在食品中的应用

多种酶在食品中的应用 学生:李慧娜指导老师:胡亚平所在学校:湖南农业大学 摘要:酶是生物活细胞产生的一类具有催化功能的蛋白质。酶的催化效率高,具有很高的专一性,需比较温和的条件。因此,酶在食品科学中相当重要,通过酶的作用能引起食品原料的品质发生变化,也能在比较温和的条件下加工和改良食品。食品加工中几种重要的酶有淀粉酶、蛋白酶、果胶酶、多酚氧化酶、脂肪酶以及其他一些氧化酶等。酶在食吕保藏中也起着非常重要的作用。酶不仅影响着食品的感观功能而且也影响着食品的营养功能。不同的酶在在不同的产品中发挥着不同的作用。 关键词:多种酶食品应用 随着食品工业的快速发展,人们的食品安全和健康意是益增强,对食品的要求愈来愈高。为了让人们吃得放心,吃得健康,研究酶在食品中的应是一个具有重大意义的项目。目前,绿色健康消费已经成为新的消费时尚,首选绿色天然食品的观念已在消费者心中根深蒂固,酶法保鲜广泛应用于食品的贮藏之中。因此,大力推广酶在食品贮藏中的应用已成为广大消费者的心声。由于酶的高效性,专一性,以及影响反应速度的因素的可控制性使得酶的研究逐具有广大的前景。 一、酶对食品感观功能的影响以及营养功能的影响 (一)酶对食品感观功能的影响 内源酶类对食品的风味、质构、色泽等感观质量具有重要的影响,其作用有的是期望的,有的是不期望。如动物屠宰后,水解酶类的作用使肉嫩化,改善肉食原料的风味和质构;水果成熟时,内源酶类综合作用的结果会使各种水果具有各自独特的色、香、味,但如果过度作用,水果会变得过熟和本酥软,甚至失去食用价值。 (二)酶对食品营养功能的影响 脂肪氧合酶催化胡萝卜素降解而使面粉漂白,在蔬菜加工过程中则使胡萝卜素破坏而损失维生素A源;在一些用发本酵方法加工的鱼制品中,由于鱼和细菌中的硫胺素酶的作用,使这些制品缺乏维生素B1;果蔬中的Vc氧化酶及其它氧化酶类是直接或间接导致果蔬在加工和贮存过程中维生素C氧化损失的重要原因之一。 二、多种酶在食品中的应用 (一)淀粉酶 淀粉酶在食品工业上应用很广泛。淀粉酶制剂是最早实现工业化生产和产量最大的酶制剂品种,约占整个酶制剂总产量的50%以上,被广泛应用于食品、发酵及其他工业中。 淀粉酶用于酿酒、味精等发酵工业中水解淀粉;在面包制造中为酵母提供发酵糖,改进面包的质构;用于啤酒除去其中的淀粉浑浊;利用葡萄糖淀粉酶可直接将低黏度麦芽糊精转化成葡萄糖,然后再用葡萄糖异构酶将其转变成果糖,提高甜度等。目前商品淀粉酶制剂最重要的应用是用淀粉制备麦芽糊精、淀粉糖浆

酶工程技术在食品中的应用

酶工程技术在食品中的应用 生物工程是现代科技的一项高新技术,酶工程是生物工程中最重要的组成部分。自从1906年人类发现了用于液化淀粉生产乙醇的细菌淀粉酶以来,经过几十年的发展,酶制剂已经广泛地应用于食品加工、纺织、洗涤剂、饲料、医药等行业,给这些行业带来了新的生机和活力。酶是具有生物催化能力的蛋白质,其催化反应具有高效性和专一性。国际生物化学联合会把酶分成六大类---氧化还原酶类、转移酶类、水解酶类、裂合酶类、异构酶类、合成酶类。本文将简要介绍几种常用于食品加工中的酶的特性及其作用机理。简而言之,酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶反应器等方面内容。酶工程的应用,主要集中于食品工业,轻工业以及医药工业中。 一、酶工程技术简介 1.酶制剂的生产来源 酶制剂的生产酶的来源主要有植物、动物和微生物。最早人们多从植物、动物组织中提取,例如从动物胰脏和麦芽中提取淀粉酶、从动物胃膜,胰脏、木瓜、菠萝中提取蛋白酶。它们大多数由微生物生产,这是因为微生物种类多,几乎所有酶都能从微生物中找到,而且它的生产不受季节、气候限制;由于微生物容易培养,繁殖快,产量高,故可在短时间内廉价地大量生产。近年来,随着基因工程技术的迅速发展,又为酶产量的提高和新酶种的开发开辟了新的途径。基因工程技术的最大贡献在于,它能按照人们的意愿构建新的物种,或者赋予新的功能。虽然目前基因工程

还未形成大规模的产业,但是它作为一种改良菌种,提高产酶能力,改变酶性能的手段,已受到了人们的极大关注。例如利用改良的过氧化物酶能够在高温和酸性条件下脱甲基和烷基,生产一些食品特有的香气因子。基因工程菌生产a一淀粉酶是目前人们研究最多的课题,美国CPC国际公司的Moffet研究中心,已成功地采用基因工程菌生产了a一淀粉酶,并已获得美国食品药品管理局(FDA)的批准。此外,运用基因工程技术,提高葡萄搞异构酶,纤维素酶,糖化酶等酶活力的研究也取得了一定的成绩。 2.酶的纯化 酶的纯化属于一种后处理工艺,包括粗制工艺与精制工艺,对超酶液进行浓缩精制是生产高质量酶制剂的重要环节,目前采用的技术主要有沉淀法,吸附法和色谱法,分子筛分法,陈结法,减压浓缩法和电泳法等。 3.酶的固定化技术 酶的固定化是指用物理或化学手段,把酶束缚在一定的区域内,使其在一定的范围内起催化作用。固定化技术是酶工程的关键技术之一,自从1969年世界上第一次使用固相酶技术以来,至今已有30多年的历史。应用固定化葡萄糖异构酶生产高果糖浆是现代酶工程在工业生产中最成功、规模最大的应用。固定化酶可用于处理液态食品,价格昂贵的酶经固定化后,可以提高稳定性,降低成本,延长使用寿命,实现连续化和自动控制,减少精制过程中沉淀,过滤等操作费用。

变性淀粉的应用要点

变性淀粉的应用 浏览1055次[2008-5-8 8:53:51] 1、在食品工业中的应用 不同的变性淀粉可以用在同一种食品之中,而同一种变性淀粉又可用于不同的食品;同一种食品,不同的生产厂家,又有不同的使用习惯;即使是同一种变性淀粉,不同的变性程度,性能相差又很大,这给变性淀粉在食品品质研究中应用开发提供了广阔的发展前景,同时又指出了其历程的艰难。 食品名目繁多,加工贮藏方法多种多样,从传统的作坊式食品加工到现代化的机械、自动化工业生产,对食品辅料中的淀粉要求越来越高。如现代食品加工工艺中的高温杀菌、机械搅拌、泵的输运,便要求辅料淀粉具有耐热、抗剪切稳定性;冷藏食品则要求糊化后的淀粉不易回生凝沉,而具有很强的亲水性;偏酸性食品要求淀粉在酸性环境下有较强的耐酸稳定性;有些需淀粉具有一些特殊的功能,如成膜性、涂布性等等。食品中使用变性淀粉的优点归纳成如下几点: (1)使用变性淀粉,可以使其在高温、高剪切力和低pH条件下保持较高的粘度稳定性,从而保持其增稠能力。大家知道,很多食品均需在较高温度下加工或杀菌,原淀粉分子在高温下易解聚成小分子,粘度下降,使其失去其增稠能力;同样,食品加工中的机械搅拌和泵的输送,均会产生剪切力,有些食品由于存在有机酸(如酸性饮料),使体系偏酸性,高剪切力和酸性环境均能使原淀粉分子降解,失去增稠、稳定食品的能力。必须通过淀粉的变性处理,提高其耐热、耐酸和抗剪切能力。这一点在淀粉用于果酱类、饮料类以及调味料等食品增稠中尤为重要。 (2)通过变性处理,可以使淀粉在室温或低温保藏过程中不易回生,从而避免食品凝沉或胶凝,形成水质分离。食品中的淀粉分子在保藏过程中会通过氢键发生分子间重排而缩合,尤其在冷藏过程中这一过程更为剧烈,结果导致分子脱水收缩,固体结构硬化,甚至析出水来,流体食品出现上下分层、混浊,产品劣化。通过变性处理后(如酯化和醚化淀粉),在淀粉分子上引入亲水性基团,则可以提高淀粉分子亲水能力,阻碍淀粉分子间以氢键形式缩合,脱水收缩,从而提高食品在室温或低温保藏过程中的稳定性。 (3)通过变性处理提高淀粉糊的透明度,改善食品的外观,提高其光泽度。原淀粉的亲水性不强,当用它制作食品时,则往往因其不能更好地结合水分子,而使整个食品体系透光率低,食品发白,无光泽。如果用淀粉便需要透明,豆沙馅中用淀粉则需有豆沙本身天然的光泽等,当淀粉变性处理后,接上亲水性基团,则使淀粉分子周围吸附有大量水分子,形成质构均匀的溶胶,使得食品具有很好的透明而诱人的光泽。 (4)通过变性处理改善乳化性能。原淀粉分子是没有什么乳化性的,不能用它来形成稳定的水、油混合体系。如果在淀粉分子上接上亲水、亲油双重性质的官能团,如辛烯基琥珀酸根,则使它既具有亲水性,又具有亲油性,从而达到乳化稳定水、油混合体系的目的。 (5)通过变性处理可提高淀粉浓度,降低淀粉粘度,还可提高淀粉形成凝胶的能力,如制

酶制剂在食品工业中的应用 论文

酶制剂在食品工业中的应用 摘要:酶制剂是一类特殊的食品添加剂,具有催化高效性,专一性等显著特点。文章综述了食品工业中酶制剂利用及新动向,包括淀粉糖、油脂、蛋白质加工、面包、啤酒、饮料工业以及改善苦味的酶类的应用。并介绍了酶与食品的关系、酶制剂在食品生产中用于保藏、改善质量和增加营养价值、增加品种种类、提高便捷性和提高食品生产效率等作用。并对酶制剂在食品工业中的发展方向和安全问题进行了讨论。 关键词:酶制剂;食品工业;应用 酶是一类具有专一性生物催化能力的蛋白质。而从生物体中提取的具有酶活力的制品,称为酶制剂。酶制剂主要用于食品加工和制造业方面,它在对提高食品生产效率和产量、改进产品风味和质量等方面有着其它催化剂所无法替代的作用。另外,酶制剂在日化、纺织、环境保护和饲料等行业也有着较广泛的应用。 随着发酵工业的发展,酶制剂的主要来源已被微生物所取代,它具有不受季节、地区和数量等因素影响的特性,还具有种类多、繁殖快、质量稳定和成本低等特点。随着微生物育种技术的发展,酶制剂的种类越来越多,分类也越来越细。目前我国已工业化生产的、且用于食品工业的酶制剂主要有:淀粉酶、异淀粉酶、果胶酶和蛋白酶等,它们在食品加工中都起着十分重要的作用。当然,尽管目前我国酶制剂行业的发展已有了长足进步,但与发达国家相比,还有很大差距。为进一步加快酶制剂产业技术的进步,今后应注重在调整产品结构、增加新品种、提高产品质量和竞争力、实现规模化经营和拓宽应用领域等方面作深入的研究。 1.酶与食品的关系 在食品生产加工中,为了保持食物原有的色、香、味和结构,就要尽量避免引起剧烈的化学反应。酶是一类具有专一性生物催化能力的蛋白质,因此作用条件非常温和。许多酶所催化的反应从动植物最初生长时就开始了,当它被作为食品时,其体内酶的催化作用仍然继续进行着。如动物体死后,其合成代谢停止,而分解代谢加快,因此就会导致组织腐败,但这可能也会改善某些食品原料的风味。在大多数成熟的水果中,由于某些酶的增加,会使得其呼吸速度加快,淀粉转变为糖,叶绿素发生降解,细胞体积快速增加。这些变化,对于水果风味的改善是有益的;而对蔬菜来讲,叶绿素的降解则是有害的。 2.与食品生产有关的酶制剂 2.1与淀粉糖和甜味剂生产有关的酶制剂 淀粉酶工业上应用酶制剂已有数十年的历史,淀粉加工用酶所占比例达到15%,是酶制剂最大的市场。近年来淀粉酶类耐热性大大提高,并已通过基因工程技术改善其品质。特别要提到的是一系列新的酶制剂的发现和应用,如在1995年已经工业化的酶转化淀粉生产海藻糖,改变了先前从酵母等食物中抽提的生产方法,生产成本大大下降。这种糖不仅耐酸、耐热、防龋齿,还可抑制蛋白质变性和油脂酸败,市场日益扩大。 2.2与油脂生产有关的酶制剂 油脂是人类食品的主要营养成分之一,有赋予食品不可缺少的风味,而且用酶法生产有益健康的油脂的正逐步应用成熟,如用DNA等高度不饱和脂肪酸作为食品的原材料所制作的食品销售额已达400亿日元。 2.3与蛋白质有关的酶制剂 蛋白质在食品加工中,不仅具有营养的功能还具有各种物理功能,提高这类功能将会增加其附加值,要达到这个目的需要利用蛋白酶类。为了以蛋白质水解后的产物作为生产氨基酸系列的调味品,就必须把蛋白质彻底分解为氨基酸。 2..4与面包生产有关的酶制剂

酶工程在食品方面的应用

浅谈酶工程及其在食品领域中的应用 摘要:酶工程是现代生物技术的重要组成部分。酶作为生物催化剂,具有高催化效率,专一性强,反应条件温和及酶活性可以调控。本文介绍了酶工程和酶在食品领域中的应用,并对酶工程技术研究应用前景做了整体展望。 关键词:酶工程,固定化,食品 1.酶和酶工程 1.1简述酶和酶工程 酶是由生物体产生的具有催化活性的蛋白质.它能特定地促成某个化学反应而本身却不参加反应,且具有反应率高、反应条件温和、反应产物污染小、能耗低、反应容易控制等特点.这些特点比传统的化学反应具有较大的优越性.【1】酶工程技术是现代五大生物工程技术之一,是利用酶或者微生物细胞、动植物细胞、细胞器等所具有的某些功能,借助于工程学手段来提供产品或服务于社会的一门科学技术。酶工程技术的应用范围很广,主要包括酶的分离和提取、各类酶的开发和生产、固定化技术的研发、酶反应器的研制等几个方面【2】 1.2酶的来源、提取、分离和纯化 酶的来源主要有植物、动物和微生物。最早人们多从植物、动物组织中提取,例如从动物胰脏和麦芽中提取淀粉酶、从动物胃膜,胰脏、木瓜、菠萝中提取蛋白酶。酶是蛋白质,因此一切蛋白质的分离原则都应该遵行。酶作为特殊的蛋白质,最重要的原则是纯化过程中一定要保持其活性。酶的分离纯化化学方法一般很据酶的分子量、等电点、疏水性等生化性质,选择相应的沉淀、盐析、层析方法。 1.3酶的生产 微生物种类多,几乎所有酶都能从微生物中找到,而且它的生产不受季节、气候限制;由于微生物容易培养,繁殖快,产量高,故酶大多有微生物生产。近年来,随着基因工程技术的迅速发展,又为酶产量的提高和新酶种的开发开辟了新的途径。例如利用改良的过氧化物酶能够在高温和酸性条件下脱甲基和烷基,生产一些食品特有的香气因子。此外,运用基因工程技术,提高葡萄搞异构酶,纤维素酶,糖化酶等酶活力的研究也取得了一定的成绩。【4】基因工程的克隆流程包括:目的基因的获得、将目的基因克隆到合适的质粒载体;、将重组质粒转染细胞和表达产物的检测。其中,目的基因的获得主要有三条途径:以含有目的的基因的生物DNA 中获得、以DNA作为目的基因和用化学方法合成目的基因。在宿主体系的选择方面,目前在食品级酶的生产中,原核生物一般选用枯草杆菌、地衣芽抱杆菌、乳酶链球菌、嗜热链球菌等。真核生物一般以酵母和哺乳动物细胞作宿主细胞。【16】 1.4 固定化酶 1.4.1固定化酶简介 酶的固定化是用固体材料将酶束缚或限制于一定区域内,进行特有的催化反应,并可回收及重复利用的技术。酶的化学本质是蛋白质,其最大弱点是不稳定性,对酸、碱、热及有机溶液容易发生酶蛋白的变性作用,从而降低或失去活性。而且酶往往在溶液中进行反应,反应以后会残留在溶液系统中不易回收,造成最终产品生化分离提纯操作上的麻烦。加之酶反应只能分批进行,难于连续化、自动化操作。这大大地阻碍了酶工程的发展应用为克服上述缺点,要将游离酶固定化后进行应用。固定化酶技术是把从生物体内提取出来的酶,用人工方法固定在载体上。由于固定化酶的运动被化学或物理的方法限制了,能将其从反应介质中回收,所以它原则上能在批量操作或连续操作中重复使用酶。固定化酶技术是酶工程的核心,它使酶工程提高到一个新水平。【6】 1. 4.2吸附法 吸附法是通过非特异性物理吸附法或生物物质的特异吸附作用将酶吸附在炭、有机聚合物、玻璃、无机盐、金属氧化物或硅胶等材料上。该方法又分为物理吸附法和离子吸附法。

改性淀粉在食品加工中的应用

改性淀粉在食品加工中的 应用

前言:改性淀粉是在淀粉固有的特性基础上,为改善其性能和扩大应用范围, 而利用物理方法、化学方法和酶法改变淀粉的天然性质,增加其性能或引进新的特性而制备的淀粉衍生物。另由于变性方法众多、变性程度可调,因而可具有不同的加工性能,使改性淀粉适合于不同食品的加工要求,如方便食品、速冻食品、调味品、乳制品和肉制品等。因此改性淀粉也是一种方便的食品添加剂。 一、改性淀粉的概述 (一)改性淀粉的来源 食品的三大营养成分是:蛋白质、脂肪和碳水化合物。淀粉是自然界中碳水化合物的主要表现形式,也是人类食物的重要来源。自古以来,“民以食为天”,淀粉的功用体现在满足人们的温饱。如今,随着社会的发展和科研技术的进步,淀粉的应用也得到延伸,能够对原淀粉如马铃薯淀粉、玉米淀粉、小麦淀粉、甘薯淀粉和木薯淀粉等进行酸降解、交联取代、氧化、加热和湿处理系列变化,改变其原有性质,获得某些特殊性能和用途以适应现代加工业的需要。 天然淀粉经过适当化学处理,引入某些化学基团使分子结构及理化性质发生变化,生成淀粉衍生物。淀粉是一种多糖类物质。未改性的淀粉结构通常有两种:直链淀粉和支链淀粉,是聚合的多糖类物质。通常因为水溶性差,故往往是采用改性淀粉,即水溶性淀粉。可溶性淀粉是经不同方法处理得到的一类改性淀粉衍生物,不溶于冷水、乙醇和乙醚,溶于或分散于沸水中,形成胶体溶液或乳状液体。 (二)改性淀粉的作用及优点 1.使用改性淀粉可以使其在高温、高剪切力和低pH值条件下保持较高的粘度稳定性,从而保持其增稠能力。很多食品均需在较高温度下加工或杀菌,原淀粉分子在高温下易解聚成小分子,黏度下降,使其失去增稠能力。食品中的机械搅拌和泵的输送均会产生剪切力,有些食品由于存在有机酸(如酸性饮料),使体系偏酸性,高剪切力和酸性环境均能使原淀粉分子降解,失去稳定食品的能力。若采用稳定化处理的淀粉就能避免上述缺陷,使食品在高酸度、高温、加热时间

酶在食品工业中的应用与前景

食品科学,2006(12):酶在食品工业中的应用与前景 肖玫1郭雪山2 (1南京农业大学工学院,南京210031 2南京财经大学食品科学与工程学院,南京210003) XIAO Mei 1 GUO Xue shan 2 (1. Engineering College,Nanjing Agricultural Universituy, Nanjing 210031,China ; 2. Food Science And Engineering College,Nanjing Universituy of Finance And Economics,Nanjing 210003,China) 摘要:本文介绍了酶在食品工业中的重要作用;概括了酶在肉类、鱼类加工、蛋品加工、乳品工业、果蔬加工、饮料、酿酒工业、焙烤食品和制糖中的应用;展望了酶对食品工业的发展前景。 关键词:酶;食品工业;应用;前景 The Application and the prospect of developmentof Enzy matic Techology in the Food Industry Abstracts:This paper introduces important effect of enzy in food industry,summarizes the application of enzy in the production of flesh, fish, eggs, milk, vegetable, beverage, vintage, toast food and refine suger,and gives developing prospect of enzy in food industry. Key words: Enzy;Food Industry;Application Prospect 生物工程是现代科技的一项高新技术,酶工程是生物工程中最重要的组成部分,是利用酶的特异催化功能,将一种物质转化为另一种物质的技术,即将生物体内具有特定催化作用的酶类或细胞、细胞器分离出来,在体外借助工业手段和生物反应器进行催化反应来生产某种产品的工程技术。当前酶制剂的生产,主要依靠从微生物发酵液或细胞中提取有用的酶类,如——淀粉酶、糖化酶、蛋白酶、脂酶、果胶酶、纤维素酶、葡萄糖氧化酶、葡萄糖异构酶以及用于重组DNA技术的各种工具酶等。这些酶类已被广泛用于食品加工、纺织、制革、医药、加酶洗涤剂生产和基因工程中。 生物技术在食品工业中应用的代表就是酶的应用。目前已有几十种酶成功地用于食品工业。例如,葡萄糖、饴糖、果葡糖浆的生产、蛋白质制品加工、果蔬加工、食品保鲜以及改善食品的

酶工程的发展状况及其应用前景

酶工程的发展状况及其应用前景 摘要:酶在现代生物生产中扮演着重要角色,酶作为一种生物催化剂,因其催化作用具有高度专一性、催化条件温和、无污染等特点,以及酶工程不断的技术性突破,使得酶在工业、农业、医药卫生、能源开发及环境工程等方面的应用越来越广泛。 关键词:酶工程生物催化剂酶的固定 正文: 随着酶生产的不断发展,酶的应用越来越广泛。现在,酶工程已在医药、食品工业、农业、饲料、环保、能源、科研等领域广泛应用。成为基因工程、细胞工程、蛋白质工程等新技术领域的科学研究和技术开发中不可取代的工具。 一、酶工程的发展及应用现状 (一)国内外酶制剂的发展现状 BCC最新研究报告显示,未来4年全球工业酶制剂市场价值将以%的复合年增长率继续增长,由2011年的39亿美元增加至2016年的约61亿美元。该报告将工业酶市场细分成3个部分:生物酶、食品和饮料酶以及其他酶制剂。2011年生物酶的市场价值达12亿美元,预计还将以%的复合年增长率继续增长,2016年达17亿美元。2011年食品和饮料活性酶的市场价值接近13亿美元,未来4年还将以%的年均复合增长率增长,预计2016年达21亿美元。2011年其他酶制剂的市场价值为15亿美元,预计还将以%的复合年增长率增长,到2016年市场价值将达到22亿美元①。 我国酶制剂工业面经过近几十年的发展,初步具有一定的规模,取得了很大的进步。但是,国外酶制剂公司仍然处于绝对的领先地位,特别是一些比较出色的公司,例如,诺和诺德公司(Novo Nordisk)、丹尼斯克公司(Danisco)等②。 (二)酶工程的应用现状 一、酶工程技术在医药工业中的应用 1、酶的固定化技术 酶的固定化(enzyme immobilization)是指采用有机或无机固体材料作为载体(carrierorsupport),将酶包埋起来或束缚、限制于载体的表面和微孔中,使其仍具有催化活性,并可回收及重复使用的酶化学方法与技术。不使用固体材料作为载体,通过酶分子之间的相互交联形成聚集体,也可将酶固定化,称为无载体酶固定化。由于酶的蛋白质属性,进人人体后产生免疫反应,因稀释效应,而无法集中于靶器官组织,常不能保持最适合的治疗浓度,而固定化酶则很好的克服了游离酶的这些缺点,应用于治疗镁缺乏症、代谢异常症及制造人工内脏方面,如固定化L-天冬酰胺酶用于治疗白血病。葡萄糖氧化酶被固定化在纳米微带金电极上可用于活体检测的微生物传感器③。 固定化酶技术可用于治疗一些代谢障碍疾病。已知人类关于新陈代谢的疾病已过120余种,很多病因归结为人体缺乏某种酶的活性,一种可能的治疗方法就是通过某种方式给病人提供他所缺乏的酶。其提供的方式主要有:①将固定化酶用于体内作为治疗药物;②将固定化酶组装成体外生物反应器,通过体外循环作为临床治疗剂。将固定化酶用于临床诊断的例子很多,如各种酶测试盒层出不穷,采用固定化酶柱反应器的FIA(流动注射法)可用于临床诊断检测尿酸、葡萄糖、氨、尿素、胆甾醇、谷氨酸、乳酸、无机磷等。 2、酶催化技术 主要介绍非水相介质中的酶催化,传统的酶催化反应主要在水相中进行,但自1987年Kilibanov等。用脂肪酶粉或固定化酶在几乎无水的有机溶剂中成功地催化合成了肽以及手性的醇、脂和酰胺以来,对酶在非水相介质的催化反应技术的开发及研究报道迅速增加,特别在手性药物的不对称合成及手性药物拆分的生物技术开发中得到了很多应用。目前非水相中的酶催化技术已衍生出以下几类体系:①水与有机溶剂的互溶均相体系;②水与有机溶剂形

变性淀粉在食品中的应用研究进展

第28卷 第2期2014年 5月 齐 鲁 工 业 大 学 学 报 JOURNALOFQILUUNIVERSITYOFTECHNOLOGY Vol.28 No.2May. 2014 收稿日期:2013-11-09 基金项目:济南市科技计划项目(201102037);山东省高等学校科技计划项目(J11LC12) 作者简介:张静静(1988-),女,山东省高密市人,齐鲁工业大学在读硕士研究生,研究方向:食品资源开发. 倡 通讯作者:崔波,男,教授,博士,研究方向:食品工程.E-mail:cuibopaper@163.com. 文章编号:1004-4280(2014)02-0011-04 变性淀粉在食品中的应用研究进展 张静静1 ,梁 艳1 ,宫丽华2 ,崔 波 1倡 (1.齐鲁工业大学山东省轻工助剂重点实验室,山东济南250353; 2.齐鲁工业大学校医院,山东济南250353) 摘要:淀粉作为一种可再生的天然资源,已成为重要的工业原料。由于原淀粉的许多固有性质(冷水不溶性,糊液在酸、热、剪切作用下不稳定)限定了淀粉的工业应用,人们根据淀粉的结构和理化性质开发了淀粉的变性技术,即变性淀粉。随着变性淀粉诸多优良性质的显现,其在国内外食品行业的应用也越来越广泛。本文介绍了变性淀粉的制备方法及应用领域,并对变性淀粉的发展做了展望。关键词:变性淀粉;食品工业;应用;应用机理中图分类号:TS236.9 文献标识码:A Advanceinresearchesonchemicallymodifiedstarchusedinfood ZHANGJing-jing1 ,LIANGYan1 ,GONGLi-hua2 ,CUIBo 1倡 (1.ShandongProvincialKeyLaboratoryofFineChemicals,QiluUniversityofTechnology,Jinan250353,China; 2.QiluUniversityofTechnologyHospital,Jinan250353,China) Abstract:Starchhasbecomeakindofimportantindustrialrawmaterialasrenewablenaturalresources. Becausemanyinherentqualitiesoftheoriginalstarch(infusibilityincoldwater,instabilityofpasteliquidinacid,heatandshearingaction)limititsindustrialapplication.Sopeopledevelopedmodifiedtechnologyaccordingtothestarchstructureandphysicalandchemicalproperties,namedmodifiedstarch.Withmanygoodpropertiesofthemodifiedstarch,itsapplicationinfoodindustryisbecomingmoreandmorewidelyathomeandabroad.Thispaperintroducespreparationmethodsofmodifiedstarch,domain,andprospectsthedevelopmentofmodifiedstarch.Keywords:Modifiedstarch;foodindustry;application;applicationmechanism 0 引言 在植物中,淀粉在组织发育良好的颗粒中以储备碳水化合物的形式存在,但它不溶于冷水(维尔茨1986)。淀粉在工业中已经应用了很多年,食品工业用淀粉来控制粘度,而医药行业使用淀粉作为填料和载体材料等 [1] 。淀粉、纤维素、甲壳素等多 糖,在自然界中极为丰富,每年可新生,世界各国都 十分重视对这些再生资源的开发、利用、研究[2-4] 。淀粉极容易被酸或酶部分或全部水解成低聚糖或单糖,这些水解产物又可进一步衍生成更多的有机化合物。因此,比之纤维素等多糖,淀粉作为化工原料,更加受到人们的重视。我国淀粉年产量已达200万吨,但淀粉的深加工工业还较落后,主要生产各类淀粉糖,产量仅36万吨。而因淀粉自身特性的

淀粉及淀粉制品加工实用工艺学

?1、生产淀粉原料的条件 淀粉含量高、产量大、副产品利用率高 原料加工、贮藏、销售容易 价格便宜 不与人争口粮 一、玉米子粒的结构及化学组成 玉米类型:如马齿型、半马齿型、硬粒型、甜质型、糯质型、爆裂型、高直链淀粉型、高赖氨酸型和高油型等。 世界上大面积种植的主要是:马齿型、半马齿型和硬粒型玉米 适合生产淀粉的原料主要是:马齿型,糯质型和高直链淀粉型玉米是专用淀粉的原料。 皮层:它是由坚硬而紧密的细胞(果皮)和一层很薄的不具备细胞构造的半透明膜(种皮)所组成。 胚芽位于靠近子粒基部的位置,含油量高,营养丰富,韧性强占子粒纵切面面积近1/3,占子粒质量的8%~14%。 胚乳是子粒的主要部分,胚乳细胞里充满了淀粉,约占子粒质量的82%。 玉米子粒的化学组成主要是淀粉,约占子粒质量的71.8% 表5-1马齿型玉米的化学组成 淀粉71.8% 可溶性糖20% 蛋白质9.6% 纤维素 2.9% 脂肪 4.6% 水15.0% 灰分 1.4% 密度44.0 kg/m3 玉米子粒结构的不同部分所含的化学成分的量是不同的,淀粉主要含在胚乳中,胚中脂肪含量最高,皮层主要含纤维素及灰分。 从玉米子粒中提取淀粉需要把子粒的各种化学组分进行有效地分离,以便最大程度地提纯淀粉,并回收其他成分。 1)玉米子粒硬度大,要采取浸泡法使其吸水软化。 2)根据胚芽含油量大,但韧性强的特点,对玉米进行粗破碎、分离胚芽。 3)玉米胚乳中淀粉与蛋白质的结合非常牢固,要通过所添加的SO2来打开包围在淀粉粒表面的蛋白质网膜进行分离。 4)皮层及纤维则主要是在湿磨后采取筛选方式去除。 玉米淀粉提取采用湿磨工艺,自1842年开始在美国应用。 1、玉米淀粉生产包括3个主要阶段:玉米清理、玉米湿磨和淀粉的脱水干燥。 如果与淀粉的水解或变性处理工序连接起来,可以考虑用湿磨的淀粉乳直接进行糖化或变性处理,省去脱水干燥的步骤。

酶工程在食品工业中的开发应用

酶工程在食品工程中的开发应用 系部:安全工程系 学生姓名: 张开科 专业班级:2014级食品营养与检测 学号:1401050204 指导老师:刘振平

酶工程在食品工业中的开发应用 食品营养与检测 学生:张开科导师:刘振平 摘要: 酶工程在食品工业中的应用,介绍酶工程在水解纤维素、生产功能性糖类、生产环状糊精、干奶酪制品、酿酒工业中以及其他食品加工中中的应用,从而对酶工程在新世纪发的展做出了展望 酶工程技术就是利用了酶所具有的催化功能生产人类生活所需产品的技术,其中包括了酶的生产与研制,酶和其细胞或细胞器的固定化技术,酶分子的改造和修饰,以及生物传感器。酶是活细胞产生的具有高度专一性、高度受控性和高效催化功能的特殊蛋白质。酶的催化作用可在在常温、常压下进行,又有可调控性,酶工程技术在食品工业中是使用最广泛的也是众多行业中使用最早的 生物技术在食品工业中应用的典型代表可以说是酶在食品工业中的各种 应用。酶制剂在食品工艺中的应用为新时代的食品工业注入了新的活力,开辟了新的发展方向,极大地推动了新世纪食品生产工业技术的发展。80年代末,就已经研发出多种蛋白酶、脂肪酶,到目前为止,国际上食品工业酶的应用超过了50多种。主要有、蛋白酶、淀粉酶、果胶酶、糖化酶、纤维素酶等。主要应用于食品保鲜,瓜果蔬菜的加工、蛋白质制品加工、淀粉生产以及改善食品品质等。酶工程技术在食品工业中的应用不仅降低了生产成本,更提高了食品的质量,还为食品工业生产带来了巨大的经济效益和社会效益。 关键词:酶工程食品工业

目录 第一章酶工程的概述 (3) 1.1 酶工程的概念 (3) 1.2酶工程的发展史 (3) 1.3酶的主要用途 (3) 第二章酶基本概念、命名及其分类 (4) 2.1酶的生产方法 (4) 2.2酶的分类 (5) 2.3酶的命名 (6) 2.4酶的分离纯化 (6) 第三章微生物发酵产酶 (6) 3.1 产酶细胞的要求 (6) 3.2 酶发酵生产常用的微生物 (7) 3.3 提高酶产量的措施 (7) 第四章酶工程在食品工业中的应用 (7) 4.1酶工程技术在乳品加工中的应用 (7) 4.2酶工程技术在果蔬加工中的应用 (8) 4.3 鱼肉制品的加工 (8) 参考文献: (9)

变性淀粉的应用

食品中常用的变性淀粉 一.酸变性淀粉 特点:高温下粘度低,低温下凝胶强度大,主要用于 酸变性玉米淀粉粘度低,凝沉性强,能调制高浓度糊,形成强度高的凝胶软糖可中性好。 制造的奶糖质量好不粘牙,不粘纸,耐中嚼,富有弹性,能在长时间内保持产品的稳定性。 高度降解的变性淀粉用在咖啡伴侣中有好的食用效果。 二。氧化淀粉 可使淀粉糊化温度降低热糊粘度变小而热稳定性增加,产品色洁白,糊透明,成膜性好,是较低粘度的增稠剂,用于蛋黄酱冰淇淋皮糖 作为添加剂代替阿拉伯胶和琼脂制造胶冻和软糖制品 低粘度氧化淀粉可用于柠檬酸酪色拉调酱蛋黄酱,以及良好的成型性代替阿拉伯胶生产胶姆糖糖果等 轻度氧化淀粉对食物有良好的粘合力,可以用于炸鱼类食品的面料和拌料。随着氧化程度的增加糊化温度和热糊粘度就越低,凝沉现象就越少,透明度就越高薄膜性能就越好 三.糊精 特点是:溶解度大,可制得浓度高,粘度低的稳定糊液,用作食品中的稀剂的(填料)和固体饮料胆识汤类增稠剂,也作微胶囊的壁材 四.酯化淀粉 包括淀粉醋酸酯、淀粉磷酸单酯、淀粉烯酸琥珀酸酯等。 由于这些基团的引入,使得淀粉的糊化温度降低粘度增大糊透明度增加,回生程度减少凝胶能力下降抗冷冻性能提高。适用于作食品的增稠剂和和稳定剂。而淀粉辛烯基琥珀酸酯又是很好的食品乳化剂 特别适用于冷冻食品,使其在低温长期贮藏或重复冻融时食品结构保持不变无水分析出。如:

用于火腿肠,用量小于8%,由于其粘度大,具有很强的持水性,出品率大大提高,且长时间贮存不回生,不变色,口感不发硬,冻融性好,低温贮藏时无水分析出。由于糊化温度降低,糊程缩短,更适合低温火腿肠的工艺要求。如果和其它乳化剂协同作用,产品结构细腻弹性好有咬劲 淀粉磷酸酯还具有耐老化性及良好的保水性,用作增粘和 二.各类食品对变性淀粉的要求 1糕饼类 能稳定湿度调节质地及具有极佳的冻融稳定性 2面糊和面包类 要易粘着凝结不掩盖食物的原味易成型不易焦黄 3饮料 要求增进稠度低短甜度不易受潮易溶解味清淡对婴儿奶粉及成人营养食品则要求易消化低甜度味清淡 4糖果类 硬糖要求能调节糖的结晶体、粘性,果冻及胶质糖要求是强性胶可选择加工粘稠性、湿度控制防止析水。果丹皮糖要求易成型控制结晶,巧克力则要有助于减低含脂量控制表面结晶 5色拉酱及抹食品 如人造黄油花生酱色拉酱要求部分代替脂品中感滑爽增进浓度易成型耐酸耐热耐切提供松的质地 6冷冻甜食品 如冰淇淋要求有助于减低含脂量,优化甜味和冻点,及有助于成型和熔化性控制乳糖/冰晶抑制因子 7肉类加工 要有最高的凝水稳定性物美价廉的凝固物以优化质感及产量 8布丁和派填料

改性淀粉的研究及应用

改性淀粉的研究及应用 刘兴孝 (西北民族大学化工学院,兰州,730124) 摘要本文主要总结了改性淀粉的特点,阐述了改性淀粉的研究及应用,展望了改性淀粉的发展前景。 关键词改性淀粉;研究应用;发展前景 the characteristics and adhibitions of modified starch Xingxiao Liu (Chemical Engineering Institute , Northwest University For Nationalities, Lanzhou,730124) Abstract This paper summarizes the characteristics of modified starch, elaborates modified starch’s research and it’s prospects. Keywords modified starch; research and application; prospects 前言 淀粉是天然高分子化合物,多糖类化合物,也是目前广泛使用的一类可降解的不会对环境造成污染的可再生的物质。天然淀粉经过适当化学处理,引入某些化学基团使分子结构及理化性质发生变化,生成淀粉衍生物。未改性的淀粉结构通常有两种:直链淀粉和支链淀粉,是聚合的多糖类物质。通常因为水溶性差,故往往是采用改性淀粉,即水溶性淀粉。可溶性淀粉是经不同方法处理得到的一类改性淀粉衍生物,不溶于冷水、乙醇和乙醚,溶于或分散于沸水中,形成胶体溶液或乳状液体。改性淀粉以天然淀粉为原料经过特定的化学方法、物理方法、酶处理法。改良其原有性能的淀粉, 被广泛应用于食品、医药、皮革、铸造、造纸、纺织、水处理等行业。 改性淀粉的特点 变性淀粉的品种、规格达两千多种,变性淀粉的分类一般是根据处理方式来进行。加工精白淀粉,必须选用淀粉含量高的白薯品种。经加工后的淀粉虽选用了天然原料,但经人为加工,改性淀粉也就不可能算是天然的了。食用类的专用变性淀粉是不会对身体有副作用的。

酶在食品中的应用

酶在食品中的应用 人类对酶的应用可以追溯到几千年前。在对酶的不断认识过程中,我们给酶下了一个科学的定义:酶是由生物活细胞产生的、具有高效和专一催化功能的生物大分子。食品酶学是酶学的基本理论在食品科学和技术领域中应用的科学,主要研究食品原料、食品产品中酶的性质、结构、作用规律以及食品储藏、加工和食用品质的影响,食品级酶的生产及其在食品储藏、加工环节的应用理论与技术。 食品用酶,从早期的酿造、发酵食品开始,至今已广泛应用到各种食品上。随着生物科技进展,不断研究、开发出新的酶制剂,已成为当今新的食品原料开发、品质改良、工艺改造的重要环节。在食品工业中广泛采用酶来改善食品的品质以及制造工艺,酶作为一类食品添加剂,其品种不断增多。它在食品领域中的应用方兴未艾。与以前的化学催化剂相比,酶反应显得特别温和,这对避免食品营养的损失是很有利的。 酶制剂在食品行业中的应用主要体现在以下几个方面: 1. 有利于食品的保藏,防止食品腐败变质。例如:目前与甘氨酸配合使用的溶菌酶制剂,应用于面食、水产、熟食及冰淇淋等食品的防腐。如溶菌酶用于 pH6.0,7.5的饮料和果汁的防腐。乳制品保鲜新鲜牛乳中含有13毫克/100毫升的溶菌酶,人乳中含量为40毫克/毫升。在鲜乳或奶粉中加入一定量溶菌酶,不但可起到防腐作用,而且有强化作用,增进婴儿健康。 2. 改善食品色香味形态和质地。如,花青素酶用于葡萄酒生产,起到脱色作用;复合蛋白酶嫩化肌肉,使肉食品鲜嫩可口;在肉类香精生产中常用的风味酶就是一种复合酶,使最终反应达到风味化要求。 3. 保持或提高食品的营养价值。通过多种蛋白酶的作用生产多功能肽及各种氨基酸已经是营养保健行业常见的加工方法。

淀粉及淀粉制品加工工艺学

1、生产淀粉原料的条件 淀粉含量高、产量大、副产品利用率高 原料加工、贮藏、销售容易 价格便宜 不与人争口粮 一、玉米子粒的结构及化学组成 玉米类型:如马齿型、半马齿型、硬粒型、甜质型、糯质型、爆裂型、高直链淀粉型、高赖氨酸型和高油型等。 世界上大面积种植的主要是:马齿型、半马齿型和硬粒型玉米 适合生产淀粉的原料主要是:马齿型,糯质型和高直链淀粉型玉米是专用淀粉的原料。 皮层:它是由坚硬而紧密的细胞(果皮)和一层很薄的不具备细胞构造的半透明膜(种皮)所组成。 胚芽位于靠近子粒基部的位置,含油量高,营养丰富,韧性强占子粒纵切面面积近1/3,占子粒质量的8%~14%。 胚乳是子粒的主要部分,胚乳细胞里充满了淀粉,约占子粒质量的82%。 玉米子粒的化学组成主要是淀粉,约占子粒质量的71.8% 表5-1马齿型玉米的化学组成 淀粉71.8% 可溶性糖20% 蛋白质9.6% 纤维素 2.9% 脂肪 4.6% 水15.0% 灰分 1.4% 密度44.0 kg/m3 玉米子粒结构的不同部分所含的化学成分的量是不同的,淀粉主要含在胚乳中,胚中脂肪含量最高,皮层主要含纤维素及灰分。 从玉米子粒中提取淀粉需要把子粒的各种化学组分进行有效地分离,以便最大程度地提纯淀粉,并回收其他成分。 1)玉米子粒硬度大,要采取浸泡法使其吸水软化。 2)根据胚芽含油量大,但韧性强的特点,对玉米进行粗破碎、分离胚芽。 3)玉米胚乳中淀粉与蛋白质的结合非常牢固,要通过所添加的SO2来打开包围在淀粉粒表面的蛋白质网膜进行分离。 4)皮层及纤维则主要是在湿磨后采取筛选方式去除。 玉米淀粉提取采用湿磨工艺,自1842年开始在美国应用。 1、玉米淀粉生产包括3个主要阶段:玉米清理、玉米湿磨和淀粉的脱水干燥。 如果与淀粉的水解或变性处理工序连接起来,可以考虑用湿磨的淀粉乳直接进行糖化或变性处理,省去脱水干燥的步骤。

果胶酶及其在食品工业中应用

果胶酶及其在食品工业中应用 10化本2班禤金萍 2010364223 摘要:果蔬是我们日常生活中必不可少的食品之一,随着生活水平的提高和消费结构的转变,饮料等果蔬加工产品更加受到大众的青睐。而在加工过程离不开酶的参与,果胶酶在工业生产领域中是一种重要的新型酶类,在果蔬饮料中的应用非常广泛,可用于果汁的提取、澄清、提高出汁率等方面。 关键词:果胶酶;应用;展望 1.果胶酶结构和来源 果胶分子是由不同酯化度的半乳糖醛酸以α-1,4糖苷键聚合而成的多糖链,常带有鼠李糖、阿拉伯糖、半乳糖、木糖、海藻糖、芹菜糖等组成的侧链,游离的羧基部分或全部与钙、钾、钠离子,特别是与硼化合物结合在一起[1]。果胶分子的结构因植物的种类、组织部位、生长条件等的不同而不同,其大致的结构简图如图1所示,总体可分为光滑区(smooth region)和须状区(hairy region)两部分,主要由HGA、RG-I和RG-II三个结构区域构成,其中RG-II常以二聚体的形式存在。果胶酶(Pectinase)是世界四大酶制剂之一,是分解果胶质酶类的总称,主要包括原果胶酶、果胶酯酶、多聚半乳糖醛酸酶和果胶裂解酶四大类。[2]果胶酶主要由黑曲霉产生,按作用方式的不同分为两大类,脂酶和解聚酶,后者包括水解酶和裂解酶。 2.果胶酶的应用 果胶酶主要应用于食品工业特别是果汁果酒的加工业,近年来也不断开拓了新的用途。我国学者对果胶酶的应用开展了较广泛而深入的研究。

2.1果蔬汁提取 目前果汁的提取方法主要是加压榨出和过滤,果汁加工时首先将植物细胞壁破坏。大多数植物细胞壁主要由纤维素、半纤维素和果胶物质等组成,细胞壁的结构较紧密,单纯依靠机械或化学方法难以将其充分破碎。另外,果胶随成熟度的增加,酯化程度较高,也是影响出汁率的主要因素之一。用果胶酶处理可以破坏果实细胞的网状结构,提高果实的破碎程度,有效降低其黏度,改善压榨性能,提高出汁率和可溶性固形物含量,从而就能在压榨时达到提高出汁效率并缩短压榨时间的目的,同时把大分子的果胶物质降解后,有利于后续的澄清、过滤和浓缩工序。[3]例如在苹果汁生产中,苹果要先经机械压榨,然后离心获得果汁,但果汁中仍然含有较多的不溶性果胶而呈浑浊状。直接将果胶酶加到苹果汁中,处理后经加热杀菌、灭酶、过滤得到澄清的果汁。 2.2果汁澄清 果胶酶可以降低果汁粘度,使果汁易于被处理而透明澄清。澄清机理的实质包括果胶的酶促水解和非酶的静电絮凝两部分。果汁中有很多物质如纤维素、蛋白质、淀粉、果胶物质等影响澄清,且果胶物质是造成果汁浑浊的主要原因。加入果胶酶澄清处理后,粘性迅速下降,浑浊颗粒迅速凝聚,使果汁迅速澄清、易于过滤。果胶酶能随机水解果胶酸和其他聚半乳糖醛酸分子内部的糖苷键,生成分子质量较小的寡聚半乳糖荃酸,使其粘度迅速下降,容易榨汁过滤,提高果浆出汁率,改善果汁澄清效果。[4] 果胶裂解酶(PL)对苹果汁有较好的澄清作用,但对葡萄汁效果不明显。对于柑橘汁,因要求雾样混浊,应当使用不含果胶酯酶(PE)的聚半乳糖醛酸内切酶(endo-PG)进行处理。由于果胶裂解酶可避免甲醇的产生,也可避免部分脱酯的果胶同钙离子形成沉淀,还可避免构成各种水果芳香性成分的酯类物质的损失。所以有研究表明果胶酶制剂若用于果蔬汁和果酒加工,最好含有较多量果胶裂解酶(PL)。[5] 2.3改善果蔬饮料的营养成分 利用果胶酶生产果蔬汁不仅提高了出汁率,而且保留了果蔬汁中的营养成分。首先果蔬汁的可溶性固形物含量明显提高,而这些可溶性固形物由可溶性蛋白质和多糖类物质等营养成分组成,果蔬汁中的胡萝卜素的保存率也明显提高。酶处理后的果汁的葡萄糖、山梨糖和果糖含量显著提高,蔗糖含量略有下降,总糖含量上升。甜玉米、胡萝卜的试验有相似的结果。此外,由于果胶的脱酯化和半乳糖醛酸的大量生成, 造成果汁的可滴定酸度上升,pH下降[6]。芳香物质含量也有明显提高,经果胶酶处理后的葡萄汁,各种酯类、萜类、醇类和挥发性酚类含量提高,葡萄汁的风味更佳。由于细胞壁的崩溃,类胡萝卜素、花色苷等大量色素溶出,大大提高了果蔬汁的外观品质。K、Na、Ca、Zn 等矿物质元素含量也有较大提高。[7] 3.其他方面的应用 在咖啡发酵过程中利用产碱性果胶酶微生物除去咖啡豆的黏表皮。有时添加碱性果胶酶来去除含大量果胶质的果肉状表层。纤维素酶和半纤维素酶的协同作用可促进咖啡豆黏表皮的降解。碱性果胶酶也可用于茶叶加工。碱性果胶酶处理可促进茶叶发酵,不过要仔细调节用酶剂量以免破坏茶叶。碱性果胶酶还可通过破坏茶叶中的果胶物质来改善速溶茶粉在冲泡过程中形成泡沫的性能。 4.展望 果胶酶是应用于果蔬汁生产中且主要的酶类,它可以较大幅度地提高果蔬品

相关主题
文本预览
相关文档 最新文档