当前位置:文档之家› 12-16 脊柱的生物力学---董庸皓

12-16 脊柱的生物力学---董庸皓

(完整版)脊柱和脊髓影像解剖

第八章脊柱和脊髓影像解剖 第一节解剖学概述 成人脊柱由24块椎骨、1块骶骨和1块尾骨借椎间盘、椎间关节及韧带等连接而成。自上而下可分为颈段、胸段、腰段和骶尾段等四部分。 多数椎骨由椎体和椎弓组成,二者围成椎孔。椎弓由椎弓根和椎板构成,椎弓根是椎弓连接椎体狭窄部分,其上、下缘分别为椎上、下切迹,相邻的椎上、下切迹构成椎间孔,其内有神经、血管通过。椎弓峡部为椎弓根与椎板移行部,位于上、下关节突之间(图8-1-1)。 除寰枢椎之间无椎间盘外,其他椎体之间均有椎间盘,共23个。椎间盘由髓核、纤维环、透明软骨终板和Sharpey纤维环等构成。髓核富含水分,位于椎间盘的中心偏后部分。纤维环由纤维软骨构成,围绕髓核呈同心圆状排列,其前部较厚,后部较薄,故髓核易向椎体后方或后侧方突出。Sharpey纤维环位于椎间盘最外层,由胶原纤维构成。透明软骨终板紧贴于椎体上下缘,构成椎间盘髓核的上、下界(图8-1-2)。 图8-1-1 椎骨一般形态

图8-1-2 椎间盘及椎管内容 后纵韧带和黄韧带是具有重要临床病理意义的结构(图8-1-3)。后纵韧带起自枢椎体后缘,向下沿各椎体和椎间盘的后缘至骶管,细而坚韧。黄韧带参与椎管后壁的构成,起自上位椎骨椎板的下前面,止于下位椎骨椎板的后面和上缘,呈节段性。正常厚度为2~4mm,超过5mm即为增厚。后纵韧带增厚钙(骨)化、黄韧带增厚均可导致椎管狭窄,脊髓及神经根受压,产生相应的临床症状。 图8-1-3 脊柱韧带 椎管由椎孔、骶骨的骶管和椎骨之间的骨连接共同构成,内有脊髓、神经根、血管及脑脊液等。椎管前壁由椎体、椎间盘和后纵韧带构成,两侧壁为椎弓根和椎间孔,后壁为椎板和黄韧带。上述构成椎管壁的任何结构发生变化,均可累及椎管,使其变形或狭窄。 脊髓位于硬膜囊内,上连延髓,呈圆柱形,因颈膨大、腰膨大致其各段粗细略有差异。脊髓末端变细,为脊髓圆锥,于第1腰椎(小儿平第3腰椎)椎体下缘水平处续为终丝。一般来说,成人第2腰椎水平以下椎管内无脊髓组织,仅有马尾神经。脊髓亦分颈、胸、腰和骶尾段等,但影像上各段界限难辨。脊髓节段与同序数的椎骨多不对应。 脊髓被膜自外向内依次为硬脊膜、蛛网膜及软脊膜。软脊膜紧贴脊髓表面,蛛网膜与软脊膜之间为蛛网膜下腔,其内充满脑脊液。蛛网膜紧贴硬脊膜内面,两者之间潜在腔隙为硬(脊)膜下腔(图8-1-2),CT及MRI上均不能显示此腔。硬脊膜厚而坚韧,由致密结蹄组织构成,呈盲囊状包绕脊髓、蛛网膜及软脊膜,形成长筒状的硬膜囊。硬脊膜与椎管壁之间间隙为硬膜外腔,其内含有丰富的脂肪组织,还有血管、神经、淋巴组织等。识别脊髓被膜

脊柱生物力学

脊柱生物力学标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

脊柱生物力学 1.运动节段由于脊柱的结构和功能较为复杂,在研究脊柱的生物力学时,通常观察脊 柱的某一部分,该部分由相邻两椎体及其间的软组织构成,能显示整个脊柱相似的生物力学特性的最小功能单位,其运动的叠加可构成脊柱的三维运动,称为运动节段,又称脊柱功能单位。 分部:通常将其分为前后两部分:前部分由两个椎体、椎间盘和后纵韧带组成;后部分由相应的椎弓、椎间关节、横突、棘突和韧带组成。 前后部承载:前部的椎间盘和后部的小关节在负重及应力分布方面存在着一种独立的、动态的关系。在侧方、前方剪应力作用、轴向压缩及屈曲运动时,前部的椎间盘是主要的负重部位。如伴有较大的位移时,后部的小关节也承受部分载荷,在后方剪应力(背伸运动)和轴向旋转时,小关节则是主要的负重部位。 功能:①运动功能,提供椎体三维空间的运动范围;②承载功能,将载荷从颈部传到骨盆;③保护功能,保护椎管内容纳的脊髓及神经根。椎体,椎间盘及前纵韧带、后纵韧带提供脊柱的支持功能和吸收对脊柱的冲击能量。运动范围主要依靠椎间关节复合体完成。躯干及韧带保证脊柱的稳定性和维持身体姿势。 2.脊柱运动学神经和肌肉的协同作用产生脊柱的运动。脊柱作为柔软性载负体,其运动 形式是多样的。脊柱的运动范围较大,但组成脊柱的各个节段的运动范围却较小,节段间的运动是三维的,表现为两椎骨的角度改变和位移。脊柱的活动通常是多个运动节段的联合运动,包括沿横轴、矢状轴和纵轴的旋转和平移。限制任何部位的活动都可增加其他部位的活动。 (1)运动特性:在脊柱运动中,椎体与椎间盘韧带、关节囊等组织相比,变形量

脊柱生物力学基本知识完整版

脊柱生物力学基本知识集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

青少年脊柱侧凸概述 脊柱侧弯的经典定义为“脊柱在额状面上发生的侧方弯曲”,实际上应为一种复杂的三维畸形。额状面上畸形大于10度的传统标准仍然适用于现行的脊柱侧弯定义。然而由于近来对力偶合认识的加深,目前我们知道侧弯的脊柱不仅在矢状面和额状面上存在有差异,在横断面上亦存在有畸形。因此在脊柱侧弯的诊断和治疗过程中一定要对人体的三维平面进行评估。 脊柱侧弯的患病率 患病率是指在某一时点检查时可能发生某病的一定人群中患有某病的频率。由于侧弯严重程度的不同,脊柱侧弯的患病率而有所差别,角度大的侧弯发生率较低,世界范围内各种类型脊柱侧弯的患病率约为1%,且在各种群中相对恒定。勿将患病率与发病率 相混淆。发病率是指在观察期内(通常为一年),可能发生某种疾病的一定人群中新发生该病的频率。绝大多数研究所涉及的是脊柱侧弯的患病率。 脊柱侧凸的病因学 脊柱侧弯的病因多种多样。Moe 在其经典的教科书中列举的病因多达50余种。我们将其粗略地将脊柱侧弯分为以下四类: 神经肌肉性侧弯 先天性侧弯 某些疾患(疾病,肿瘤和创伤)导致的侧弯 特发性侧弯 神经肌肉性侧弯 神经肌肉性侧弯通常在儿童期发病。这类畸形多呈进展性且伴有明显的心肺并发症。该 类患者的寿命通常缩短。神经肌肉性疾病又可进一步分为:神经病性和肌病性。然而,并非所有患有神经肌肉性疾病的儿童都会 发展为脊柱侧弯。 多数神经肌肉性侧弯患者需接受脊柱融合手术。以使其能直立地坐在轮椅上并能够拥有较好的生活质量。坐立有助于改善患儿的 肺通气,且有助于减少肺部并发症。 神经病性疾患使神经系统受累。神经病性侧弯包括脑瘫,脊髓小脑功能障碍及脊髓灰质炎。 肌性侧弯的病因在于肌肉组织疾患。Duchenne 肌萎缩和关节弯曲是肌性疾患的典型病例,并有可能导致脊柱侧弯。 先天性侧弯

脊柱运动的生物力学

脊柱疾病和损伤与脊柱受力的异常有明确关系,而康复治疗和预防也需要对脊柱运动的生物力学有清楚的了解。本文旨在为临床和治疗技术人员提供相关的基础知识。 1、结构特征:脊柱是人体运动的主轴。由多个椎体、多重关节(椎间“关节”、椎小关节)、众多肌肉和韧带紧紧围绕、生理弯曲,以满足脊柱的坚固性和可动性(柔韧性)。其活动有三维方向(前后、左右、旋转)和六个自由度(3个平动、3个转动)。 2、位置特征:颈段支撑头颅,重心处于颈部前2/3和后1/3的交界处;胸段重心偏后(胸廓前后径的后1/4),与胸廓共同分解胸以上躯体的重量。腰段居中,甚至前凸,以支撑体重。 3、解剖特征: (1)椎管:椎骨构成一个可褶曲的有效管腔以容纳延髓和脊髓。 (2)椎骨:由椎体、椎弓、上下关节突、棘突、横突构成。椎体是椭圆形短扁骨,一圈致密的骨皮质包围海棉状的髓质(松质骨),上下骨皮质中有较厚的软骨板衬垫,边缘由较厚的环形衬板构成。椎体的骨小梁除按应力线斜行交叉外;还可看到一组从椎体上面向后延伸,至椎弓根水平时呈扇形分布于下关节突与棘突,另一组则从椎体下面向后延伸到椎弓根水平时呈扇形分布于下关节突与棘突。椎体前缘最薄弱,易于发生压缩性骨折。横突和棘突作为脊柱肌肉的附着点,是脊柱动态稳定性的基础之一。 (3)椎间盘:内部为髓核,外部为纤维环。髓核为半液态,由富亲水性的葡萄糖胺酸聚糖的胶状凝胶所组成。除了下腰椎的髓核位置偏后外,髓核均位于椎间盘的正中。纤维环为多层致密的结缔组织彼此斜行交织而成,自边缘向心分布,致密的纤维环开始是垂直的,越接近中心越倾斜,到中心接触髓核时,几乎近水平走向,并围绕髓核成椭圆形。椎间盘受压时,髓核承受75%的压力,其余25%的压力分布到纤维环。髓核还同时具有稳定脊柱运动的功能,在伸展运动时,上方椎体向后移位,缩减了椎间隙后缘,髓核受挤向前方偏移。在前屈运动时,正好相反,从而使椎体获得较强的自稳性。椎间盘总厚度约为脊柱全长的25%。白天站立和行走的压力使髓核丧失少量水分,而在睡眠或休息时由于髓核压力减小,水分又得到重储存。因此早晚身高有2厘米的差异。20岁以后髓核对水分重储存能力减退。由于提重物和年龄增长产生的微损伤使纤维环纤维成分增加,而能复原的弹性成分相对减少。因此30-50岁的成年人纤维环易遭受损伤,继后髓核脱出而压迫神经根。 (4)椎小关节:椎小关节由相临椎体的上下关节突构成,和椎间盘的载荷分配随脊柱位置而异,一般承受0~30%的脊柱载荷。脊柱过伸位时小关节突承载力显著增加。 (5)脊柱韧带:有前纵韧带、后纵韧带、棘间韧带、棘上韧带和黄韧带。韧带主要作用于脊柱的静态稳定性。大多数脊柱韧带由延伸度较小的胶原纤维构成。黄韧带含有较高比例的弹力纤维。韧带还作用于拉伸载荷在椎体间的传递,使脊柱在生理范围内以最小的阻力进行平稳运动。 4、运动节段:由两个相临的椎体、椎间盘和纵韧带形成节段的前部。相应的椎弓、椎间关节、横突和棘突以及韧带组成节段的后部。椎弓和椎体形成椎管以保护脊髓。运动节段是脊柱的最小功能单元。

脊柱生物力学基本知识

青少年脊柱侧凸 概述 脊柱侧弯的经典定义为“脊柱在额状面上发生的侧方弯曲”,实际上应为一种复杂的三维畸形。额状面上畸形大于10 度的传统标准仍然适用于现行的脊柱侧弯定义。然而由于近来对力偶合认识的加深,目前我们知道侧弯的脊柱不仅在矢状面和额状面上存在有差异,在横断面上亦存在有畸形。因此在脊柱侧弯的诊断和治疗过程中一定要对人体的三维平面进行评估。 脊柱侧弯的患病率 患病率是指在某一时点检查时可能发生某病的一定人群中患有某病的频率。由于侧弯严重程度的不同,脊柱侧弯的患病率而有所差别,角度大的侧弯发生率较低,世界范围内各种类型脊柱侧弯的患病率约为1%,且在各种群中相对恒定。勿将患病率与发病率相混淆。发病率是指在观察期内(通常为一年),可能发生某种疾病的一定人群中新发生该病的频率。绝大多数研究所涉及的是脊柱侧弯的患病率。

脊柱侧凸的病因学 脊柱侧弯的病因多种多样。Moe 在其经典的教科书中列举的病因多达50 余种。我们将其粗略地将脊柱侧弯分为以下四类: ?神经肌肉性侧弯 ?先天性侧弯 ?某些疾患(疾病,肿瘤和创伤)导致的侧弯 神经肌肉性侧弯 神经肌肉性侧弯通常在儿童期发病。 神经病性和肌病性。然而, 为脊柱侧弯。 多数神经肌肉性侧弯患者需接受脊柱融合手术。 上并能够拥有较好的生活质量。坐立有助于改善患儿的肺通气, 减少肺部并发症。 神经病性疾患使神经系统受累。神经病性侧弯包括脑瘫, 碍及脊髓灰质炎。 肌性侧弯的病因在于肌肉组织疾患。Duchenne 肌萎缩和关节弯曲是肌 性疾患的典型病例,并有可能导致脊柱侧弯。 先天性侧弯

先天性侧弯是由于发育过程中胚胎受到损伤而造成的椎体或椎节 这种先天性脊柱缺陷可分为以下三个基本类型: ? 形成不良 ? 分节不全 ? 混合型 形成不良可累及单一椎体或多个椎体,指脊柱在宫内发育过程中,一个椎 体的部分或全部不能完整发育成型。形成不良最常见的情况是半椎体。该种畸形在侧弯中较为常见,并可使侧弯畸形加重。若脊柱后部结构发生形成不良,可导致脊柱裂或脊髓脊膜突出。右方插图显示的形成不良为半椎体。 混合型是指形成不良和分节不全同时发生。这一类型较难判别和评估,需加以定期随访。混合型最重的情况通常为脊柱的一侧存在有多个未分节的骨桥,而另一侧则为半椎体。单纯的形成不良或分节不全较为少见,相反大多数患者表现为形成不良和分节不全两者并存。 某些疾患造成的侧弯 某些全身性疾患也可导致脊柱侧弯的发生,如:感染、肿瘤或创伤。诸如间质病变的 Marfan 综合征和遗传性结缔组织病变的 神经纤维瘤病往往同时伴随有脊柱侧弯的发生。但并非这类疾病都有脊柱侧弯的发生。 急性和慢性感染(例如:结核)有可能造成明显的脊柱侧弯。脊柱肿瘤及楔变的骨折,最终也会导致脊柱侧弯,但这些情况在儿童中罕见。多节段椎板切除术往往造成医源性侧弯,此在成年中亦较为常见。

脊柱运动的生物力学基础

脊柱运动的生物力学基础 基础理论 - 生物力学 (脊柱) 脊柱疾病和损伤与脊柱受力的异常有明确关系,而康复治疗和预防也需要对脊柱运动的生物力学有清楚的了解。本文旨在为临床和治疗技术人员提供相关的基础知识。 1、结构特征:脊柱是人体运动的主轴。由多个椎体、多重关节(椎间“关节”、椎小关节)、众多肌肉和韧带紧紧围绕、生理弯曲,以满足脊柱的坚固性和可动性(柔韧性)。其活动有三维方向(前后、左右、旋转)和六个自由度(3个平动、3个转动)。 2、位置特征:颈段支撑头颅,重心处于颈部前2/3和后1/3的交界处;胸段重心偏后(胸廓前后径的后1/4),与胸廓共同分解胸以上躯体的重量。腰段居中,甚至前凸,以支撑体重。 3、解剖特征: (1)椎管:椎骨构成一个可褶曲的有效管腔以容纳延髓和脊髓。 (2)椎骨:由椎体、椎弓、上下关节突、棘突、横突构成。椎体是椭圆形短扁骨,一圈致密的骨皮质包围海棉状的髓质(松质骨),上下骨皮质中有较厚的软骨板衬垫,边缘由较厚的环形衬板构成。椎体的骨小梁除按应力线斜行交叉外;还可看到一组从椎体上面向后延伸,至椎弓根水平时呈扇形分布于下关节突与棘突,另一组则从椎体下面向后延伸到椎弓根水平时呈扇形分布于下关节突与棘突。椎体前缘最薄弱,易于发生压缩性骨折。横突和棘突作为脊柱肌肉的附着点,是脊柱动态稳定性的基础之一。 (3)椎间盘:内部为髓核,外部为纤维环。髓核为半液态,由富亲水性的葡萄糖胺酸聚糖的胶状凝胶所组成。除了下腰椎的髓核位置偏后外,髓核均位于椎间盘的正中。纤维环为多层致密的结缔组织彼此斜行交织而成,自边缘向心分布,致密的纤维环开始是垂直的,越接近中心越倾斜,到中心接触髓核时,几乎近水平走向,并围绕髓核成椭圆形。椎间盘受压时,髓核承受75%的压力,其余25%的压力分布到纤维环。髓核还同时具有稳定脊柱运动的功能,在伸展运动时,上方椎体向后移位,缩减了椎间隙后缘,髓核受挤向前方偏移。在前屈运动时,正好相反,从而使椎体获得较强的自稳性。椎间盘总厚度约为脊柱全长的25%。白天站立和行走的压力使髓核丧失少量水分,而在睡眠或休息时由于髓核压力减小,水分又得到重储存。因此早晚身高有2厘米的差异。20岁以后髓核对水分重储存能力减退。由于提重物和年龄增长产生的微损伤使纤维环纤维成分增加,而能复原的弹性成分相对减少。因此30-50岁的成年人纤维环易遭受损伤,继后髓核脱出而压迫神经根。 (4)椎小关节:椎小关节由相临椎体的上下关节突构成,和椎间盘的载荷分配随脊柱位置而异,一般承受0~30%的脊柱载荷。脊柱过伸位时小关节突承载力显著增加。 (5)脊柱韧带:有前纵韧带、后纵韧带、棘间韧带、棘上韧带和黄韧带。韧带主要作用于脊柱的静态稳定性。大多数脊柱韧带由延伸度较小的胶原纤维构成。黄韧带含有较高比例的弹力纤维。韧带还作用于拉伸载荷在椎体间的传递,使脊柱在生理范围内以最小的阻力进行平稳运动。 4、运动节段:由两个相临的椎体、椎间盘和纵韧带形成节段的前部。相应的椎弓、椎间关节、横突和棘突以及韧带组成节段的后部。椎弓和椎体形成椎管以保护脊髓。运动节段是脊柱的最小功能单元。 (1)前部:椎体的设计主要是为了承担压缩负荷,上部身体的重量加大时,椎体就相应变得更大,因此腰椎的椎体比胸椎和颈椎的椎体要高,其横截面积也大一些。腰椎椎体的尺寸增大,是它们能承受这部分脊柱所需的较大负荷。 (2)后部:后部控制运动节段的运动。运动的方向取决于椎间小关节突的朝向。第1、2颈椎小关节突朝向横面,其余颈椎的椎小关节突均与横面呈450夹角而与额面平行,从而能

现代脊柱外科学(上.下)

现代脊柱外科学(上.下) 【赵定麟 本书分为总论与创伤、脊柱疾患、脊柱侧凸、畸形与肿瘤等共计四卷,七十八章加以阐述。在总论与创伤中,除有关脊椎的解剖及生物力学外,对脊椎伤患的诊断学基础及脊髓受损的定位诊断等作了较详细的介绍,在颈椎及腰骶椎两篇脊椎疾患中,较细至地介绍了各种常见的病变,对较少见之疾患亦加以介绍。本书在文字上深入浅出,并注重文图并茂,使读者一目了解,以便于临床工作的开展而有利于广大脊椎伤病患者。 赵定麟 男,主任医师,2级教授,博士生导师。1935年1月出生,1956年毕业于哈尔滨医科大学,历任长征医院骨科主任、全军骨科研究所所长,为国家级有突出贡献的中青年科技专家,政府特殊津贴获得者。现任国际创伤与矫形外科学会(SICOT)及世界矫形外科教育学会(WOC)中国分会主席以及中华创伤外科学会、中华骨科学会委员、中华骨科学会脊柱外科专业组核心组成员等20个学术职务。二、研究方向主要研究方向为脊柱伤患的诊治,在颈椎伤病的诊治方面造诣较深。曾设计了颈椎潜式减压、侧前方减压、Y型诫压、局部旋转植骨等多种术式,研制了颈椎椎体间人工关节、空心螺纹式椎节内固定器及可调式钛合金人工椎体,在欧美、日本等20余所大学或国际会议上讲学或学术报告,论文多次入选美国AAOS、日本JOA及SlCOT等世界性会议。三、承担课题为全军“九五”指令性课题和上海市医学领先专业——脊柱外科学主要负责人之一,曾承担课题“神经肽与骨衰老的关系(国家自然科学基金)” 、“脊柱脊髓伤的研究(八五及九五全军医学科技攻关课题基金)”、“脊柱外科的临床治疗与实验研究(上海市领先学科资助项目基金)”等多项课题。四、成果奖励主编专著《脊椎外科临床研究》、《颈椎病》、《下腰痛、》《实用创伤骨科学》、《颈椎伤病学》、《脊柱外科学》、《四肢脊柱创伤》、《现代创伤外科学》、《骨科学新理论新技术》、《创伤骨科学及新进展》、《现代颈椎病学》、《骨科诊断学》《现代骨科学》等专著13部。发表论文60

10.脊柱模型及腰椎生物力学

1.SPINAL MODELING AND LUMBAR SPINAL BIOMECHANICS 脊柱模型及腰椎的生物力学 Ray Wiegand,D.C. Adjunct Faculty Logan College of Chiropractic 2.INTRODUCTION介绍 *The purpose of this presentation is to develop a geometric spinal model using frontal and sagittal plane radiographs. 本讲座的目的是介绍用正面和侧面X-光片创立一个脊柱几何力学模型 3.PURPOSE OF THE SPINAL MODEL脊柱模型的作用 *Provide a method to record the architecture and geometry of the spinal pelvic system to investigate its organization and function. 提供一个方法以记录和测定脊柱和骨盆系统的结构极其几何力学,用以研究其组成和功能*Identify abnormal segmental alignment for the purpose of spinal adjusting 确定异常的关节排列以确定脊柱调整方案 4.BIOMECHANICAL ORGANIZATION生物力学结构 *All living organisms demonstrate optimum efficiency through structural and functional organization 所有有生命的肌体组织都会通过其结构和功能组成来达到其最佳和最有效的生存方式 *The human skeleton is structurally and functionally organized including the alignment of the bones and the symmetrical attachment of the ligaments and muscles 人体的骨骼系统是以骨骼的排列、韧带和肌肉的对称附着来达到结构和功能的有机结合的*Any injury to the spine or pelvis causes functional compensation within the spine,pelvis and extremities 所有对脊柱或骨盆的伤害都会引起脊椎、骨盆和四肢的功能代偿 *For every action there is a reaction每一个作用都存在着一个相应的反应 5.SPINAL REACTION TO INJURY(COMPENSATION)IS PREDICTABLE脊椎对损伤的代偿反应是可预见的 *Once injured,the spinal system predictably reorganizes脊椎系统一旦受到伤害随即会发生可预见的重新整合 *From Optimum form and function *To Organized compensation with reduced function 从最佳形态功能到有组织的代偿并伴随功能下降 *With repeated injury the spinal system moves *To Disorganization with dysfunction 反复的伤害脊椎系统就会发展成组织紊乱伴随功能障碍 *Patients usually have multiple injuries and the spine is disorganized and dysfunctional 病人通常都是由于多次的损伤导致组织紊乱和功能障碍 6.DEVELOPING THE SPINAL MODEL脊椎模型的建立 使用X-线的投影原理 7.SPINAL GEOMETRY脊椎的几何学

现代脊柱外科学(上下)

现代脊柱外科学(上.下)【赵定麟 本书分为总论与创伤、脊柱疾患、脊柱侧凸、畸形与肿瘤等共计四卷,七十八章加以阐述。在总论与创伤中,除有关脊椎的解剖及生物力学外, 对脊椎伤患的诊断学基础及脊髓受损的定位诊断等作了较详细的介绍,在颈椎及腰骶椎两篇脊椎疾患中,较细至地介绍了各种常见的病变,对较少见之疾患亦加以介绍。本书在文字上深入浅出,并注重文图并茂,使读者一目了解,以便于临床工作的开展而有利于广大脊椎伤病患者。 赵定麟 男,主任医师,2级教授,博士生导师。1935年1月出生,1956年毕业于哈尔滨医科大学,历任长征医院骨科主任、全军骨科研究所所长,为国家级有突出贡献的中青年科技专家,政府特殊津贴获得者。现任国际创伤与矫形外科学会()及世界矫形外科教育学会()中国分会主席以及中华创伤外科学会、中华骨科学会委员、中华骨科学会脊柱外科专业组核心组成员等20个学术职务。二、研究方向主要研究方向为脊柱伤患的诊治,在颈椎伤病的诊治方面 造诣较深。曾设计了颈椎潜式减压、侧前方减压、Y型诫压、局部旋转植骨等多种术式,研 制了颈椎椎体间人工关节、空心螺纹式椎节内固定器及可调式钛合金人工椎体,在欧美、日 本等20余所大学或国际会议上讲学或学术报告,论文多次入选美国、日本及等世界性会议。三、承担课题为全军九五”指令性课题和上海市医学领先专业一一脊柱外科学主要负责人之一,曾承担课题神经肽与骨衰老的关系(国家自然科学基金)”、脊柱脊髓伤的研究(八五及九五全军医学科技攻关课题基金)”、脊柱外科的临床治疗与实验研究(上海市领先学 科资助项目基金)”等多项课题。四、成果奖励主编专著《脊椎外科临床研究》、《颈椎病》、《下腰痛、》《实用创伤骨科学》、《颈椎伤病学》、《脊柱外科学》、《四肢脊柱创伤》、《现代创伤外科学》、《骨科学新理论新技术》、《创伤骨科学及新进展》、《现代颈椎病学》、《骨科诊断学》《现代骨科学》等专著13部。发表论文60余篇,获国家科技进步二等奖2项、国家科技进步三等奖

脊柱生物力学基本知识

脊柱生物力学基本知识 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

青少年脊柱侧凸概述 脊柱侧弯的经典定义为“脊柱在额状面上发生的侧方弯曲”,实际上应为一种复杂的三维畸形。额状面上畸形大于 10 度的传统标准仍然适用于现行的脊柱侧弯定义。然而由于近来对力偶合认识的加深,目前我们知道侧弯的脊柱不仅在矢状面和额状面上存在有差异,在横断面上亦存在有畸形。因此在脊柱侧弯的诊断和治疗过程中一定要对人体的三维平面进行评估。 脊柱侧弯的患病率 患病率是指在某一时点检查时可能发生某病的一定人群中患有某病的频率。由于侧弯严重程度的不同,脊柱侧弯的患病率而有所差别,角度大的侧弯发生率较低,世界范围内各种类型脊柱侧弯的患病率约为 1%,且在各种群中相对恒定。勿将患病率与发病率相混淆。发病率是指在观察期内(通常为一年),可能发生某种疾病的一定人群中新发生该病的频率。绝大多数研究所涉及的是脊柱侧弯的患病率。 脊柱侧凸的病因学 脊柱侧弯的病因多种多样。 Moe 在其经典的教科书中列举的病因多达 50 余种 。我们将其粗略地将脊柱侧弯分为以下四类: 神经肌肉性侧弯 先天性侧弯 某些疾患(疾病,肿瘤和创伤)导致的侧弯 特发性侧弯 神经肌肉性侧弯 神经肌肉性侧弯通常在儿童期发病。这类畸形多呈进展性且伴有明显的 心肺并发症。该类患者的寿命通常缩短。神经肌肉性疾病又可进一步分为:神经病性和肌病性。然而,并 非所有患有神经肌肉性疾病的儿童都会发展为脊柱侧弯。 多数神经肌肉性侧弯患者需接受脊柱融合手术。以使其能直立地坐在轮椅上并能够拥有较好的生活质量。坐立有助于改善患儿的肺通气,且有助于减少肺部并发症。 神经病性疾患使神经系统受累。神经病性侧弯包括脑瘫,脊髓小脑功能障碍及脊髓灰质炎。

颈椎的解剖和生物力学

颈椎的解剖和生物力学 基础理论 - 生物力学 每月约有10,的人患有伴或不伴上肢放射痛的颈部疼痛。1/3以上的人有严重颈部疼痛。70%就诊的新发颈部疼痛的病人在1个月内症状缓解或改善,剩下30%病人中的绝大多数症状能够逐渐缓解。很少一部分急性颈部疼痛的患者转为慢性。 人的颈部是由多块骨骼、韧带、肌肉、血管和神经组成的复杂结构,这些结构均会引起“颈部疼痛”。因而,颈部会受诸如退行性骨关节炎、肌肉韧带的炎性疾病、血管功能不全以及很少见的神经受压综合征等的影响。 能引起颈部牵涉痛的其他部位的病理改变如肩部、膈肌、心脏或下颌使问题复杂化——因为肩胛锁骨关节的疾病、膈肌痉挛、高血压、心肌梗死或颞下颌关节综合征也可表现为颈部疼痛。肺尖和胸膜顶部的疾病可以影响臂丛而表现为C8或T1分布区的疼痛。因而颈部的解剖和生物力学非常重要。 颈部是脊柱中运动最灵活的区域,50,以上的颈部运动由寰枕关节和寰枢关节完成,剩余的50,的颈部运动均匀的分部于C3-7。 有许多力学系统可以引起颈部疼痛。7块颈椎间有14个关节突关节(即常说的小关节)和5对Luschka’s关节(即钩椎关节),并且肌肉和韧带结构不但受第11对颅神经的支配,同时还受位于两侧的8对颈神经的支配。肌肉和韧带的撕裂伤是颈部疼痛的最常见的原因,但可能同时存在其他的病理改变。小关节和钩椎关节间是滑膜连接,同其他滑膜关节有相同的炎性致痛病理过程。颈椎间盘吸收脊柱的轴向压力,起着“震荡吸收器”的作用。椎间盘的破裂和退行性变或纤维撕裂都可以引起严重的、难以诊断和治疗的局部疼痛。骨性结构本身可以因骨质疏松、代谢或其他过程而退变,导致病理性骨折和疼痛。

脊柱的功能解剖

随着对临床常见多发的颈肩腰腿痛的深入研究,脊柱的功能解剖和生物力学的方面的问题引起了人们的广泛的重视。临床所遇到的以疼痛为主或以功能障碍为主的许多问题,多能从脊柱的功能解剖、生物力学等方面得到合理的解释或推理论证。 第一节脊柱的稳定性 人体脊柱是一个“稳定”的轴,而发生于脊柱的许多疾病,常以疼痛、功能障碍外形异常为主要表现,尤其是以疼痛为主诉而求医者更为多见。因此,把疼痛、功能异常、外形异常与脊柱的稳定性联系起来考虑,已成为临床医生习惯的方法。 为了适应生活、劳动等的需要,脊柱常要完成许多刚、柔或单向、多向的动作在完成这些动作时,脊柱处于“稳定”和“不稳定”的矛盾状态中。脊柱的稳定状态依靠其复杂结构的正常功能的发挥,而脊柱的不稳定状态常是由于其复杂结构未能发挥其正常功能或复杂结构本身处在非正常状态所致。 判断临床有疼痛等症状的病人的脊柱稳定还是不稳定,还可根据某些检查所见来作出推理。但确定没有疼痛等症状的病人的脊柱是否属稳定或不稳定,时比较困难的临床上确实存在不稳定的脊柱但并没有临床症状的现象,而且“不稳定”本身并没有量化标准,所以,实际上只能在有临床症状(如疼痛)的病人中确定脊柱的稳定与否。 很明显,脊柱的稳定或不稳定,并不是最后“诊断”,尚有许多要深入了解的问题。 一、肌肉对脊柱的额面、矢面平衡与稳定的作用 脊柱被稳定在一个静态平衡的功能位置或被稳定在一个能发挥良好功能的动态平衡的功能位置,肌肉是维持其平衡、稳定的重要因素。 正常情况下靠肌肉的收缩和松弛来达到脊柱的静态、动态平衡。为了完成需要的体位的平衡和稳定,肌肉随时都处在适应性变位状态中。肌肉的正常功能还有赖于支配该肌肉的神经的正常功能。另外,脊柱的关节、韧带、椎间盘等机构,不但帮照肌肉的正常功能发挥,也支持肌肉为稳定和平衡脊柱的正常功能 而所起的作用。 脊椎于直立位时,从额面看是两旁诸组肌肉对称的正常功能所 保持的中柱。当因某种原因出现两旁肌肉不对称时,即两旁肌肉失 去平衡时,则可出现侧弯,并显示多种因代偿而相继出现的异常(见 图1) 从矢状面看,脊柱前和脊柱后的肌肉所维持的脊柱的生理弧 度,也同样有其正常的生理范围。当维持脊柱生理弧度的诸组肌肉 失去平衡时,则可出现过伸、过屈或弧度消失或弧度加剧等异常。

脊柱生物力学

脊柱生物力学 1.运动节段由于脊柱得结构与功能较为复杂,在研究脊柱得生物力学时,通 常观察脊柱得某一部分,该部分由相邻两椎体及其间得软组织构成,能显示整个脊柱相似得生物力学特性得最小功能单位,其运动得叠加可构成脊柱得三维运动,称为运动节段,又称脊柱功能单位。 ●分部:通常将其分为前后两部分:前部分由两个椎体、椎间盘与后纵韧带组 成;后部分由相应得椎弓、椎间关节、横突、棘突与韧带组成。 ●前后部承载:前部得椎间盘与后部得小关节在负重及应力分布方面存在着一 种独立得、动态得关系。在侧方、前方剪应力作用、轴向压缩及屈曲运动时,前部得椎间盘就是主要得负重部位。如伴有较大得位移时,后部得小关节也承受部分载荷,在后方剪应力(背伸运动)与轴向旋转时,小关节则就是主要得负重部位。 ●功能:①运动功能,提供椎体三维空间得运动范围;②承载功能,将载荷从 颈部传到骨盆;③保护功能,保护椎管内容纳得脊髓及神经根。椎体,椎间盘及前纵韧带、后纵韧带提供脊柱得支持功能与吸收对脊柱得冲击能量。运动范围主要依靠椎间关节复合体完成。躯干及韧带保证脊柱得稳定性与维持身体姿势。 2.脊柱运动学神经与肌肉得协同作用产生脊柱得运动。脊柱作为柔软性载负 体,其运动形式就是多样得。脊柱得运动范围较大,但组成脊柱得各个节段得运动范围却较小,节段间得运动就是三维得,表现为两椎骨得角度改变与位移。脊柱得活动通常就是多个运动节段得联合运动,包括沿横轴、矢状轴与纵轴得旋转与平移。限制任何部位得活动都可增加其她部位得活动。 (1)运动特性:在脊柱运动中,椎体与椎间盘韧带、关节囊等组织相比,变形量极小,分析运动时可视为刚体,而椎间盘等其她物体被视为 塑性物体。 (2)自由度:按照刚体运动学理论,椎骨得三维运动有六个自由度即前屈/后伸、左/右侧弯与左/右旋转运动方向上得角度以及上/下、前/ 后与左/右方向得位移。其中三个为平动自由度,三个为转动自由度。 3.运动范围 (1)颈椎得活动度:颈椎就是脊柱活动度最大得部分。颈椎活动由两个部分完成:①上颈椎(枕-寰-枢复合体)得联合运动;②下颈椎(颈 2~7)得联合运动。前者以旋转运动为主,后者以屈伸运动为主。 枕-寰-枢复合体就是人体中轴骨中最复杂得关节。枕~颈1与颈1~ 颈2得关节均有伸屈运动,枕~颈1得屈伸范围为13、4°,颈1~ 颈2关节约10°,二者使枕-寰-枢复合体得屈伸范围达到23、4°。 轴性旋转只发生在颈1~颈2关节,其旋转范围可达47°,相当于 整个颈椎旋转度得40%~50%。枕-寰-枢复合体之间得平移度很小, 枕~颈1间得轴性平移约1mm,颈1~颈2 得侧向平移一般只有在 侧屈与轴性旋转时才会发生。下颈椎得屈伸活动主要发生在中段, 颈5~颈6活动度最大,侧屈与旋转运动越向下越小。整个颈椎节 段得联合运动,屈伸约145°,轴向旋转约180°,侧屈约90°。 (2)胸椎得活动度:在矢状面上,上胸段平均每节段为4°,中段为6°,下段为12°。在冠状面上,上胸段得侧屈活动范围为6°,最下节 段为9°。胸椎得轴性旋转范围自上而下逐渐减小,上胸段得活动

脊柱生物力学

脊柱生物力学 1.运动节段由于脊柱的结构和功能较为复杂,在研究脊柱的生物力学时,通 常观察脊柱的某一部分,该部分由相邻两椎体及其间的软组织构成,能显示整个脊柱相似的生物力学特性的最小功能单位,其运动的叠加可构成脊柱的三维运动,称为运动节段,又称脊柱功能单位。 ●分部:通常将其分为前后两部分:前部分由两个椎体、椎间盘和后纵韧带组 成;后部分由相应的椎弓、椎间关节、横突、棘突和韧带组成。 ●前后部承载:前部的椎间盘和后部的小关节在负重及应力分布方面存在着一 种独立的、动态的关系。在侧方、前方剪应力作用、轴向压缩及屈曲运动时,前部的椎间盘是主要的负重部位。如伴有较大的位移时,后部的小关节也承受部分载荷,在后方剪应力(背伸运动)和轴向旋转时,小关节则是主要的负重部位。 ●功能:①运动功能,提供椎体三维空间的运动范围;②承载功能,将载荷从 颈部传到骨盆;③保护功能,保护椎管内容纳的脊髓及神经根。椎体,椎间盘及前纵韧带、后纵韧带提供脊柱的支持功能和吸收对脊柱的冲击能量。运动范围主要依靠椎间关节复合体完成。躯干及韧带保证脊柱的稳定性和维持身体姿势。 2.脊柱运动学神经和肌肉的协同作用产生脊柱的运动。脊柱作为柔软性载负体, 其运动形式是多样的。脊柱的运动范围较大,但组成脊柱的各个节段的运动范围却较小,节段间的运动是三维的,表现为两椎骨的角度改变和位移。脊柱的活动通常是多个运动节段的联合运动,包括沿横轴、矢状轴和纵轴的旋转和平移。限制任何部位的活动都可增加其他部位的活动。 (1)运动特性:在脊柱运动中,椎体与椎间盘韧带、关节囊等组织相比,变形量极小,分析运动时可视为刚体,而椎间盘等其他物体被视为 塑性物体。 (2)自由度:按照刚体运动学理论,椎骨的三维运动有六个自由度即前屈/后伸、左/右侧弯和左/右旋转运动方向上的角度以及上/下、前/ 后和左/右方向的位移。其中三个为平动自由度,三个为转动自由度。 3.运动范围 (1)颈椎的活动度:颈椎是脊柱活动度最大的部分。颈椎活动由两个部分完成:①上颈椎(枕-寰-枢复合体)的联合运动;②下颈椎(颈 2~7)的联合运动。前者以旋转运动为主,后者以屈伸运动为主。 枕-寰-枢复合体是人体中轴骨中最复杂的关节。枕~颈1和颈1~颈2 的关节均有伸屈运动,枕~颈1的屈伸范围为13.4°,颈1~颈2关 节约10°,二者使枕-寰-枢复合体的屈伸范围达到23.4°。轴性旋 转只发生在颈1~颈2关节,其旋转范围可达47°,相当于整个颈 椎旋转度的40%~50%。枕-寰-枢复合体之间的平移度很小,枕~颈 1间的轴性平移约1mm,颈1~颈2 的侧向平移一般只有在侧屈和 轴性旋转时才会发生。下颈椎的屈伸活动主要发生在中段,颈5~ 颈6活动度最大,侧屈与旋转运动越向下越小。整个颈椎节段的联 合运动,屈伸约145°,轴向旋转约180°,侧屈约90°。 (2)胸椎的活动度:在矢状面上,上胸段平均每节段为4°,中段为6°,下段为12°。在冠状面上,上胸段的侧屈活动范围为6°,最下节 段为9°。胸椎的轴性旋转范围自上而下逐渐减小,上胸段的活动

运动生物力学复习资料(带答案)

运动生物力学复习资料(本科) 绪论 1名词解释: 运动生物力学的概念:研究体育运动中人体及器械机械运动规律及应用的科学。 2填空题: (1)人体运动可以描述为:在(神经系统)控制下,以(肌肉收缩)为动力,以关节为(支点)、以骨骼为(杠杆)的机械运动。 (2)运动生物力学的测量方法可以分为:(运动学测量)、(动力学测量)、(人体测量)、以及(肌电图测量)。 (3)运动学测量参数主要包括肢体的角(位移)、角(速度)、角(加速度)等;动力学测量参数主要界定在(力的测量)方面;人体测量是用来测量人体环节的(长度)、(围度)以及(惯性参数),如质量、转动惯量;肌电图测量实际上是测量(肌肉收缩)时的神经支配特性。 2 简答题: (1)运动生物力学研究任务主要有哪些? 答案要点:一方面,利用力学原理和各种科学方法,结合运动解剖学和运动生理学等原理对运动进行综合评定,得出人体运动的内在联系及基本规律,确定不同运动项目运动行为的不同特点。另一方面,研究体育运动对人体有关器系结构及机能的反作用。 其主要目的是为提高竞技体育成绩和增强人类体质服务的,并从中丰富和完善自身的理论和体系。具体如下: 第一,研究人体身体结构和机能的生物力学特性。 第二,研究各项动作技术,揭示动作技术原理,建立合理的动作技术模式来指导教学和训练。 第三,进行动作技术诊断,制定最佳运动技术方案。 第四,为探索预防运动创伤和康复手段提供力学依据。 第五,为设计和改进运动器械提供依据(包括鞋和服装)。 第六,为设计和创新高难度动作提供生物力学依据。 第七,为全民健身服务(扁平足、糖尿病足、脊柱生物力学)。

第一章人体运动实用力学基础 1名词解释: 质点:忽略大小、形状和内部结构而被视为有质量而无尺寸的几何点。 刚体:相互间距离始终保持不变的质点系组成的连续体。 平衡:物体相对于某一惯性参考系(地面可近似地看成是惯性参考系)保持静止或作匀速直线运动的状态。 失重:动态支撑反作用力小于体重的现象。 超重:动态支撑反作用力大于体重, 参考系:描述物体运动时作为参考的物体或物体群。 惯性参考系(静系):相对于地球静止或作匀速直线运动的参考系。 坐标系:为了定量的描述物体的运动,需要在参考系上标定尺度,标定了尺度的参考系即为坐标系。常用的是直角坐标系,又分为一维、二维、三维坐标系。 稳定平衡:人体在外力作用下,偏离平衡位置后,当外力撤除时,人体自然回复到平衡位置,而不需要通过肌肉收缩恢复平衡。特点:平衡时重心最低。 不稳定平衡:物体稍偏离平衡位置后,当去掉破坏平衡的力时,不能再恢复到原来的平衡位置。其特点是当物体偏离平衡位置时,其重心降低。 随遇平衡:人体在外力作用下,偏离平衡位置,当外力撤除时,人体既不回到原来的平衡位置,也不继续偏离原位置,而是在新的位置上保持平衡。特点:重心高度不变。有限度的稳定平衡:在一定的范围内,是稳定平衡,但超出范围时,偏离平衡位置则会失去平衡,成为不稳定平衡的情况。 2填空题: (1)运动是绝对的,但运动的描述是(相对的),因此在描述一个或物体的运动时,必须说明它相对于哪个物体才有明确的意义,称此物体为(参照物)。 (2)运动员沿400米跑道运动一周,其位移是(0 )米,所走过的路程是(400 )米。 (3)人体蹬起时,动态支撑反作用力大于体重,称为(超重)现象,下蹲时,动态支撑反作用力小于体重,称为(失重)现象。 (4)忽略空气阻力时,铅球从运动员手中抛出后只受到(重力)作用,这种斜抛运动可看作是由水平方向向上的(匀速直线)运动和竖直方向上的(匀变速度)运动的合运动。 (5)落地缓冲动作的原理,是因为(延长)了力的作用时间,因而(减少)了外

运动生物力学重点

运动生物力学 第一章 运动生物力学是生物力学的一个重要分支,是研究体育运动中人体机械运动规律的科学。它是将体育运动中人体(或器械)复杂的运动形式及变化规律结合力学和生物学的原理进行研究的一门科学。 运动生物力学的任务: 1改进运动技术。 2改善训练手段。 3改革运动器材。 4预防运动损伤。 # 5运动康复与健康促进。 运动生物力学的研究方法:分析法测量法 测量方法有:运动学测量、动力学测量、人体测量及肌电图测量。 运动学测量参数---肢体的(角)位移、(角)速度、(角)加速度等。 运动学参数---主要界定在力的测量。 人体测量参数----人体环节的长度、围度及惯性参数如质量、转动惯量。 肌电图参数----测量肌肉收缩时的神经支配特性。 20世纪生物力学的发展主要体现在3个方面: , 1生物力学发展成为大学的专业课程。 2生物力学研究结果逐渐用于实践,如医学工业体育等方面。 3生物力学研究人类和动物运动及运动对肌肉—骨骼系统的影响。 第二章 动作结构运动时所组成的各动作间相互联系、相互作用的方式或顺序称为动作结构。 人体动作结构特征 1.运动学特征---时间特征、空间特征、时空特征。 2.动力学特征---力的特征、能量特征、惯性特征。 } 动作系统-不同运动项目中的动作技术,都是由若干单一动作组成的。大量单一动作按一定规律组成为成套的动作技术,这些成套的动作技术称为动作系统。

动作系统的分类及特点 1.周期性动作系统 特点---反复性和连贯性、节律性、交互性、惯性作用。 2.非周期性动作系统 特点---独立性、复杂性和稳定性。 3.混合性动作系统。 特点---两种动作成分有相互制约性、两种动作的组合部分是动作系统的关键部分。 ] 不固定动作系统 特点---复杂多变性、固定于不固定相结合。 人体基本运动动作形式 1.上肢基本运动动作形式: 推拉鞭打 2.下肢基本运动动作形式: 缓冲蹬伸鞭打 3.全身基本运动动作形式: 摆动躯干扭转相向运动 环节--相邻关节之间的部分称环节; 单生物运动链两个相邻骨环节及其之间的可动连接构成,包括相邻两个环节和连结这两个环节之间的关节 % 多生物运动链:两个或两个以上生物运动链串联而成 开放链:末端为自由环节的生物运动链,该自由环节又称末端环节。 闭合链:无自由环节的生物运动链 自由度:物体在空间运动,描述物体运动状态的独立变量的个数称其为物体运动的自由度。自由刚体有6个自由度。 骨杠杆P30图 1.平衡杠杆 2.省力杠杆 3.速度杠杆 环节质量-人体的环节质量是环节含有物质多少的重量; 环节质心即是环节的质量中心。 : 人体质心:保持基本立姿的人体,质心位置约为第二至第三骶椎所在的平面上。 人体重心测量方法:平衡板法三角板法 质量:物体含有物质的多少。 转动惯量是量度转动物体惯性大小的物理量,用以描述物体保持原有转动状态的能力。 平行轴定理---物体对某转动轴的转动惯量,等于物体对于通过其质心且与该轴平行轴的转动惯量加上物体的质量

骶髂关节的解剖及生物力学

骶髂关节的解剖及生物力学研究 概述当人体处于直立位时.人体上部躯体的负载主要由骶骨承受.并经其自双侧骶髂关节迅速分散至双下肢。骶髂关节参与了下腰痛及退变性疾患中的许多病理过程。从解剖上看,骶髂关节具有关节所有的结构。是活动关节.较小的活动度是适应生活中减少某些应力的需要;从功能上看,它是微动关节.活动有限.从而有助于保持骶骨必要的稳定。 这是由骶髂关节所处的特殊的解剖位置及其骨与韧带的特殊解剖结构决定的。 2骶髂关节的特殊解剖结构骨盆环的后方由数个复杂的关节构成:骶髂关节、轴向骶髂关节(axial sacroiliac joint)、副骶髂关节(accessory sacroillac joint).骶骨呈楔形.尖端自前向后、自上向下.以凹面紧密嵌入髂骨的凸面。骶髂关节外形变异很大,有耳状、C形或钝角形,不同性别及左、右关节面间有差异.骶髂关节角(横断面关节轴向与横轴间夹角)83.0°(54°~124°)X(min~max)下同;骶髂骨间角(横断面关节后方骶、髂骨间夹角)35.4°(0°~75°)。此两角及关节腔的宽度在同一个体的不同平面差异较大,但左右两侧及性别间相差不显著。骶髂关节的结构很特殊t①骶髂关节面的骶骨侧为透明软骨,髂骨侧为纤维软骨,二者厚度比为3:1。髂骨侧软骨的退变重于骶骨侧,中央区重于两端;②骶髂关节逐渐由尾侧、前方的滑膜性关节向头侧、后方移行为韧带联合性关节,二者间无明显分界,软骨面渐呈退行样变而模糊不清。2.1骶髂关节特殊的骨性解剖结构在胚胎发育过程中,五个骶骨融合为一体以承受体重的机械应力。从进化的角度看,下肢承担的应力越大.参与构成关节的骶骨数就越多。骶髂关节的表面有软骨覆盖的凸起和凹陷,足月胎儿的骶髂关节是光滑、平整的,且两侧关节面相互反向成形,而非相互吻合。随着年龄增加.关节内突起与凹陷增加并发生相互交锁,男性比女性更明显。30岁后关节开始强硬并影响运动,使骶髂关节活动受限。骶骨面凸起主要位于头侧和尾侧,其最大平均高度2 mm(足月胎儿)~11 mm(50岁以上)。髂骨结节楔形突入骶骨侧块,骶髂关节骨间韧带附着于此,使此处牢固固定,而女性的骶骨的凹陷和髂骨的凸出皆呈以此结节为圆心的圆弧形分布,提示骶髂关节沿此轴旋转运动.这与以往关于骶髂关节运动轴的研究结果相符。这种凹凸不平究竟是正常生理表现,还是病理变化的结果,争议较大。有人认为它是骶髂关节适应非病理性应力的结果,男性与女性的差异可能是由于妇女怀孕的重负和重心的不同造成的,籍此增强关节的稳定性。这种不规则会被误认为是骨赘。2.2骶髂关节特殊的韧带性解剖结构骶髂关节的韧带结构显示适应于强大或长期作用的应力,是固定和限制关节活动的重要因素。髂腰韧带连接骨盆和脊柱,骨间韧带和背侧韧带均紧密附着于关节,而骶结节韧带和骶棘韧带具有阻止骶骨向腹倒倾斜的作用。骶髂关节囊内上韧带(superior intracapsular ligament)位于髂骨后上方至骶骨前下方.可能是骨间韧带在骶髂关节前方的延伸.会因关节退化性或病理性改变而缺如,或与骨间韧带融合。骶髂关节囊内上韧带具有防止骶骨相对于髂骨下沉并向腹侧旋转运动的作用。有研究表明:所有邻近骶髂关节的肌肉均有纤维扩张部折入其前、后的韧带,加强关节囊及韧带的力量,

相关主题
文本预览
相关文档 最新文档