当前位置:文档之家› TC4钛合金激光焊接接头高温热处理后的显微组织研究_林海凡

TC4钛合金激光焊接接头高温热处理后的显微组织研究_林海凡

TC4钛合金激光焊接接头高温热处理后的显微组织研究_林海凡
TC4钛合金激光焊接接头高温热处理后的显微组织研究_林海凡

钛合金热处理

第十三章有色金属及合金 内容提要: 有色金属的产量和用量不如黑色金属多,但由于其具有许多优良的特性,如特殊的电、磁、热性能,耐蚀性能及高的比强度(强度与密度之比)等,已成为现代工业中不可缺少的金属材料。 1.铝及铝合金; 2.钛及钛合金; 3.铜及铜合金; 4.轴承合金。 基本要求: 掌握和了解各种有色金属的牌号、成分、性能和用途。 13.1铝及铝合金 13.1.1铅及铝合金的性能特点及分类编号 纯铝:纯铝具有银白色金属光泽,密度小(2.72 ),熔点低(660.4℃), 导电、导热性能优良。 耐大气腐蚀,易于加工成形。 具有面心立方晶格,无同素异构转变,无磁性。 1 铝合金及其特点 铝合金常加入的元素主要有Cu、Mn、Si、Mg、Zn等,此外还有Cr、Ni、Ti、Zr 等辅加元素。 ①比强度高(>>高强钢)。可用于轻结构件,尤其航空。 ②突出理化性能。导电、抗大气腐蚀。 ③良好加工性。高塑性、易冷成形;某些合金铸造性能好,宜作压铸件。 2 铝合金分类及分类编号 13.1.2铝合金的强化 1 形变强化 2沉淀强化 3 固溶强化和时效强化: 13.1.3变形铝合金 变形铝及铝合金牌号表示方法:根据国标规定,变形铝及铝合金可直接引用国际四位数字体系牌号或采用国标规定的四位字符牌号。GB 3190-82中的旧牌号仍可继续使用,表示方法为: ?防锈铝合金:LF+序号 ?硬铝合金: LY +序号 ?超硬铝合金:LC +序号 ?锻铝合金: LD +序号 常用变形铝合金 1 防锈铝合金:主要是Al-Mn和Al-Mg系合金。 Mn和Mg主要作用是提高抗蚀能力和塑性,并起固溶强化作用。 防锈铝合金锻造退火后组织为单相固溶体,抗蚀性、焊接性能好,易于变形加工,但切削性能差。不能进行热处理强化,常利用加工硬化提高其强度。常用的Al-Mn系合金有 LF21 ( 3A21 ),其抗蚀性和强度高于纯铝,用于制造油罐、油箱、管道、铆钉等需要弯曲、冲压加工的零件。常用的Al-Mg系合金有 LF5( 5A05 ),其密度比纯铝小,强度比Al-Mn合金高,在航空工业中得到广泛应用,如制造管道、容器、铆钉及承受中等载荷的零件。

TC4钎焊

[转帖]TC4钛合金真空钎焊的研究 TC4钛合金真空钎焊的研究 吴欣康慧朱颖曲平 《航空制造技术》 [摘要]用钛基钎料钎焊的钛合金焊接接头强度较高,因而具有一定的应用前景。本课题采用Ti-Zr-Cu-Ni钎料并加入适当的合金元素,成功地应用于TC4合金的钎焊,钎缝成形良好,提高了焊接接头的性能。 [hide=2]钛合金具有比强度和比刚度高、耐腐蚀性好以及高温机械性能优良等优点,因而被广泛应用于航空、航天和其他工业领域。在一些钛合金复杂结构、薄壁精密结构的制造工艺中,由于钎焊连接具有独特的优势而愈来愈受到重视,对钛合金用钎料的研究也逐渐成为钎焊领域研究的热点之一。钛合金钎焊用钎料中常用的主要有银基钎料、铝基钎料和钛基钎料,银基钎料和铝基钎料虽有良好的润湿性和一定的机械性能,但焊缝与母材相比,其机械性能和化学性能差距较大;钛基钎料与钛合金的冶金相容性好,可以获得高强度的接头,是钎焊钛合金的优质钎料,但接头的脆性较大。基于此,本课题选用较为常用的Ti-Zr-Cu-Ni系钎料钎焊TC4,并在改善脆性方面开展了一些研究工作。由于在Ti-Zr-Cu-Ni系钎料中的Cu、Ni元素对钛合金来说属于活性的β稳定元素,能使钛合金的共析速度加快,在共析转变后会生成脆性的金属间化合物(γ),从而使接头性能降低,因此,在Ti-Zr-Cu-Ni系钎料中加入了能降低共析转变速度的惰性的β稳定元素Co,以改善钎料的性能,从而提高钎焊接头的性能。 1 试验材料和方法 1 1 试验母材 试验用母材为2mm厚的TC4板材。 1 2 试验用钎料 要得到组织和性能满意的钎焊接头,钎料必须能较好地润湿母材并能填满接头间隙。此外,TC4的相变温度为960℃左右,所以要求钎料的焊接温度必须低于此温度,否则将引起母材β晶粒长大,从而影响材料的性能。 本试验配置了两组钛基钎料,其中,1#钎料为钎焊钛合金时常用的钛基钎料,2#钎料以 Ti-Zr-Cu-Ni为基并加入了合金元素Co,其成分如表2所示。两组钎料均为真空熔炼而成。 1 3 试验方法 对所配置的钎料利用差热分析进行熔点测试。测试结果表明,1#钎料熔点约为820℃,2#钎料熔点约为910℃,因此确定焊接规范为1#钎料880℃/15min,2#钎料930℃/15min,焊接过程中真空度应优于2×10 -3 Pa。采用厚度为2mm的TC4板材(尺寸 30mm×10mm)在真空钎焊炉内进行搭接和对接试样的钎焊,焊前用不锈钢夹具对试样进行装配和固定。焊接完成后,对钎焊搭接试样进行抗剪试验;对接试样进行抗拉和冲击试验,并用

激光焊接的工艺参数及特性分析讲解

激光焊接的工艺参数及特性分析 一、激光焊接的工艺参数:1、功率密度。功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/cm2。2、激光脉冲波形。激光脉冲波形在激光焊接 一、激光焊接的工艺参数: 1、功率密度。功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/cm2。 2、激光脉冲波形。激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。 3、激光脉冲宽度。脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。 4、离焦量对焊接质量的影响。激光焊接通常需要一定的离焦,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离做文章一相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。负离焦时,可获得更大的熔深,这与熔池的形成过程有关。实验表明,激光加热50~200us材料开始熔化,形成液相金属并出现问分汽化,形成市压蒸汽,并以极高的速度喷射,发出耀眼的白光。与此同时,高浓度汽体使液相金属运动至熔池边缘,在熔池中心形成凹陷。当负离焦时,材料内部功率密度比表面还高,易形成更强的熔化、汽化,使光能向材料更深处传递。所以在实际应用中,当要求熔深较大时,采用负离焦;焊接薄材料时,宜用正离焦。 二、激光焊接工艺方法: 1、片与片间的焊接。包括对焊、端焊、中心穿透熔化焊、中心穿孔熔化焊等4种工艺方法。

第四章-钛合金的相变及热处理

第四章-钛合金的相变及热处理

第4章钛合金的相变及热处理 可以利用钛合金相变诱发的超塑性进行钛合金的固态焊接,接头强度接近基体强度。 4.1 同素异晶转变 1.高纯钛的β相变点为88 2.5℃,对成分十分敏感。在882.5℃发生同素异晶转变:α(密排六方)→β(体心立方),α相与β相完全符合布拉格的取向关系。 2.扫描电镜的取向成像附件技术(Orientation-Imaging Microscopy , OIM) 3.α/β界面相是一种真实存在的相,不稳定,在受热情况下发生明显变化,严重影响合金的力学性能。 4.纯钛的β→α转变的过程容易进行,相变是以扩散方式完成的,相变阻力和所需要的过冷度均很小。冷却速度大于每秒200℃时,以无扩散发生马氏体转变,试样表面出现浮凸,显微组织中出现针状α′。转变温度会随所含合金元素的性质和数量的不同而不同。 5.钛和钛合金的同素异晶转变具有下列特点: (1)新相和母相存在严格的取向关系 (2)由于β相中原子扩散系数大,钛合金的加热温度超过相变点后,β相长大倾向特别大,极易形成粗大晶粒。 (3)钛及钛合金在β相区加热造成的粗大晶粒,不像铁那样,利用同素异晶转变进行重结晶使晶粒细化。钛及钛合金只有经过适当的形变再结晶消除粗晶组织。 4.2 β相在冷却时的转变 冷却速度在410℃/s以上时,只发生马氏体转变;冷速在410~20℃/s时,发生块状转变;冷却继续降低,将以扩散型转变为主。 1.β相在快冷过程中的转变 钛合金自高温快速冷却时,视合金成分不同,β相可以转变成马氏体α′或α"、ω或过冷β等亚稳定相。 (1)马氏体相变 ①在快速冷却过程中,由于β相析出α相的过程来不及进行,但是β相的晶体结构,不易为冷却所抑制,仍然发生了改变。这种原始β相的成分未发生变化,但晶体结构发生了变化的过饱和固溶体是马氏体。 ②如果合金的溶度高,马氏体转变点M S降低至室温一下,β相将被冻结到室温,这种β相称过冷β相或残留β相。 ③若β相稳定元素含量少,转变阻力小,β相由体心立方晶格直接转变为密排六方晶格,这种具有六方晶格的过饱和固溶体称六方马氏体,以α′表示。 ④若β相稳定元素含量高,晶格转变阻力大,不能直接转变为六方晶格,只能转变为斜方晶格,这种具有斜方晶格的马氏体称斜方马氏体,以α′′表示。 ⑤马氏体相变是一个切变相变,在转变时,β相中的原子作集体的、有规律的进程迁移,迁移距离较大时形成六方α′相,迁移距离较小时形成斜方α′′相。 ⑥马氏体相变开始温度M S ;马氏体相变终了温度M f 。 ⑦钛合金中加入Al、Sn、Zr将扩大α相区,使β相变点升高;V、Mo、Mn、Fe、Cr、Cu、Si将缩小α相区(扩大β相区),使β相变点降低。 ⑧β相中原子扩散系数很大,钛合金的加热温度一旦超过β相变点,β相将快速长大成粗晶组织,即β脆性,故钛合金淬火的加热温度一般均低于其β相变点。

钎焊在航空工业中的应用

钎焊在航空工业中的应用 航空发动机是钎焊应用最广泛的领域之一。航空发动机推力大,燃油温度高,使用的结构材料多为不锈钢、钛合金和铝、钛含量较高的高温合金,特别是高温合金,它们的熔焊性能一般很差,因此主要依靠真空或气体保护钎焊进行连接的。例如:发动机导流叶片、高压涡轮导向器叶片、转子叶片、整流器、扩压器、燃烧室燃油喷嘴、高压压气机冠环组件、燃烧室头部转接段、发动机下舱、机舱加热器、燃烧室内外衬套、高压涡轮轴承座、钛合金栅格翼航空发动机轴承机匣尾喷管涡轮、封严和换热用蜂窝结构等等都是采用真空炉中钎焊方法制造的。燃油总管、动力轴、压气机静子环、液压和气压导管等大都采用气体保护感应加热钎焊。仅有少数航空发动机构件采用其他钎焊方法连接,例如:某些导管(包括小加力燃油总管)等,采用了火焰钎焊。铝与不锈钢导管连接采用钎剂保护的炉中钎焊。 1.压气机静子环 航空发动机压气机静子环是发动机的关键部件。JT3D-3B发动机已用于波音707客机和B-52重型轰炸机上,其压气机静子环(4~7级为低压、9~14级为高压)材料为AISI410不锈钢(1Cr13),叶片与内环的连接都采用炉中氢气保护钎焊工艺。4~7级低压静子环采用AMS-4772A银钎料箔带,其名义成分为Ag54Cu40Zn5Ni1,钎焊温度为950℃±5℃。9~14级高压静子环采用厚度为0.2mm的BAu-4金镍材料,其名义成分为Au82Ni18,钎焊温度为1010℃。上述箔带钎料与内环一样冲有型孔,装配时夹在叶片与内环之间。钎焊在林特贝开(Lindbeky)连续辊式氢气炉中进行,该炉体长24m,宽1.6m,高约0.6m,共分6个区,用来批量生产静子环。干氢的纯度为99.94%以上。对一个高压静子环,钎焊周期约4h10min。为使钎焊前的组合件处于无应力状态,组合件采用了刚性垫板。 2.燃油总管

激光焊接机的主要特性及工作原理(精)

激光焊接机的主要特性及工作原理 激光焊接是激光材料加工技术应用的重要方面之一,又常称为激光焊机、镭射焊机,按其工作方式常可分为激光模具烧焊机(手动焊接机)、自动激光焊接机、激光点焊机、光纤传输激光焊接机,光焊接是利用高能量的激光脉冲对材料进行微小区域内的局部加热,激光辐射的能量通过热传导向材料的内部扩散,将材料熔化后形成特定熔池以达到焊接的目的。 一、激光焊接机的主要特性 20世纪70年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。 高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。获得了以小孔效应为理论基础的深熔焊接,在机械、汽车、钢铁等工业领域获得了日益广泛的应用。 激光焊接与其它焊接技术相比, 激光焊接的主要优点是: 1、速度快、深度大、变形小。 2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。 3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。 4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。 5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。 6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。 7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件 二、激光焊接机的种类 激光焊接机又常称为激光焊机、雷射焊接机、镭射焊机、激光冷焊机、激光氩焊机、激光焊接设备等。按其工作方式常可分为激光模具烧焊机(手动激光焊接设备)、自动激光焊接机、激光点焊机、光纤传输激光焊接机、振镜焊接机、手持式焊接机等,专用激光焊接设备有传感器焊机、矽钢片激光焊接设备、键盘激光焊接设备。 三、激光焊接机的工作原理 激光焊接是利用高能量的激光脉冲对材料进行微小区域内的局部加热,激光辐射的能量通过热传导向材料的内部扩散,将材料熔化后形成特定熔池。它是一种新型的焊接方式,主要针对薄壁材料、精密零件的焊接,可实现点焊、对接焊、叠焊、密封焊等,深宽比高,焊缝宽度小,热影响区小、变形小,焊接速度快,焊缝平整、美观,焊后无需处理或只需简单处理,焊缝质量高,无气孔,可精确控制,聚焦光点小,定位精度高,易实现自动化。

不锈钢真空钎焊的工艺要点

不锈钢真空钎焊的工艺要点 1 钎焊接头的设计: 设计钎焊接头时,应考虑接头的强度、组合件的定位方法、钎料置放的位置、接头间隙等诸多因素 1.1钎焊接头连接方式: 钎焊接头有对接和搭接两种方式。 采用对接接头,由于钎料和钎缝的强度一般比母材低,因而对接接头不能保证接头具有与母材相等的承载能力,因此钎焊接头大多采用搭接形式。通过改变搭接长度提高钎焊接头的强度。 对于采用高强度铜基、镍基钎料钎焊的搭接接头,搭接长度通常取为薄壁件厚度的2~3倍。由于工件的形状不同,搭接接头的具体形状也各不相同。对于薄壁件而言,常采用锁边形式的搭接方式,提高钎焊接头的强度。 1.2 接头的定位:组合件的定位是影响钎焊质量的重要因素。 定位的方法主要有依靠自重、紧配合、毛刺定位、点焊定位、(氩弧焊)涨口定位、夹具定位等。 列管式EGR冷却器将采用涨口定位、点焊定位、焊接变位器等多种定位方法 1.3 钎料的置放 钎料置放的原则是应尽可能利用钎料的重力作用和钎缝的毛细作用来促进钎料填满间隙。EGR冷却器的钎焊将使用镍基钎料膏状和非晶态薄带两种。膏状钎料应直接涂在钎缝处,而非晶态薄带钎料标准有0.0254mm 0.0381mm等不同的厚度。 按工件要求加工成不同的形状,置于钎缝处。 总之镍基钎料合理的使用对我们来说还要做很多工作, 比如钎料表面处理、膏剂的涂覆方法、钎料用量等诸多方面,根据实际要求进一步完善。1.4 接头的间隙: 钎焊时是依靠毛细作用使钎料填满间隙。 正确地选择接头间隙很大程度上影响钎缝的致密性和强度。不同的钎料对接头间隙的要求也有所不同。镍基钎料要求接头间隙为0.02~0.10mm,比其它钎料相比,这种钎料要求接头间隙小的特点应引起足够的关注。

典型钛及钛合金的组织与性能综述

典型钛及钛合金的组织 与性能综述 Document number:BGCG-0857-BTDO-0089-2022

典型钛合金的组织与性能文献查阅总结 1.α型钛合金 α型钛合金中又分为全α型钛合金和近α型钛合金,工业纯钛属于α型钛合金,此外一般α合金含有6%左右的Al和少量中性元素,退火后几乎全部是α相,典型合金包括TA1~TA7合金等;近α型钛合金中除了含有Al和少量中性元素外,还有少量(不超过4%)的稳定元素,如 TA15、TA16、TA17等。 工业纯钛 工业纯钛按杂质元素含量分为TA1、TA1ELI、TA1-1、TA2、TA2ELI、TA3、TA3ELI、TA4、TA4ELI9个牌号,相变点大约为900℃。工业纯钛具有高塑性、适当的强度、良好地耐蚀性以及优良的焊接性能等特点,广泛应用于化工设备、滨海发电装置、海水淡化装置、舰船零部件等,其冷热加工性能好,可生产各种规格的板材、棒材、型材、带材、管材和丝材,一般在退火状态下交货使用。典型的工业纯钛显微组织如图1-3所示:

图1 TA1板材650℃/1h退火态组织:等轴α+少量晶间β 图2 TA2大规格棒材600℃/1h退火态组织:等轴α 图3 TA3板材800℃/1h退火态组织:等轴α+含有针状α转变的β TA1钛管的组织与性能[] []庞继明,李明利,李明强等. 退火温度对TA1钛管材组织和性能的影响[J]. 钛工业进展. 2011, 28(2): 26-28

研究方法:TA1铸锭经过2500t水压机开坯锻造和1600t卧式挤压机热挤压,最终获得φ45×7mm的管坯。管坯经两辊和三辊管材冷轧机轧制成φ12×的管材。将管材置于真空热处理炉中,分别加热至450,475,490,500,550,600,650,700℃,保温90min,随炉冷却。 a)TA1钛管的显微组织 图1为冷加工态及不同的温度热处理后的TA1管材横向显微组织。可以看出,冷加工态的TA1管材组织混乱且有部分晶粒破碎不完全;700℃下的组织已完全再结晶、等轴化,与650℃的相比晶粒已明显长大。在相同的保温时间里,随着退火温度的提升,再结晶晶粒逐渐粗化。

激光焊接的特点

激光焊接的特点 一、激光焊接的主要特性 激光焊接是激光材料加工技术应用的重要方面之一。20世纪70年代主要用于焊接薄 壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传 导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。 高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。获得了以小孔效 应为理论基础的深熔焊接,在机械、汽车、钢铁等工业领域获得了日益广泛的应用。与 其它焊接技术相比,激光焊接的主要优点是: 1、速度快、深度大、变形小。 2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场, 光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透 明的材料进行焊接。 3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。 4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。 5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于 大批量自动化生产的微、小型工件的组焊中。 6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。尤其是近 几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的 推广和应用。 7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为 更精密的焊接提供了条件。 但是,激光焊接也存在着一定的局限性: 1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。这是因为激 光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定位精度达 不到要求,很容易造成焊接缺憾。 2、激光器及其相关系统的成本较高,一次性投资较大。 二、激光焊接热传导

激光拼焊板技术简介激光拼焊特点及应用

激光拼焊板简介及特点及应用什么是激光拼焊板? 拼焊板是将几块没有同材质、没有同厚度、没有同涂层的钢材焊接成一块整体板,以满足零部件对材料性能的没有同要求。激光焊接凭着多项显着的优点,非常适合用于消耗拼焊板。 激光拼焊板简介--技术的发展 传统上汽车车身零件有两种成形方法:分离成形战整体成形。其中,分离成形方法是利用没有同的压机分别成形单个零件,然后将各个零件焊接起来组成目标部件。这种方法虽然提下了材料选择的灵活性,但同时也增加了冲压战加工本钱、装配本钱以及形状配合问题,并且由于点焊时材料的重迭额外增加了车身的重量。 整体成形方法则是在一台压机上将一块整体板同时成形几个零件。从车身结构设计的观点来看,每个车身零件具有没有同的厚度战抗腐蚀性能要求,假如是单一板成形,必须对所有零部件的材料采取相同的等级、镀层类型战材料厚度,导致对某些零件的选材裕度过大,从而增加了车身的重量,提下了本钱,并且还会增大成形易度。这是整体成形方法与分离成形方法相比的一大缺点。 为了降低车身重量、提下车身的装配精度、增加车身的刚度、降低汽车车身制造过程中的冲压战装配本钱,减少车身零件的数目同时将其整体化是非常必要的。因而,一种同时克服传统分离成形方法战整体成形方法的缺点的消耗形式――拼焊板冲压成形发展起来了。 激光拼焊板简介-技术特点 以车门内板为例:为了保证功能的需要,车门内板的主体必须有必然的柔性,而门板的前、后部需要有必然的强度。假如采取传统的冲压成形方法就需要另外设计增强板,而采取拼焊技术,可先将三块没有同厚度的钢板拼焊成一块整板,便可冲压成形。

激光拼焊板技术是基于成生的激光焊接技术发展起来的现代加工工艺技术。激光焊接的下能密度、无填料、无搭接、深熔、速度快等特点,使得激光拼焊板技术具有以下特点:焊缝处的热应变值较低,热影响区小,通过激光束的聚焦给焊接边缘提供需要的下能量,聚焦点的直径可以达到零点几个毫米,保留杰出的材料成形性能;焊缝较狭窄且平整,消除成形过程的没有利影响,避免了破坏工具、模具的危险;焊接消耗效率下,能够真现下度自动化。 激光拼焊板消耗装备首要有:传送装置、激光焊接装备、机械手、在线无损检测装备等。一般根据产量的没有同,可以采取没有同的装备组合。 激光焊接的首要工艺流程:卷料开平→落料→激光焊接→冲窝(假如需要)→堆垛包装激光拼焊板简介-技术上风 采取激光拼焊板可以给汽车制造业带来巨大的经济效益,如车身装配中的大量点焊,把两个焊头夹在工件边缘上进行焊接,凸缘宽度需要16mm,而激光拼焊板无需搭接,点焊改为激光拼焊技术可以节省钢材,节省的用量视采取拼焊板的数量而定;用传统点焊焊接两片0.8mm的钢板冲压件,平均是20点/min,焊距是25mm,速度则为0.5m/min,这会耗费相当的时间,采取激光拼焊板替代点焊工艺后所需要的时间可以得到大量节省、焊接质量得到质的提下。 零件数量的减少,以及随之而来的消耗装备战制造工艺简化,大大提下了消耗效率,降低整车制造及装配本钱;由于产品的没有同零件在成形前即通过激光连气儿焊接工艺焊接在一起,因而提下了产品的精度,大大降低了零部件的制造及装配公差;通过部件的优化减轻了重量,从而降低油耗,处于环保时代,这一点非常重要;由于没有再需要增强板,也没有搭接接缝,大大提下了装配件的抗腐蚀性能;通过消除搭接提下部件的耐腐蚀能力,大大减少了密封措施的使用;通过对材料厚度以及质量的严格筛选,在材料强度战抗冲击

钛及钛合金的分类

钛及钛合金的分类 市场供货的钛产品主要有工业纯钛和钛合金两大类: 一.工业纯钛:钛属于多晶型金属,在低于882℃为a晶型,原子结构呈密排六方晶格,从882℃至熔点都是B晶型,呈体心立方晶格。工业纯钛在金相组织上呈现a相,如果退火完全的话,是大小基本相等等轴状单项晶格。由于存在着杂质,所以工业纯钛中也存在着少量的B相。基本上是沿着晶界分布。 工业纯钛按GB/T3620.1—2007新标准共有九个牌号,TA1类型的有三个,TA2—TA4每个类型的各有两个,它们的差别就是纯度的不同。从表中我们可以看出,从TA1—TA4每个牌号都有一个后缀带ELI的牌号,这个ELI是英文低间隙元素的缩写,也就是高纯度的意思。由于Fe,C, N, H, O在a—Ti 中是以间隙元素存在的,它们的含量多少对工业纯钛的耐腐蚀性能以及力学性能产生很大的影响,C,N,O固溶于钛中可以使钛的晶格产生很大的畸变,使钛的被强烈的强化和脆化。这些杂质的存在是生产过程中由生产原料带入的,主要是海绵钛的质量。要是想生产高纯度的工业纯钛钛锭,就得使用高纯度的海绵钛。在标准中,带ELI的牌号在这6个元素含量的最高值均低于不带ELI的牌号。这些标准的修改是参照国际上或者说是西方国家的标准(我们国家的标准正在努力向西方国家靠拢,因为我们国家的很多基础工业还是比他们落后一些,很多老标准都是沿袭前苏联的),特别是在杂质的含量以及室温力学性能上各牌号的指标和国际上,以及西方国家基本上保持一致。这个新标准主要是参照ISO(国际标准)外科植入物和美国ASTM材料标准(B265, B338, B348, B381, B861, B862, B863这七个标准)。并且与ISO和美国的ASTM标准相对应,例如TA1对应Gr1, TA2对应Gr2, TA3对应Gr3, TA4对应Gr4。这样有利于各个行业在选材和应用上明晰各国标准的参照,也有利于在技术和商贸上与国际上的交流。 表1 钛及钛合金牌号和化学成分

激光塑料焊接优势

塑料激光焊接工艺 1.激光的波长 在金属材料的激光焊接工艺中,一般采用YAG或者CO2激光作为光源,塑料焊接也不例外。随着半导体材料工业的快速发展,半导体激光作为光源也渐渐得到了应用。 三者之中,由于易于获得较大功率,前两者在传统的材料加工工业中的使用较为普遍;而由于塑料激光焊接对光源功率大小要求不高,但对可控性和易操作性要求较高,因此半导体激光在塑料焊接中也很有用武之地。 CO2、Nd:YAG和半导体激光三种光源的波长、最大功率、最小聚焦直径等参数的典型值如下所列: 1.CO2激光:波长较长,为10.6微米,属远红外波段,一般情况下塑料材料对这一波长的吸收情况好。目前最大输出功率达50kW,转化效率约10%,最小聚焦直径约0.2~0.7mm。焊接塑料时热作用区深度较深,适合于需要焊接较厚的塑料材料。CO2激光不能用光纤传输,只能$&* 透镜反射镜组成的光学系统来构建刚性传输光路,从而影响激光头的操作性。 2.Nd:YAG激光:波长较短,为1.06微米,属近红外区波长,不易被塑料吸收。最大输出功率6kW,转化效率为3%,最小聚焦直径0.1~0.5mm。Nd:YAG激光的特点是聚焦区域小,可以方便地通过光纤传输来构建光路,可将激光头装到机器人手臂上,实现焊接过程的数控和精密自动化;另一方面可以较好地透过上层的待焊接材料,到达下层待焊接材料或者中间层而被吸收,从而实现焊接。 3.半导体激光:波长0.8~1.0微米,最大输出功率6kW,转化效率30%,最小聚焦直径0.5mm。由于其输出输出功率较小,适用于焊接激光功率要求较低的场合,如小型塑料器件的精密焊接。半导体激光能量转化效率高,易于实现激光器的小型化和便携化。 2.塑料材料 能够被激光焊接的塑料均属于热塑性塑料。理论上,所有热塑性塑料都能够被激光焊接。 塑料激光焊接技术对被焊接塑料的要求为:在热作用区内的材料,要求对激光光波的吸收性好;不属于热作用区部分的材料,则要求对光波的透过性好,尤其在对两件薄塑料件进行叠焊时更是如此。一般向热作用区塑料中添加吸收剂可以达到目的。目前能够使用激光焊接的单种成分塑料包括: PMMA――聚甲基丙烯酸甲脂(有机玻璃),PC塑料,ABS塑料, LDPE-低密度聚乙烯塑料,HDPE-高密度聚乙烯塑料,PVC-聚氯乙稀塑料,Nylon 6-尼龙6,Nylon 66-尼龙66,PS-PS树脂,等等。 上述各种塑料制成的塑料件,如模制的塑料品、塑料板、薄膜、人造橡胶、纤维甚至纺织物都可以作为被焊接的对象。由于激光焊接具有传统焊接不具备的热作用区小、控制精确容易的特点,因此上述各种单体材料之间也可以进行焊接。 3.吸收剂 吸收剂的应用是塑料激光焊接工艺中非常重要的工艺。如前所述,塑料激光焊接的本质是将热作用区的待焊接塑料融化,随后冷却自然实现塑料件的接合。让塑料融化需要使塑料件吸收足够的激光能量。塑料自身能够以较高吸

第四章 钛合金的相变及热处理

第4章钛合金的相变及热处理 可以利用钛合金相变诱发的超塑性进行钛合金的固态焊接,接头强度接近基体强度。 4.1 同素异晶转变 1.高纯钛的β相变点为88 2.5℃,对成分十分敏感。在882.5℃发生同素异晶转变:α(密排六方)→β(体心立方),α相与β相完全符合布拉格的取向关系。 2.扫描电镜的取向成像附件技术(Orientation-Imaging Microscopy , OIM) 3.α/β界面相是一种真实存在的相,不稳定,在受热情况下发生明显变化,严重影响合金的力学性能。 4.纯钛的β→α转变的过程容易进行,相变是以扩散方式完成的,相变阻力和所需要的过冷度均很小。冷却速度大于每秒200℃时,以无扩散发生马氏体转变,试样表面出现浮凸,显微组织中出现针状α′。转变温度会随所含合金元素的性质和数量的不同而不同。 5.钛和钛合金的同素异晶转变具有下列特点: (1)新相和母相存在严格的取向关系 (2)由于β相中原子扩散系数大,钛合金的加热温度超过相变点后,β相长大倾向特别大,极易形成粗大晶粒。 (3)钛及钛合金在β相区加热造成的粗大晶粒,不像铁那样,利用同素异晶转变进行重结晶使晶粒细化。钛及钛合金只有经过适当的形变再结晶消除粗晶组织。 4.2 β相在冷却时的转变 冷却速度在410℃/s以上时,只发生马氏体转变;冷速在410~20℃/s时,发生块状转变;冷却继续降低,将以扩散型转变为主。 1.β相在快冷过程中的转变 钛合金自高温快速冷却时,视合金成分不同,β相可以转变成马氏体α′或α"、ω或过冷β等亚稳定相。 (1)马氏体相变 ①在快速冷却过程中,由于β相析出α相的过程来不及进行,但是β相的晶体结构,不易为冷却所抑制,仍然发生了改变。这种原始β相的成分未发生变化,但晶体结构发生了变化的过饱和固溶体是马氏体。 ②如果合金的溶度高,马氏体转变点M S降低至室温一下,β相将被冻结到室温,这种β相称过冷β相或残留β相。 ③若β相稳定元素含量少,转变阻力小,β相由体心立方晶格直接转变为密排六方晶格,这种具有六方晶格的过饱和固溶体称六方马氏体,以α′表示。 ④若β相稳定元素含量高,晶格转变阻力大,不能直接转变为六方晶格,只能转变为斜方晶格,这种具有斜方晶格的马氏体称斜方马氏体,以α′′表示。 ⑤马氏体相变是一个切变相变,在转变时,β相中的原子作集体的、有规律的进程迁移,迁移距离较大时形成六方α′相,迁移距离较小时形成斜方α′′相。 ⑥马氏体相变开始温度M S ;马氏体相变终了温度M f 。 ⑦钛合金中加入Al、Sn、Zr将扩大α相区,使β相变点升高;V、Mo、Mn、Fe、Cr、Cu、Si将缩小α相区(扩大β相区),使β相变点降低。 ⑧β相中原子扩散系数很大,钛合金的加热温度一旦超过β相变点,β相将快速长大成粗晶组织,即β脆性,故钛合金淬火的加热温度一般均低于其β相变点。 ⑨β相稳定元素含量越高,相变过程中晶格改组的阻力就越大,因而转变所需

钛合金3-钛合金加工工艺分析

钛合金的加工工艺 钛合金有着与钛金属类似的大气高温污染(吸收氢氧氮)、强度高导致的刀具寿命短、导热性差导致的粘刀等等一系列麻烦。此外,热加工带来的金属相不均匀,晶粒粗大,残余应力,等等,也是钛合金热加工的难题。因此,工业纯钛和钛合金基材,在国际上基本是自由贸易(这与高性能碳纤维复合材料的禁运有很大的差异。详情见拙文《浅析碳纤维复合材料在航空航天领域的应用https://www.doczj.com/doc/3e11727709.html,/s/blog_56c70d4b010165l9.html》)然而,买得起未必用得起,正是加工工艺的复杂,将绝大多数国家挡在了钛合金应用的门外。 下面,我们来看***钛合金加工工艺的情况。 一、下料切割工艺 钛合金制件之前,先要将大块钛合金进行初步切割,做下料准备。钛合金的切割,不像一般金属,很难用火焰方法进行,否则高温污染会导致材料脆化。因此多用等离子切割、激光切割、铣切来进行。但是这些方法,要么是材料容易产生热应力离散变形(如激光切割)、或者成本太高无法满足大量生产(如离子束切割),要么是残料率高(如铣切)。因此,人们想出了另一种常温切割方式:高压水切割。 水切割,就是水刀,呵呵。以前咱听说水滴石穿,那可要万年功夫。这次是水切钛断,立等可取啊。 中国航空报载,沈飞公司工艺研究所的首席专家蒲永伟,对水切割技术有深厚积累,潜心研究此项技术的钛切割应用,获得成功,顺利实施了40~100毫米厚的钛合金板材切割。由于是常温操作,切割质量好,且其效率是常规切割方法的50倍以上,材料费大大节约。至今,钛合金的水切割方式,在国内的应用已经接近10年。 二、铸造工艺

铸件加工,需要熔化钛合金进行浇注。同样,由于钛合金的化学活性,熔化的液态钛合金,几乎与所有的耐火材料起反应。因此其熔化和浇注必须在惰性气体(如氩气)保护或者真空环境下进行。 国内应用方面: 中国船舶新闻网报道,中国在消化吸收国外先进技术的基础上,掌握和发展了金属型、捣实型、机加工石墨型,以及氧化物面层陶瓷型壳等钛合金铸造技术,可以生产最大直径达150 0毫米X400毫米,最小壁厚为0.8毫米,单重达到近800千克的整体钛合金铸件,每年铸造钛合金用量达5000吨,具备了钛及钛合金精密铸件的基本生产技术。 根据热加工论坛的报道:我国航天用铸造钛合金的应用始于20世纪80 年代中期,现已有ZTi3,ZTiAl4,ZTiAl5Sn2. 5,ZTiAl6V4,ZTiAl6Zr2MoV等品牌(品牌的第一个字母Z,代表铸造)。 2001年,由北航、华中理工研制的ZTC4 钛合金(即对TC4进行铸造加工后的合金件),利用热等静压和熔模精密铸造成型技术,研制了某型飞机用钛合金精铸件。该铸件外型尺寸为6 30mm ×300mm ×130mm ,最小壁厚2. 5mm ,为复杂的框形结构。 中科院金属研究所网站报道: 2011年5月,沈阳向中国科学院金属研究所研发的钛铝母合金制备技术,通过了英国罗罗公司(Rolls-Royce)的质量审核。 2013年4月17日,罗罗航空发动机公司在沈阳,正式向该所颁发了钛铝涡轮叶片精密铸造技术质量认证证书。

典型钛及钛合金的组织与性能综述

典型钛合金的组织与性能文献查阅总结 1.α型钛合金 α型钛合金中又分为全α型钛合金和近α型钛合金,工业纯钛属于α型钛合金,此外一般α合金含有6%左右的Al和少量中性元素,退火后几乎全部是α相,典型合金包括TA1~TA7合金等;近α型钛合金中除了含有Al和少量中性元素外,还有少量(不超过4%)的稳定元素,如TA15、TA16、TA17等。 1.1工业纯钛 工业纯钛按杂质元素含量分为TA1、TA1ELI、TA1-1、TA2、TA2ELI、TA3、TA3ELI、TA4、TA4ELI9个牌号,相变点大约为900℃。工业纯钛具有高塑性、适当的强度、良好地耐蚀性以及优良的焊接性能等特点,广泛应用于化工设备、滨海发电装置、海水淡化装置、舰船零部件等,其冷热加工性能好,可生产各种规格的板材、棒材、型材、带材、管材和丝材,一般在退火状态下交货使用。典型的工业纯钛显微组织如图1-3所示:

图1 TA1板材650℃/1h退火态组织:等轴α+少量晶间β 图2 TA2大规格棒材600℃/1h退火态组织:等轴α

图3 TA3板材800℃/1h退火态组织:等轴α+含有针状α转变的β 1.1.1 TA1钛管的组织与性能[] []庞继明,李明利,李明强等. 退火温度对TA1钛管材组织和性能的影响[J]. 钛工业进展. 2011, 28(2): 26-28 研究方法:TA1铸锭经过2500t水压机开坯锻造和1600t卧式挤压机热挤压,最终获得φ45×7mm的管坯。管坯经两辊和三辊管材冷轧机轧制成φ12×1.25mm的管材。将管材置于真空热处理炉中,分别加热至450,475,490,500,550,600,650,700℃,保温90min,随炉冷却。 a)TA1钛管的显微组织 图1为冷加工态及不同的温度热处理后的TA1管材横向显微组织。可以看出,冷加工态的TA1管材组织混乱且有部分晶粒破碎不完全;700℃下的组织已完全再结晶、等轴化,与650℃的相比晶粒已明显长大。在相同的保温时间里,随着退火温度的提升,再结晶晶粒逐渐粗化。

激光焊的主要工艺参数对焊接质量的影响

激光焊的主要工艺参数对焊接质量的影响 一、激光焊接原理 激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于104~105W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。 其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。 用于齿轮焊接和冶金薄板焊接用的激光焊接机主要涉及激光深熔焊接。下面重点介绍激光深熔焊接的原理。 激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达2500℃左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。上述过程的所有这一切发生得如此快,使焊接速度很容易达到每分钟数米。 二、激光深熔焊接的主要工艺参数 1. 激光功率 激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。只有当工件上的激光功率密度超过阈值(与材料有关),等离子体才会产生,这标志着稳定深熔焊的进行。如果激光功率

激光焊接原理讲解

激光焊接是激光材料加工技术应用的重要方面之一,又常称为激光焊机、镭射焊机,按其工作方式常可分为激光模具烧焊机(手动焊接机)、自动激光焊接机、激光点焊机、光纤传输激光焊接机,光焊接是利用高能量的激光脉冲对材料进行微小区域内的局部加热,激光辐射的能量通过热传导向材料的内部扩散,将材料熔化后形成特定熔池以达到焊接的目的。 一、激光焊接的主要特性。 20世纪70年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。 高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。获得了以小孔效应为理论基础的深熔焊接,在机械、汽车、钢铁等工业领域获得了日益广泛的应用。 与其它焊接技术相比,激光焊接的主要优点是: 1、速度快、深度大、变形小。 2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。 3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。 4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。 5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。 6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。 7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。 但是,激光焊接也存在着一定的局限性: 1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。这是因为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定位精度达不到要求,很容易造成焊接缺憾。 2、激光器及其相关系统的成本较高,一次性投资较大。 二、激光焊接热传导。

钛合金及其热处理工艺简述样本

钛合金及其热解决工艺简述 宝鸡钛业股份有限公司:杨新林 摘要:本文对钛及其合金基本信息进行了简要简介,对钛几类固溶体划分进行了简述,对钛合金固态相变也进行了概述。重点概述了钛合金热解决类型及工艺,为之后生产实习中对钛合金热解决工艺结识提供指引。 核心词:钛合金,热解决 1 引言 钛在地壳中蕴藏量位于构造金属第四位,但其应用远比铜、铁、锡等金属滞后。钛合金中溶解少量氧、氮、碳、氢等杂质元素,使其产生脆性,从而妨碍了初期人们对钛合金开发和运用。直至二十世纪四五十年代,随着英、美及苏联等国钛合金熔炼技术改进和提高,钛合金应用才逐渐开展[5]。 纯钛熔点为1668℃,高于铁熔点。钛在固态下具备同素异构转变,在882.5℃以上为体心立方晶格β相,在882.5℃如下为密排六方晶格α相。钛 合金依照其退火后室温组织类型进行分类,退火组织为α相钛合金记为TAX,也 称为α型钛合金;退火组织为β相钛合金记为TBX,也称为β型钛合金;退火组织为α+β两相钛合金记为TCX,也称为α+β型钛合金,其中“X”为顺序号。国内当前钛合金牌号已超过50个,其中TA型26个,TB型8个以上,TC型15个以上[5]。 钛合金具备如下特点:

(1)与其她合金相比,钛合金屈强比很高,屈服强度与抗拉强度极为接近; (2)钛合金密度为4g/cm3,大概为钢一半,因而,它具备较高比强度; (3)钛合金耐腐蚀性能优良,在海水中其耐蚀性甚至比不锈钢还要好; (4)钛合金导热系数小,摩擦系数大,因而机械加工性不好; (5)在焊接时,钛合金焊缝金属和高热影响区容易被氧、氢、碳、氮等元素污染,使接头性能变坏。 在熔炼和各种加工过程完毕之后,为了消除材料中加工应力,达到使用规定性能水平,稳定零件尺寸以及去除热加工或化学解决过程中增长有害元素(例如氢)等,往往要通过热解决工艺来实现。钛合金热解决工艺大体可分为退火、固溶解决和时效解决三个类型。由于钛合金高化学活性,钛合金最后热解决普通在真空条件下进行。热解决是调节钛合金强度重要手段之一。 2 钛合金合金化特点 钛合金性能由Ti同合金元素间物理化学反映特点来决定,即由形成固溶体和化合物特性以及对α?β转变影响等来决定。而这些影响又与合金元素原子尺寸、电化学性质(在周期表中相对位置)、晶格类型和电子浓度等关于。但作为Ti合金与其他有色金属如Al、Cu、Ni 等比较,尚有其独有特点,如:(1)运用Tiα?β转变,通过合金化和热解决可以随意得到α、α+β和β相组织; (2)Ti是过渡族元素,有未填满d电子层,能同原子直径差位于±20%以内置换式元素形成高浓度固溶体;

相关主题
文本预览
相关文档 最新文档