当前位置:文档之家› PECVD功率对减反射膜及电池电性能的影响

PECVD功率对减反射膜及电池电性能的影响

PECVD功率对减反射膜及电池电性能的影响
PECVD功率对减反射膜及电池电性能的影响

中电电气(南京)光伏有限公司科技论文科技论文

题目PECVD功率对减反射膜及电池电性能

的影响

部门技术中心作者姓名袁静

完成日期2008年9月

中电电气(南京)光伏有限公司科技论文

论文诚信承诺书

本人郑重声明:所呈交的科技论文(题目:)是本人独立完成的。尽本人所知,除了论文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

作者签名:年月日

中电电气(南京)光伏有限公司科技论文

摘要

摘要:本文对板式及管式PECVD中的微波和射频功率进行了调节,通过分析其对氮化硅薄膜厚度与折射率的影响,指出其对目前生产线工艺的影响,以及对最终电池片电性能的帮助作用。

关键词:PECVD、功率、转换效率、膜厚、折射率

中电电气(南京)光伏有限公司科技论文

ABSTRACT

This paper plate and pipe PECVD in the microwave and radio frequency power to the regulation, through its analysis of the silicon nitride film thickness and refractive index of the impact that its current production line of impact and the ultimate performance of battery-electric help Role.

Key words:

PECVD、Power、Conversion efficiency、Thickness、Refractive index

中电电气(南京)光伏有限公司科技论文

目录

摘要 (3)

ABSTRACT (4)

目录 (5)

第一章引言 (6)

第二章实验原理 (7)

2.1 PECVD 镀膜机的原理简介 (7)

2.2 PECVD镀膜功率 (8)

第三章实验设计 (9)

3.1 实验装置 (9)

3.2 实验样品 (9)

3.3 实验方法 (9)

第四章实验结果与分析 (11)

4.1板式功率对膜厚及折射率和光程的影响 (11)

4.2 管式PECVD功率调节对镀膜的影响 (12)

4.3功率调节对于电性能的影响 (12)

第五章结论 (13)

参考文献 (14)

致谢 (14)

中电电气(南京)光伏有限公司科技论文

第一章引言

太阳能电池是一种近年发展起来的新型的电池。太阳能电池是利用光电转换原理使太阳的辐射光通过半导体物质转变为电能的一种器件。

在目前流行的晶体硅太阳能电池片工艺中,减反射膜的制备已经成为不可或缺的一环。利用PECVD技术制备SixNy减反射膜,不仅能够达到减反射的目的,而且能够利用反应中产生的H离子对硅片表面形成良好的钝化效果,对电池片电性能的提高有很大的帮助。

目前比较成熟的PECVD技术从设备方面主要分为管式镀膜和板式镀膜,本篇文章通过调节PECVD镀膜机的功率,研究在不同功率下制备的SixNy减反射膜的效果以及其对最终电池片电性能的影响。

中电电气(南京)光伏有限公司科技论文

第二章实验原理

2.1 PECVD 镀膜机的原理简介

含氢的氮化硅层具有优异的性能,在硅太阳电池的工业生产中得到广泛的应用。这得益于其能够在同一工艺步骤内完成减反膜的淀积、表面和体钝化。氮化硅层的化学、机械、光学、电性能以及表面和体钝化的效果取决于所选择的淀积工艺。最适合太阳电池生产的淀积方法是采用硅烷和氨气或氮气作为反应气体的化学气相淀积法(CVD)。获得的氮化硅层通常是非化学计量的并含有40%的氢,文字表示为S i N x:H。工业上需要能够大规模淀积SiNx:H层的设备,各类具有高生产能力的PECVD系统应运而生并得到了广泛的应用,如MW(microwave)-PECVD技术。

图2.1 微波等离子体源示意图

板式PECVD如图中2.1中两侧的微波源产生频率为2.45 GHz的微波,微波由内置铜导管引入工艺腔,在石英管的周围形成等离子体场。系统中的永磁体产生的磁场可以减少带电粒子的损失,提高等离子体的密度和淀积速率。线性等离子体源因为带电粒子传输机理的要求而在宽度上受到限制,最佳的折中方案是等离子体源内包含1根石英管系统。微波等离子体具有较高浓度的低能(<10eV)带电粒子,不会对基体造成明显的损伤,满足薄膜淀积工艺要求。在0.01~500 mbar的压强范围内适用与不同工艺要求的气体。[3]

中电电气(南京)光伏有限公司科技论文

管式PECVD主要由工艺管及电阻加热炉、净化推舟系统、气路系统、电气控制系统、计算机控制系统、真空系统、射频系统等7大部分组成,其设备构成示意图见图2.2。射频源产生频率为13.56 MHz。

图2.2 管式PECVD设备[1]

2.2 PECVD镀膜功率

影响PECVD镀膜结果的工艺参数有很多,例如硅烷与氨气的流量比及总量、衬底温度、压强、速度等。本文主要探讨功率对镀膜结果的影响。

PECVD和N对于等离子体的成份来说,希望SiH4 H3 能充分电离,然而就会导致所需要的功率较大或压力较低,就导致了所生长的膜的不致密或者吸光系数过高,从而直接影响到太阳能电池的转换效率,因此在获得从光学上所需的折射率后要综合吸光系数等来获得高的转换效率。而在等离子体电源的功率变化过程中能获得一个最佳的电源功率。

大等离子体电源的功率变化的影响,主要是因为Si 和N 的比率以及膜的致密性发生了变化,如果功率不够的话,SiH4 和NH3 并没有充分电离,存在SiH3 、SiH2 、SiH1、NH2、NH1 的离子态,在这种情况下,即使折射率一样,吸光系数也会很高。这样的膜直接降低电池的转换效率。等离子体电源的功率同时也改变了少子寿命,表面钝化降低硅表面活性,使表面的复合速度降低。[2]

中电电气(南京)光伏有限公司科技论文

第三章实验设计

3.1 实验装置

本实验采用等离子体化学气相淀积(PECVD)法沉积氮化硅薄膜,这种方法沉

积温度低、均匀性好、薄膜缺陷密度低。PECVD沉积氮化硅一般由SIH

4和NH

3

在等

离子体气氛下反应生成,反应式如下:

SIH

4 + NH

3

———>SIxNy+ 3H

2

.

3.2 实验样品

本试验样品为江苏中能和锦州阳光S125的硅片,硅片厚度200μm,电阻率0.5-3Ω·cm。

3.3 实验方法

在R&R 和Centrotherm设备上,用PECVD法,改变微波功率或射频功率分别沉积氮化硅薄膜,沉积温度,压强,气体流量,速度(时间),分别见下表3.1,表3.2。然后利用椭偏仪测试氮化硅薄膜的厚度及折射率从而计算出光程,比较随功率变化减反射膜各项参数的变化。

表3.1 R&R PECVD沉积氮化硅的实验参数

NH3(sccm) SiH4(sccm) Pessure(mbar) Temperature(℃) Velocity(cm/min) 1790 743 0.15 400 72

表3.2 Centrothem沉积氮化硅的实验参数

NH3(slm) SiH4(sccm) Pessure(mTorr) Temperature(℃) Time(s)

3.4 320 1700 450 -

3.3.1板式功率实验设计

在R&R上,以表3.1的实验参数,在线改变功率参数分别为2500w,2700w,2900w,3100w,取同一板相同位置一横排六片,分别测量其膜厚与折射率。再取一批片子300片,以两板为一小组,最后三板为一组,改变每组功率2600w,2800w,3000w,3200w,测量其膜厚与折射率,并统计每一小组最终的电性能。

3.3.2管式功率实验设计

在Centrotherm镀膜机上,取同一舟同一管分别用2700w,2900w,3100w,3300w

统计每一小组的电性能。

中电电气(南京)光伏有限公司科技论文

第四章实验结果与分析

4.1板式功率对膜厚及折射率和光程的影响

图4.1 左图为板式功率对膜厚及折射率的影响,右图功率对光程的影响

传输速度为72cm/min

从图4.1可以看出,随着功率升高,膜厚和光程均增加,而折射率略有下降。说明微波功率对沉积速度有明显的提升作用。根据光程的定义可知,光程增加来自于膜厚的增加。

由于折射率随膜厚有三种可能的变化,需要在保证膜厚不变的情况下,研究微波功率对折射率的影响。由表4-2可知,当膜厚变化范围控制在1.5nm内时,微波功率升高600W,折射率增加了0.0166。结合图4-1,折射率的降低是由于膜厚的增加引起的。并且从表4-2还可以看出微波功率和传送速度等间距增长时,膜厚基本在一定范围内,调节功率200w,传送速度相应增加2cm/min,膜厚控制在2nm 以内。

中电电气(南京)光伏有限公司科技论文4.2 管式PECVD功率调节对镀膜的影响

图4.2 左图管式HF功率对膜厚及折射率的影响,右图管式功率对光程的影响

由图4-2可以看出管式HF功率的改变对氮化硅薄膜的影响与板式基本一致。

4.3功率调节对于电性能的影响

从表4.4和4.3可以看出,随着功率的升高,板式、管式镀膜对电性能参数包括短路电流、开路电压、效率都有不同程度提升,而且变化趋势一致。说明高功率及较大膜厚对电性能有增益。

中电电气(南京)光伏有限公司科技论文

第五章结论

功率对沉积速度有很大的提升作用,膜厚随着功率的增加而增大,而折射率随之膜厚的增加而缓慢减小,在线调节功率时需要相应调节传输速度。功率对电性能的提升可能来自与膜厚的增加,或者是由于功率的升高改变了气体的电离程度,对薄膜微观性能产生了影响。因此需要进一步排除膜厚对电性能的影响。

中电电气(南京)光伏有限公司科技论文

参考文献

[1].宋玲、刘恺等,生产型管式PECVD设备,半导体制造设备,2005年10月31日:34-35页;

[2]. 李军阳、李健志、张东艳,管式PECVD功率对膜性能的影响,半导体行业,2008年2月:

page 59-60;

[3].王晓泉,太阳电池用氮化硅薄膜及氢钝化研究,浙江大学硕士学位论文,2003年5月

致谢

感谢中电电气(南京)光伏有限公司技术中心洪叶可等工艺工程师及助理工程师的帮助,以及生产部一线员工对本实验所提供的支持,也感谢公司领导在日常学习工作中给予的关怀及帮助。

附录

(某些重要的原始数据、数学推导、计算程序、框图、结构图、注释、统计表、等。)

中电电气(南京)光伏有限公司科技论文

铁锂电池与铅酸对比

铁锂电池与铅酸对比

磷酸铁锂电池和密封阀控式铅酸蓄电池的比较 一、产品性能比较和系统组成比较 磷酸铁锂电池和铅酸电池性能比较详见表4。 表4 磷酸铁锂电池和铅酸电池性能比较 电池性能 说明 磷酸铁锂电池 铅酸电池 单体电压 (V ) 3.2 2 重量比能量 (wh/kg ) 110~130 30~50 体积比能量 (wh/L ) 180~220 80~120 循环寿命 1C100%充放 ≥1000次 250~350次 高温性能 循环寿命变化 45℃为25℃时减半 35℃为25℃时减半 低温性能 -20℃容量保持率 50% 55% 自放电 常温搁置28天 4% 5% 充放电效率 >99% 80% 耐过充性能 一般 好 安全性 优 优 环保 无污染 污染 磷酸铁锂蓄电池与铅酸蓄电池在-48V 直流电源系统的组成比较如表5所示。 表1 磷酸铁锂电池组和铅酸电池组参数比较 组单体组单体组单体组单体浮充均充铅酸电池40~572448243.2 1.854.0 2.2556.4 2.35 1.13 1.18铁锂电池40~571651.2 3.243.2 2.755.2 3.4557.6 3.6 1.08 1.13铁锂电池 40~57 1548 3.243.2 2.88 54.0 3.6 56.4 3.76 1.13 1.18 电池设备工作范围只数 标称电压(V)电压比值放电终止电压(V)浮充电压(V) 均充电压(V) 资料显示: ? 充满电后4.0V 的磷酸铁锂蓄电池静置15分钟后回落到3.4V ,电池开 口电压3.4V 。 ? 单体工作电压为2.0V~4.2V 。 ? 在3.65V 以下可以充电性能稳定。 ? 单体电池放电时,3.0V 以下电压下降很快。 综合以上信息,建议48V 直流系统的蓄电池组只数选择16只的配置方案。 二、基站应用方案比较及投资比较 磷酸铁锂电池应用在基站中,主要考虑到不同放电率对该种电池放电容量的影响较小,以及耐受较宽的环境温度。以下将针对基站的功耗、后备时间进行电池容量选择的分析。

GaAs太阳电池减反射膜的设计

2010年第1期漳州师范学院学报(自然科学版)No. 1. 2010年(总第67期) Journal of Zhangzhou Normal University(Nat. Sci.)General No. 67 文章编号:1008-7826(2010)01-0070-04 GaAs太阳电池减反射膜的设计 黄生荣1,2 (1. 厦门大学物理系, 福建厦门361005; 2. 厦门三安电子有限公司, 福建厦门 361005) 摘要: 利用实际测量的光谱响应结果来对GaAs单结太阳电池减反射膜进行设计优化. 先初步设计单结GaAs太阳电池SiN减反射膜厚度,然后太阳电池片样品进行光谱响应测量. 利用实际测量的光谱响应结果推算电池样品在AM1.5条件下的无反射时光谱响应,根据计算的结果来对GaAs单结太阳电池减反射膜厚度进行设计优化. 优化结果表明83nm为GaAs单结太阳电池单层减反射膜厚度的最优值. 关键词: GaAs ; 太阳电池;减反射膜;光谱响应 中图分类号: O472+.8文献标识码: A Design of Anti-reflection Coating for GaAs Solar Cells HUANG Sheng-rong1,2 (1.Department of Physics, Xiamen University, Xiamen, Fujian 361005, China; 2.Xiamen San'an Electronics Co. Ltd, Xiamen, Fujian 361005, China) Abstract:According to the measurement results of spectral response, the anti-reflection coating for GaAs single-junction solar cells is designed. Firstly, the anti-reflection coating of SiN was fabricated but the thickness of anti-reflection coating was not optimized. Then the spectral response of the solar cell sample was measured. The no-reflection spectral response of AM 1.5 condition was calculated using the measurement results of spectral response. According to the calculation results, the optimized thickness of anti-reflection coating was designed. The optimized thickness of anti-reflection coating for GaAs single-junction solar cells is 83nm. Key words: GaAs ; Solar Cell ; anti-reflection ; spectral response 1 引言 传统的燃料能源正在一天天减少,对环境造成的危害日益突出,全世界都把目光投向了可再生能源,希望可再生能源能够改变人类的能源结构,维持长远的可持续发展. 在这之中太阳能以其独有的优势而成为人们重视的焦点. 丰富的太阳辐射能是重要的能源,是取之不尽、用之不竭的、无污染、廉价、人类能够自由利用的能源,而其中太阳能发电是目前利用太阳能的热点研究领域. 太阳电池是把光能转换为电能的光电子器件. 相对于硅太阳电池,GaAs太阳电池具有更高的光电转换效率、更强的抗辐射能力、更好的耐高温性能,是国际公认的新一代高性能长寿命空间主电源和极具潜力的民间新能源. 为了减少GaAs 太阳电池表面反射损失以提高太阳电池的转换效率,在太阳电池表面窗口层上制备减反射膜是经常采用的方法. 国内外有许多研究机构对太阳电池单层、双层甚至三层减反射膜进行了理论计算和实际的设计应用,明显的提高了太阳电池的转换效率[1-6]. 本文利用实际测量的相对光谱响应结果来对GaAs单结太阳电池减反射膜进行设计优化,用于指导实际的太阳电池制备工艺. 虽然单层减反射膜很难实现宽谱域上理想的减反射效果,但是相对双层甚至更多层减反射膜的设计和制备工艺来说,单层减反射膜设计简单、制备工艺稳定;而且通过实际测量单结GaAs太阳电池的相对光 收稿日期: 2009-05-20 作者简介: 黄生荣(1978-), 男, 江西省上高县人, 博士后, 高级工程师.

充电电池简介 电池的主要性能指标

充电电池简介电池的主要性能指标 1.安全性能 影响最大的是爆炸和漏液,主要与电池的内压、结构和工艺设计有关(比如安全阀失效、锂离子电池没有保护电路等)。 2.容量 按照IEC标准和国标规定,镍氢和镍镉电池是指在25±5℃的条件下,以充电16小时,以放电至时放出的容量。 锂离子电池是指在常温的条件下,以恒流(1C)、恒压()充电3小时,以放电至时放出的容量。 容量单位:安时(Ah)或毫安时(mAh) 3.内阻 是指电流流过电池内部所受到的阻力。充电电池的内阻很小,一般要用专门仪器测试。充电态内阻和放电态内阻有差异,放电态内阻稍大,而且不太稳定。内阻越大,消耗的能量越大,充电发热越大。随着电池使用次数的增多,电解液消耗及活性物质减少,内阻会增大,质 量越差,内阻增大越快。 4.循环寿命 电池可重复充放电的次数。寿命与容量成反比,与充放电条件密切相关,一般充电电流越大,寿命越短。 5.荷电保持能力 指自放电率。与电池材料、生产工艺和储存条件有关,一般温度越高,自放电率越高。

6.大电流放电能力 主要与电池材料、生产工艺有关,一般用于动力电池。充电电池的典型结构 1.正极板 2.负极板 3.隔膜 4.电解液 5.钢壳/塑胶外壳 充电电池的可靠性测试项目 1.循环寿命 2.不同倍率放电特性 3.不同温度放电特性 4.充电特性 5.自放电特性 6.不同温度自放电特性 7.储存特性 8.过放电特性 9.不同温度内阻特性 10. 高温测试 11. 温度循环测试 12. 跌落测试 13. 振动测试

14. 容量分布测试 15. 内阻分布测试 16. 静态放电测试ESD 电池常用标准 镍镉电池: IEC60285-1999,GB/T11013-1996,GB/T18289-2000 镍氢电池: GB/T15100-1994/GB/T18288-2000 锂离子电池: GB/T10077-1998/GB/T18287-2000或者SANYO或松下标准 镍氢电池 优点 1.比能量密度高:是镍镉电池的倍多。 2.环保 3.无记忆效应 4.循环寿命长:在正确使用条件下可循环使用500次以上。缺点

太阳能电池用光伏玻璃减反射膜性能研究

太阳能电池用光伏玻璃减反射膜性能研究通过模拟车间组件制作环境,对不同类型的镀膜玻璃的透光率衰减进行了研究分析。采用X涉嫌光电子能谱(XPS)和椭偏仪等手段对 多孔SiO2减反射膜层进行了表征。结果表明,镀膜玻璃初期表面预 衰减主要和膜层的微观折射率和孔隙率有关,折射率越小,孔隙率越大,则越容易吸附微小颗粒,从而导致膜层表面孔口堵塞,折射率增加,减反效果降低,透光率下降。 关键词:镀膜玻璃;SiO2;折射率;孔隙率;透光率 随着全球人口增长和经济的快速发展,能源紧张和环境污染日益严重。而太阳能是取之不尽用之不竭的清洁可再生能源。因此研究太阳能对解决能源危机和环境保护,对人类的可持续发展具有重要意义。 目前90%的以上的太阳能电池都是晶硅太阳能电池,其封装制作组件的效率在15%-17%。而晶体硅太阳能电池的极限理论效率为34%,在现有工艺水平的基础上进一步提高太阳能电池效率的成本较高。如果能够提高封装组件对太阳光的利用率,则可以以较低的成本获得组件系统较高的发电量。在光伏盖板玻璃表面镀制减反射膜就是一种成本低廉,有效利用光能的途径。 在纳米多孔SiO2膜膜层设计过程中,通过增加孔隙率,以得到 接近1.23[1]理论折射率的膜层,从而获得最佳的减反射效果。但是

孔隙率过高,膜层容易在短期内吸附外界环境中的微小颗粒物质,从而造成孔口堵塞,折射率反而增加,透光率衰减严重。本文旨在研究镀膜层不同光学参数对镀膜玻璃透光率衰减的影响,从而筛选出具有高效减反,低衰减的镀膜玻璃。 1 实验部分 1.1 实验材料 镀膜玻璃防霉隔离纸硅胶 1.2 镀膜玻璃实验样品制备 层压实验:在镀膜玻璃表面垫上一层防霉纸,在层压机上进行层压。约15min后取出镀膜玻璃样品。并用去离子水擦拭玻璃表面。 固化实验:将镀膜玻璃置于正在硅胶固化中的组件之间。6小时后取出样品。并用去离子水擦拭玻璃表面。 1.3 镀膜玻璃表征 采用奥博泰GST-3,在380-1100nm波段上,对实验前后的镀膜玻璃进行透光率测试。 采用X射线光电子能谱仪(XPS)对实验前后的玻璃进行表征,分析实验前后元素含量的变化。

蓄电池十强排行榜

蓄电池十强排行榜 第1名VARTA 瓦尔塔 VARTA蓄电池(瓦尔塔电瓶瓦尔塔蓄电池)创始于1888年德国的汉诺威市,即现今江森自控蓄电池技术研发中心的所在地之一。长久以来VARTA品牌(瓦尔塔蓄电池瓦尔塔电瓶瓦尔塔电池)系列都是世界各大著名汽车制造商的首选,以其高端的质量与领先的技术提供适合各类型车辆使用的多种规格的顶级蓄电池产品。目前VARTA品牌为欧洲所有的汽车制造商提供相应的配套服务,2008年在欧洲的配套市场份额高达50 %,同时也是欧洲售后市场的领导者https://www.doczj.com/doc/3c11600234.html,/ 第2名重庆万里 重庆万里股份公司始建于1943年,为联勤总部电信修理厂电信三分厂,主要生产军事通讯用甲、乙干电池,1961年后专业生产铅蓄电池,1966年更名为重庆蓄电池厂,1982年以重庆蓄思池厂为主体吸收三个集体分厂组建重庆蓄电池总厂,1992年改组建立重庆万里蓄电池股份有限公司,1994年3月在上交所上市。公司的主导产品是各类铅蓄电池系列产品,部份:产品达到了国际先进水平,曾为国家南极考查提供超低温起动用蓄电池和为北京亚运会提供邮电通讯用蓄电池,主导产品市场覆盖全国三十个省、市、自治区,广泛应用在邮电、电力、能源、铁道等领域,市场占有率居国内前列。万里电池——中国铅酸蓄电池行业首家上市公司。她以其63年的悠久历史向世人展示了我国铅酸蓄电池快速发展的无穷魅力。https://www.doczj.com/doc/3c11600234.html, https://www.doczj.com/doc/3c11600234.html, 第3名风帆 风帆蓄电池风帆股份有限公司(下简称公司)隶属中国船舶重工集团公司。公司前身保定蓄电池厂始建于1958年,是“一五”期间国家156个重点建设项目之一,1992年更名为风帆蓄电池厂,1996年改制为保定风帆集团有限责任公司,2000年6月由中国船舶重工集团公司作为主发起人设立股份公司,注册资本2.18亿元。2004年7月,“风帆股份”A股(6 00482)在上海证交所挂牌上市,2006年2月完成股权分置改革。https://www.doczj.com/doc/3c11600234.html, 第4名天津统一 天津统一工业有限公司成立于1992年,为日本电池株式会社和台湾统一企业集团共同出资组建。注册资本3520万美元,占地4万平方米,是一家超大规模的铅酸蓄电池厂家。天津统一工业有限公司主要生产高性能的汽车电池,摩托车电池,以及UPS电源用中、小

减反射膜原理

减反射膜原理 减反射膜又称增透膜、AR膜、AR片、减反射膜、AR滤光片,它的主要功能是减少或消除透镜、棱镜、平面镜等光学表面的反射光,从而增加这些元件的透光量,减少或消除系统的杂散光。最简单的增透膜是单层膜,它是镀在光学零件光学表面上的一层折射率较低的薄膜。如果膜层的光学厚度是某一波长的四分之一,相邻两束光的光程差恰好为π,即振动方向相反,叠加的结果使光学表面对该波长的反射光减少。适当选择膜层折射率,这时光学表面的反射光可以完全消除。一般情况下,采用单层增透膜很难达到理想的增透效果,为了在单波长实现零反射,或在较宽的光谱区达到好的增透效果,往往采用双层、三层甚至更多层数的减反射膜。减反射膜是应用最广、产量最大的一种光学薄膜,因此,它至今仍是光学薄膜技术中重要的研究课题,研究的重点是寻找新材料,设计新膜系,改进淀积工艺,使之用最少的层数,最简单、最稳定的工艺,获得尽可能高的成品率,达到最理想的效果。对激光薄膜来说,减反射膜是激光损伤的薄弱环节,如何提高它的破坏强度,也是人们最关心的问题之一。 光具有波粒二相性,即从微观上既可以把它理解成一种波、又可以把他理解成一束高速运动的粒子(注意,这里可千万别把它理解成一种简单的波和一种简单的粒子。它们都是微观上来讲的。红光波的波长=0.750微米紫光波长=0.400微米。而一个光子的质量是 6.63E-34 千克. 如此看来他们都远远不是我们所想想的那种宏观波和粒子.) 增透膜的原理是把光当成一种波来考虑的,因为光波和机械波一样也具有干涉的性质。 在镜头前面涂上一层增透膜(一般是"氟化钙",微溶于水),如果膜的厚度等于红光(注意:这里说的是红光)在增透膜中波长的四分之一时,那么在这层膜的两侧反射回去的红光就会 发生干涉,从而相互抵消,你在镜头前将看不到一点反光,因为这束红光已经全部穿过镜头了. 为什么我从来没有看到没有反光的镜头? 原因很简单,因为可见光有“红、橙、黄、绿、蓝、靛、紫”七种颜色,而膜的厚度是唯一的,所以只能照顾到一种颜色的光让它完全进入镜头,一般情况下都是让绿光全部进入的,这种情况下,你在可见光中看到的镜头反光其颜色就是蓝紫色,因为这反射光中已经没有了绿光。膜的厚度也可以根据镜头的色彩特性来决定。 定义及其设计: 二十世纪三十年代发现的增透膜促进了薄膜光学的早期发展.对于技术光学的推动来说,在所有的光学薄膜中,增透膜也起着最重要的作用.直至今天,就其生产的总量来说,它仍然超过所有其他的薄膜因此,研究增透膜的设计和制备教术,对于生产实践有着重要的意义. 我们都知道,当光线从折射率n0的介质射入折射率为n1的另一介质时,在两介质的分界面上就会产生光的反射.如果介质没有吸收,分界面是一光学表面,光线又是垂直入射,则反射率R为透射率为 透射率为:

铅酸蓄电池的原理与性能

铅酸蓄电池的原理与性能 一、铅酸蓄电池的工作原理 蓄电池是一种化学电源,它的构造可以是各式各样的,可是从原理上讲所有的电池都是由正极、负极、电解质、隔离物和容器组成的,其中 正负两极的活性物质和电解质起电化反应,对电池产生电流 起着主要作用,如图4-1所示。 在电池部,正极和负极通过电解质构成电池的电路,在 电池外部接通两极的导线和负荷构成电池的外电路。 在电极和电解液的接触面有电极电位产生,不同的两极 活性物质产生不同的电极电位,有着较高电位的电极叫做正 极,有着较低电位的电极叫做负极,这样在正负极之间产生了电位差,当外电路接通时,就有电流从正极经过外电路流向负极,再由负极经过电路流向正极,电池向外电路输送电流的过程,叫做电池的放电。 在放电过程中,两极活性物质逐渐消耗,负极活性物质 1.电解质 2.负极 3.容量 4.正极 5.隔离物 6.导线 7.负荷 图4-1 电池构造示意图 放出电子而被氧化,正极活性物质吸收从外电路流回的电子而被还原,这样负极电位逐渐升高,正极电位逐渐降低,两极间的电位差也就逐渐降低,而且由于电化反应形成新的化合物增加了电池的阻,使电池输出电流逐渐减少,直至不能满足使用要求时,或在外电路两电极之间端电压低于一定限度时,电池放电即告终。 电池放电以后,用外来直流电源以适当的反向电流通入,可以使已形成的新化合物还原成为原来的活性物质,而电池又能放电,这种用反向电流使活性物质还原的过程叫做充电。 蓄电池可以反复多次充电、放电,循环使用,使用寿 命长,成本较低,能输出较大的 能量,放电时电压下降很慢。 1.电动势的产生 铅蓄电池的正极是二氧化铅(PbO2),负极是绒状铅 (Pb),它们是两种不同的活性物质,故和稀硫酸(H2SO4)起 化学作用的结果也不同。在未接通负载时,由于化学作用 使正极板上缺少电子,负极板上却多余电子,如图4-2所图4-2 铅蓄电池电势产生过程示,两极间就产生了一定的电位差。 2.放电过程的化学反应 当外电路接上负载(比如灯泡)后,铅蓄电池在 正、负极板间电位差(电动势)的作用下,电流Ⅰ从 正极流出,经负载流向负极,也就是说,负极上的 电子经负载进入正极,如图4-3。同时在蓄电池部 产生化学反应: . 学习.资料.

晶体硅太阳能电池表面PECVD淀积SiN减反射膜工艺研究讲解

毕业论文 题目晶体硅太阳能电池表面PECVD淀积SiN 减反射膜工艺研究 目录

摘要 (1) 绪论 (3) 第一章 PECVD淀积氮化硅薄膜的基本原理 (6) 1.1化学气相淀积技术 (6) 1.2 PECVD原理和结构 (6) 1.3 PECVD薄膜淀积的微观过程 (8) 1.4 PECVD淀积氮化硅的性质 (9) 1.5表面钝化与体钝化 (9) 第二章实验 (11) 2.1 PECVD设备简介 (11) 2.2 PECVD设备操作流程 (13) 2.3 SiN 减反射膜PECVD淀积工艺流程 (13) 2.4最佳薄膜厚度和折射率的理论计算 (13) 2.5 理论实验总结 (15) 结束语 (16) 参考文献 (17)

晶体硅太阳能电池表面PECVD淀积SiN减反射膜工艺研究 摘要 等离子增强化学气相淀积氮化硅减反射薄膜已经普遍应用于光伏工业中,其目的是在晶体硅太阳能电池表面形成减反射薄膜,同时达到了良好的钝化作用。氮化硅膜的厚度和折射率对电池性能都有重要的影响。探索最佳的工艺条件来制备最佳的薄膜具有重要意义。本课题是利用Roth&Rau的SiNA设备进行淀积氮化硅薄膜的实验,介绍了几种工艺参数对薄膜生长的影响,获得了生长氮化硅薄膜的最佳工艺条件,制作出了高质量的氮化硅薄膜。实验中使用了椭偏仪对样品进行膜厚以及折射率的测量。 关键词:等离子增强化学气相淀积,氮化硅薄膜,太阳能电池,光伏效应,钝化

ABSTRACT SiN Film plasma-enhanced chemical vapor deposition (PECVD) is widely used in P-V industry as an antireflection thinfilm on the surface of crystal silicon solar cell. In addition this process takes advantage of an exellent passivation effect. Both the thickness and refractive index of the SiN film make important influences to the performance of solar cells. So it is very important to find the best process parameters to deposit the best film. In this paper, the experiment of SiN film deposition was completed with the equipment named SiNA produced by Roth&Rau. The influence of the parameters to the gowth of the film was introduced based on the experiment, and the best parameters to produce the top-quality SiN film were obtainted. The Spectroscopic ellipsometry was used to test the thickness and refractive index of the samples during the experiment. Key words:PECVD, SiN film, solar cell, photovoltaic effect, passivation

影响蓄电池性能的因素

1.影响蓄电池质量的技术问题 1)电池构成 VRLA电池由正极板、负极板、AGM隔膜、正负汇流条、电解液、安全阀、盖和壳组成。其中正极板栅厚度、合金成份、AGM隔膜厚度均匀性、汇流条合金、电解液量、安全阀开闭压力、壳盖材料、电池生产工艺等对电池寿命和容量均匀性具有重要影响。 2)板栅合金 VRLA电池负板栅合金一般为Pb-Ca系列合金,正板栅合金有Pb-Ca系列、Pb-Sb(低)系列和纯Pb等,其中Pb-Ca、Pb-Sb(低)合金正板栅电池浮充寿命相近,但循环寿命相差较大,对于经常停电地区选用低锑合金电池可靠性好。 3)板栅厚度 极板的正板栅厚度决定电池的设计寿命。 4)安全阀 安全阀是电池的一个关键部件,具有滤酸、防爆和单向开放功能,YD/T7991 996规定安全开闭压力范围为1-49kPa,但是,对于长寿命电池,必须考虑单向密封,防止空气进人电池内部,同时防止内部水蒸气在较高温度下跑掉。 5)AGM隔膜 隔膜孔隙率和厚度均匀性,直接影响隔膜吸酸饱和度和装配压缩比,从而影响电池寿命和容量均匀性。 6)壳盖材料 VRLA电池壳盖材料有PP、ABS和PVC,PP材料相对较好。 7)酸量和化成工艺 分为电池化成和槽化成两种,电池化成可以定量注酸并记录每个电池单体化成全过程数据,能准确判断每个出厂电池综合生产质量状况,但化成时间较长。槽化成是对极板化成,化成时间短,极板化成较充分,但对电池组装质量不能通过化成过程数据记录判断。 8)涂板工艺 涂板工艺要保证极板厚度和每片极板活性物质的均匀性。 9)密封技术 VRLA电池密封技术包括极柱密封、壳盖材料透水性、壳盖密封和安全阀密封。 10)氧复合效率 AGM电池具有良好的氧复合效率,贫液状态下按有关标准测试氧复合效率一般大于98%,因此具有良好的免维护性能。 2.影响蓄电池寿命的环境因素 1)环境温度 蓄电池正常运行的温度是20~40℃,最佳运行温度是25℃。当温度每升高5℃,蓄电池的使用寿命降低10%,且容易发生热失控。 2)环境湿度 蓄电池的运行湿度应该在5~95%(不结露)之间,环境湿度过高,会在蓄电池表面结露,容易出现短路;环境湿度过低,容易产生静电。 3)灰尘 灰尘过多,容易使蓄电池短路,安全阀堵塞失效。 3.蓄电池失效模式 1)电池失水

减反射技术和减反射原理

减反射原理和减反射技术 3.1 硅材料的光学特性 晶体硅材料的光学特性,是决定晶体硅太阳电池极限效率的关键因素,也是太阳电池制造工艺设计的依据。 3.1.1 光在硅片上的反射、折射和透射 照射到硅片表面的光遵守光的反射、折射定律。如图3.1所示,表面平整的硅片放置在空气中, 有一束强度为0I 的光照射前表面时,将在入射点O 发生反射和折射。以0 I '表示反射光强度,1I 表示折射光强度。这时入射角φ等于反射角r ,并且 n n v c v c v v ''''sin sin ===φφ (3-1) 图3-2 光在半导体薄片上的反射、折射和透射 图3-3 计算表面反射的二维模型 Fig 3-2 Light reflection, infraction and Fig 3-3 2D model for surface reflection transition on semiconductor sheet. calculate. 式中φ'为入射光进入硅中的折射角,v 、'v 分别为空气及硅中的光速,n 、' n 分别为空气及硅的折射率,c 为真空中的光速。任何媒质的折射率都等于真空中的光速与该媒质中的光速之比。 1I 在硅片内的另一个表面以角度φ''发生入射及反射,反射光强度以1I '表示,强度为2I 的光在o '点沿与法线N N '成φ角度的方向透射出后表面。 定义反射光强度0 I '与入射光强度0I 之比为反射率,以R 表示;透射光强度2I 与入射光强度0I 之比为透射率,以T 表示。当介质材料对光没有吸收时,1=+R T 。半导体材料对光有吸收作用,因此,还要考虑材料对光的吸收率。 光垂直入射到硅片表面时,反射率可以表示为:

太阳电池减反射膜系统的研究

文章编号:025420096(2001)0320317205 太阳电池减反射膜系统的研究 ① 王永东,崔容强,徐秀琴 (上海交通大学应用物理系太阳能研究所,上海200240) 摘 要:减反射膜系的制备对于高效空间太阳电池来说非常重要,对其进行优化设计可以大幅度地提高太阳电池的短路电流,从而提高太阳电池的光电转换效率。从波动光学的基本原理出发,用加权平均反射率作为评价膜系设计质量的参数,编制出了进行减反射膜系优化设计的计算机程序,理论上可以使太阳电池表面的加权平均反射率降到1%以下,提高了电池的短路电流。关键词:太阳电池,减反射膜,加权平均反射率中图分类号:TM615 文献标识码:A 0 引 言 投射到太阳电池阵正面的太阳能辐射通量(阳光)中,部分被该表面反射掉了,部分透射到电池内部(通过太阳电池盖片进入太阳电池),被转换为电能。通常情况下,裸硅表面的反射率相当大,可将入射太阳光的30%以上反射掉,为了最大限度地减小正面的反射损失,目前主要有两种方法,一是将电池表面腐蚀成绒面,增加光与半导体表面作用的次数,二是镀上一层或多层光学性质匹配良好的减反射膜。对空间太阳电池来说,由于其工作环境的特殊要求,为降低工作温度提高效率,应尽可能减少太阳电池对太阳光谱中红外成分的吸收,而绒面对各波段的减反射效果都很好,这样就升高了太阳电池的工作温度,不利于提高其效率。因此对空间太阳电池来说,主要是通过减反射膜系的制备来提高太阳电池的转换效率。一般来说,这类涂层极薄,其光学厚度为波长的四分之一或二分之一。单层减反射膜由于仅对单一波长具有较好的减反射效果,在空间高效太阳电池中常用的是多层减反射膜系,它可对宽谱范围内的太阳辐照产生有效的减反射效果。国内已有一些专家对其进行了理论和实践上研究[1,9]。但是在已有的膜系设计研究中,需要先选定一个中心波长λ0,然后针对此波长点进行减反射膜的优化设计,这个中心波长的选取对设计结果有很大的影响,目前都是根据经验来选取的。本文从 相干光学的基本原理出发,选取了恰当的膜系评价 函数,通过理论分析和计算机优化计算,设计出了实用的软件,可对太阳电池进行单层或多层减反射膜系进行优化设计,从理论上得到减反射膜系各层膜的最佳参数。对硅太阳电池来说,理论上在最佳参 数情况下,在0.35~1.2μm 的波长范围内,该膜系的加权平均反射率可达0.48%。 1 理论计算 1.1 反射定律 光波是一种电磁波,在分层介质中的传播是电 磁波的传播,满足麦克斯韦电磁理论。太阳电池表面的减反射膜由于其光学厚度小于相干光程,在薄膜的上下界面将产生光的干涉现象,减反射作用就是利用光的干涉效应来实现的。 在进行减反射膜的设计时,为简化计算,我们通常要作如下假定: 1)薄膜在光学上是各向同性介质对于电介质,其特性可用折射率n 表征,且为实数;对于金属和半导体,其特性可用复折射率N =n -ik 来表征,k 为消光系数。 2)两个邻接的介质用一个数学界面分开,在这 个数学分界面两边折射率发生不连续的跃变。 3)膜层的横向尺寸假定为无限大,而膜层的厚度是光的波长数量级。 当光束从折射率为N 1的介质入射到折射率为   第22卷 第3期 2001年7月 太 阳 能 学 报ACT A E NERGIAE S O LARIS SINICA V ol 122, N o 13 Jaln ,2001 ①收稿日期:2000206221

铅酸蓄电池的原理与性能

. 铅酸蓄电池的原理与性能 一、铅酸蓄电池的工作原理 蓄电池是一种化学电源,它的构造可以是各式各样的,可是从原理上讲所有的电池都是由正极、负极、电解质、隔离物和容器组成的,其中正负两极的活性物质和电解质起电化反应,对电池产生电流起着主要作用,如图4-1所示。 在电池内部,正极和负极通过电解质构成电池的内电路,在电池外部接通两极的导线和负荷构成电池的外电路。 在电极和电解液的接触面有电极电位产生,不同的两极活性物质产生不同的电极电位,有着较高电位的电极叫做正极,有着较低电位的电极叫做负极,这样在正负极之间产生了电位差,当外电路接通时,就有电流从正极经过外电路流向负极,再由负极经过内电路流向正极,电池向外电路输送电流的过程,叫做电池的放电。 在放电过程中,两极活性物质逐渐消耗,负极活性物质 1.电解质 2.负极 3.容量 4.正极 5.隔离物 6.导线 7.负荷 图4-1 电池构造示意图 放出电子而被氧化,正极活性物质吸收从外电路流回的电子而被还原,这样负极电位逐渐升高,正极电位逐渐降低,两极间的电位差也就逐渐降低,而且由于电化反应形成新的化合物增加了电池的内阻,使电池输出电流逐渐减少,直至不能满足使用要求时,或在外电路两电极之间端电压低于一定限度时,电池放电即告终。 电池放电以后,用外来直流电源以适当的反向电流通入,可以使已形成的新化合物还原成为原来的活性物质,而电池又能放电,这种用反向电流使活性物质还原的过程叫做充电。 蓄电池可以反复多次充电、放电,循环使用,使用寿命长,成本较低,能输出较大的能量,放电时电压下降很慢。 1.电动势的产生 铅蓄电池的正极是二氧化铅(PbO 2),负极是绒状铅(Pb),它们是两种不同的活性物质,故和稀硫酸(H 2SO 4)起化学作用的结果也不同。在未接通负载时,由于化学作用 使正极板上缺少电子,负极板上却多余电子,如图4-2所 图4-2 铅蓄电池电势产生过程 示,两极间就产生了一定的电位差。 2.放电过程的化学反应 当外电路接上负载(比如灯泡)后,铅蓄电池在正、负极板间电位差(电动势)的作用下,电流Ⅰ从正极流出,经负载流向负极,也就是说,负极上的电子经负载进入正极,如图4-3。同时在蓄电池内部产生化学反应:

增透膜的原理及应用

增透膜的原理及应用 陕西省安塞县安塞高级中学物理教研组贺军 摘要:在光学元件中,由于元件表面的反射作用而使光能损失,为了减少元件表面的反射损失,常在光学元件表面镀层透明介质薄膜,这种薄膜就叫增透膜。本文分别从能量守恒的角度对增透膜增加透射的原理给予定性分析;根据菲涅尔公式和折射定律对增透膜增加透射的原理给予定量解释;利用电动力学的电磁理论对增透膜增加透射的原理给予理论解释。同时对增透膜的研究和应用现状作一介绍。 关键词:增透膜;干涉;增透膜材料;镀膜技术 1前言 在日常生活中,人们对光学增透膜的理解,存在着一些模糊的观念。这些模糊的观念不仅在高中生中有,而且在大学生中也是存在的。例如,有不少人认为入射光从增透膜的上、下表面反射后形成两列反射光,因为光是以波的形式传播的,这两列反射光干涉相消,使整个反射光减弱或消失,从而使透射光增强,透射率增大。然而他们无法理解:反射回来的两列光不管是干涉相消还是干涉相长,反射光肯定是没有透射过去,因增加了一个反射面,反射回来的光应该是多了,透射过去的光应该是少了,这样的话,应当说增透膜不仅不能增透,而且要进一步减弱光的透射,怎么是增强透射呢?也有人对增透膜的属性和技术含量不甚了解,对它进行清洁时造成许多不必要的损坏。随着人类科学技术的飞速发展,增透膜的应用越来越广泛。因此,本文利用光学及其他物理学知识对增透膜原理给以全面深入的解释,同时对增透膜的研究和应用现状作一介绍。让人们对增透膜有一个全面深入的了解,进而排除在应用时的无知感和迷惑感。 2增透原理 2.1 定性分析 光学仪器中,光学元件表面的反射,不仅影响光学元件的通光能量;而且这些反射光还会在仪器中形成杂散光,影响光学仪器的成像质量。为了解决这些问题,通常在光学元件的表面镀上一定厚度的单层或多层膜,目的是为了减小元件表面的反射光,这样的膜叫光学增透膜(或减反膜)。 这里我们首先从能量守恒的角度对光学增透膜的增透原理给予分析。一般情况下,当光入射在给定的材料的光学元件的表面时,所产生的反射光与透射光能量确定,在不考虑吸收、散射等其他因素时,反射光与透射光的总能量等于入射光的能量。即满足能量守恒定律。当光学元件表面镀膜后,在不考虑膜的吸收及散射等其他因素时,反射光和透射光与入射光仍满足能量守恒定律。而所镀膜的作用是使反射光与透射光的能量重新分配。对增透膜而言,分配的结果使反射光的能量减小,透射光的能量增大。由此可见,增透膜的作用使得光学元件表面反射光与透射光的能量重新分配,分配的结果是透射光能量增大,反射光能量减小。光就有这样的特性:通过改变反射区的光强可以改变透射区的光强。 2.2 定量描述光从一种介质反射到另一种介质时,在两种介质的交界面上将发生反射和折射,把 反射光强度与入射光强度的比值叫做反射率。用表示,,和分别表示反射光和入射光的振幅。 设入射的光强度为1,则反射光的强度为,在不考虑吸收及散射情况下,折射光的强度为(1-ρ)。根据菲涅尔公式和折射定律可知:当入射角很小时,光从折射率n1的介质射向折射率n2介质,反射率 (1) 例如光线由很小的入射角从空气射入折射率为 1.8的介质时,则反射率为

电动汽车电池的分类及性能参数

电动汽车电池的分类及性能参数 电池的分类 电动汽车用电池为化学电源,它的分类方法很多。按电解液分为: a.碱性电池。即电解液为碱性水溶液的电池; b.酸性电池。即电解液为酸性水溶液的电池; c.中性电池。即电解液为中性水溶液的电池; d.有机电解质溶液电池。即电解液为有机电解质溶液的电池。 按活性物质的存在方式分为: a.活性物质保存在电极上。可分为一次电池(非再生式,原电池)和 二次电池(再生式,蓄电池); b.活性物质连续供给电极。可分为非再生燃料电池和再生燃料电池。按电池的某些特点分为: a.高容量电池; b.免维护电池; c.密封电池; d.燃结式电池; e.防爆电池; f.扣式电池、矩形电池、圆柱形电池等。 尽管由于化学电源品种繁多,用途广泛,外形差别大,使上述分类方法难以统一,但习惯上按其工作性质及存贮方式不同,一般分为四类: a. 一次电池

一次电池,又称“原电池”,即放电后不能用充电的方法使它复原的电池。换言之,这种电池只能使用一次,放电后电池只能被遗弃了。这类电池不能再充电的原因,或是电池反应本身不可逆,或是条件限制使可逆反应很难进行。如: 锌锰干电池 Zn│NH4Cl·ZnCl2│MnO2(C) 锌汞电池 Zn│KOH│HgO 银锌电池 Zn│KOH│Ag2O b.二次电池 二次电池,又称“蓄电池”,即放电后又可用充电的方法使活性物质复原而能再次放电,且可反复多次循环使用的一类电池。这类电池实际上是一个化学能量贮存装置,用直流电将电池充足,这时电能以化学能的形式贮存在电池中,放电时,化学能再转换为电能。如:铅酸电池 Pb│H2SO4│PbO2 镍镉电池 Cd│KOH│NiOOH 镍氢电池 H2│KOH│NiOOH 锂离子电池 LiCoO2│有机溶剂│6C 锌空气电池 Zn│KOH│O2(空气) c.贮备电池 贮备电池,又称“激活电池”,是正、负极活性物质和电解液不直接接触,使用前临时注入电解液或用其他方法使电池激活的一类电池。这类电池的正、负极活性物质的化学变质或自放电,因与电解液的隔离而基本上被排除,从而使电池能长时间贮存。如:镁银电

铅酸蓄电池的主要性能指标

铅酸蓄电池的主要性能指标 1. 铅酸蓄电池的主要性能指标 (1)安全性能 安全性能指标不合格的蓄电池是不可接受的,其中影响最大的是爆炸和漏液。爆炸和漏液的发生主要与蓄电池的内压、结构、工艺设计(比如安全阀失效)及应当禁止的不正确操作有关。 (2)额定容量 为了蓄电池的容量,定义了蓄电池的额定容量。额定容量是蓄电池制造的时候,规定蓄电池在一定的放电条件下应该放出的最低限度的电量,其单位为Ah。使用条件不同,蓄电池能够放出的容量也不同。规定的蓄电池放电条件为: ①蓄电池放电电流。一般所说的就是放电率,针对蓄电池放电电流的大小分别有时间率和电流率。放电时间率是指在一定的放电条件下放电到终止电压的时间长短。依据IEC标准,放电率分别为20小时率、10小时率、5小时率、3小时率、2小时率、1小时率、0.5小时率等。蓄电池的额定容量用C来表示,以不同的放电率得到的蓄电池的容量会不同。 ②放电终止电压。放电电流不同,终止放电电压也不相同。随着放电的进行,蓄电池的端电压会逐步下降。在25℃条件下放电到能够再次反复充电使用的最低电压称为放电终止电压。放电率不同,放电终止电压也不相同。一般为10小时率放电的终止电压多数为1.8V/单格,以2小时率方电的终止电压一般为1.75V/单格。低于这个电压时,虽然可以放出稍微多一点的电量,但是容易形成再次充电的容量下降,所以除非特殊情况,不要放电到终止电压。 ③放电温度。需电池在低温时的放电容量小,高温时的容量大,为了统一放电容量就规定了放电温度。 ④蓄电池的实际容量。蓄电池的实际容量反应蓄电池实际存储电量的多少,单位用安时表示(Ah)表示。同样安时数越大,则蓄电池的容量就越大,电动自行车的续行里程就越远。在使用过程中,蓄电池的实际容量会逐步衰减。国家标准规定新出厂的蓄电池的实际容量大于额定容量者为合格蓄电池。如现在市场上电动自行车的蓄电池,以恒定电流5A放电要超过2h,相当于电动自行车在平坦的路上连续行驶2h以上。 影响蓄电池容量的因素有极板的构造、充放电电流的大小、电解液的温度及密度等,其中以充放电电流和温度的影响最大。如充放电流过大,将使极板上的活性物质变化处于表面,容量则降低很多。蓄电池的放电电流不同,所能够放出的容量也不相同,放电电流越大,能够放出的电量越小。例如电动自行车常用的电流为5A,使用标称10Ah的蓄电池就是2小时率放电,如果采用10小时率放电,可以达到12Ah。这样,该蓄电池如果按照2小时率标称应该是10Ah,如果按照10小时率标称就是12Ah.所以评价蓄电池的容量不仅仅要看蓄电池的标称容量,还要看蓄电池的放电率。电动自行车蓄电池往往标称为10Ah,同一个蓄电池也可以标12Ah和14Ah。再比如,14Ah的许电车也可以标为17Ah。还有一些蓄电池标为20Ah,蓄电池容量标称值大了,但是其容量没有明显的变化。 (3)内阻 蓄电池的内阻是指电流流过蓄电池内部时所受的阻力,铅酸蓄电池的内阻很小,需要用专门的仪器才可以测得到比较准确的结果。一般所指的蓄电池内阻是充电态内阻,即蓄电池充满电时的内阻。与之对应的是放电态内阻,并且不太稳定。蓄电池的内阻越大,蓄电池自身消耗掉的能量越多,其使用效率越低。内阻很大的蓄电池在充电时发热很厉害,使蓄电池的温度急剧上升,对蓄电池和充电器的影响都很大。随着蓄电池使用次数的增多,由于电解液的消耗及蓄电池内部化学物质活性的降低,蓄电池的内阻会有不同程度的增大,质量越差的蓄电池增大的越快。 蓄电池内部阻抗会因放电量增加而增大,尤其是在放电终止时阻抗最大,主要因为放电的进行使得极板内产生不良导体硫酸铅以及电解液比重下降,故放电后务必马上充电。若任其持续放电,则硫酸铅形成安定的白色结晶(即硫化现象)后,即使充电,极板的活性物质亦无法恢复原状,从而将缩短蓄电池的使用寿命。 温度的下降将导致电解液流动性变差,极板收缩,化学变化迟缓,蓄电池内阻增加。从30℃开始,若温度下降1℃,容量将下降1%左右,其内阻也有所增大。所以在严寒地区,气温在-20℃以下时容量已下降至60%,内阻增大,常感到蓄电池电力不足。在严寒地区易出现过量放电,而在温带地区则经常出现过量充电的问题。所以要使用好蓄电池,必须根据当地的气候条件,针对实际情况,掌握其使用规律。蓄电池的充电必须根据不同情况选择适当的方法并正确的使用充电设备,这样才能提高蓄电池的容量,延长蓄电池的使用寿命。 铅酸蓄电池的内阻与镍氢蓄电池及锂离子蓄电池相比较小,即蓄电池容量下降2/3后,仍能提供较大的电流,而电源电压基本稳定,波动较小。而镍氢蓄电池及锂离子蓄电池就不同了。以36V/9Ah锂离子蓄电池为例,当容量下降到原来的1/3后,电流输出为12A时,电压就会有4~5V的波动,即有电流输出时为31V,无电流输出时接近35V。这样在电动自行车应用中,骑行时会出现运行不平稳,时而有输出时而无输出的现象。 (4)循环寿命 循环寿命是指蓄电池可经历的重复充放电次数。蓄电池的寿命和容量成反比关系,循环寿命还与充放电条件密切相关,一般充电电流越大(充电速度越快),循环寿命越短。 寿命是表示蓄电池容量衰减速度的一项指标,随着使用的深入,蓄电池容量的衰减是不可避免的,当容量衰减到某规定值时,

(整理)铅酸蓄电池的性能检测

铅酸蓄电池的性能检测 一、容量 电池容量是指在规定条件下测得的并由制造商宣称的电池容量值。实际上是在规定 温度下,以一定电流放电一定时间,当达到规定的终止电压时,所能给出的电量,用C 表示,以安时(Ah)为单位。 ⑴起动电池的容量 a. 额定储备容量,用Cr.n表示,其值应符合GB/T 5008.2-2008标准的规定。 b. 实际储备容量,用Cr.e表示,其值应在第3次或之前的储备容量试验时,达到额定储备容量用Cr.n。 c. 20h率额定容量,用C20表示,其值应符合GB/T 5008.2-2008标准的规定。 d. 实际容量,用Ce表示,其值应在第3次或之前的容量试验时,应不低于额定容量C20的95%。 ⑵牵引电池的容量 a. 额定容量,用C5表示,在30℃温度下放电5h,放电电流是C5/5(A),放电至单体电压1.70V,所给出的电量(Ah),其值应符合GB/T 7403.1-2008标准的规定。 b. 实际容量,用Ce表示,在规定条件下,电池所能放出的电量(Ah),其值应在第1次容量试验时应不低于额定容量C5的85%。实际容量在前10次容量试验内至少有1次 达到额定容量。 ⑶内燃机车用排气式电池的容量 电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.1-2008标准的规定。 ⑷内燃机车用阀控密封式电池的容量 电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.2-2008标准的规定。

⑸铁路客车用电池的容量 a. 额定容量,用C10、C5、C1表示,其容量值在进行容量试验时要达到额定值,在3次试验中有1次合格为合格,应符合GB/T 13281-2008标准的规定。 b. 实际容量,用Ce表示,即在规定条件下测得的电池实际放电容量。 c. 低温容量,用Cd表示,电池在零下40℃环境中静置8h,以I10(A)电流放电至单体电压1.60V,计算其容量,低温容量Cd与常温容量C10、C5、C1的比值不少于0.4(>40%)。 ⑹固定型防酸式电池的容量 C10容量在第1次循环不低于0.90C10,第5次循环应达到C10;C1和1.0C容量分别在第7次、第9次循环达到额定值,应符合GB/T 13337.1-2008标准的规定。 ⑺固定型阀控密封式电池的容量 C10容量在第1次循环不低于0.95C10,第3次循环应达到C10、C3、C1,应符合GB/T 19638.1-2008的规定。 ⑻小型阀控密封式电池的容量 C20容量应符合GB/T 19639.2-2008的规定。实际容量Ce在第5次充/放循环内应不低于C20。 ⑼电动道路车辆用电池的容量 a. 额定容量,用C3表示,第1次放电容量应不低于0.85C3,第10次放电容量或之前放电容量应达到C3,应符合GB/T 18332.1-2008的规定。 b. 低温容量,用Cd表示,电池在零下18℃环境中静置24h,以I3(A)电流放电至单体电压1.40V,其容量应不低于0.5C3。 ⑽电动助力车用密封式电池的容量 a. 额定容量,用C2表示,应在第3次循环内达到。 b. 实际容量,用Ca表示,应符合GB/T 22199-2008的规定。

相关主题
文本预览
相关文档 最新文档