当前位置:文档之家› 图像语义特征的提取与分析

图像语义特征的提取与分析

图像语义特征的提取与分析
图像语义特征的提取与分析

特征选择与特征提取

模式类别的可分性判据 在讨论特征选择和特征压缩之前,我们先要确定一个选择和提取的原则。对一个原始特征来说,特征选择的方案很多,从N 维特征种 选择出M 个特征共有()!!! M N N C M N M = -中选法,其中哪一种方案最佳, 则需要有一个原则来进行指导。同样,特征的压缩实际上是要找到M 个N 元函数,N 元函数的数量是不可数的,这也要有一个原则来指导找出M 个最佳的N 元函数。 我们进行特征选择和特征提取的最终目的还是要进行识别,因此应该是以对识别最有利原则,这样的原则我们称为是类别的可分性判据。用这样的可分性判据可以度量当前特征维数下类别样本的可分性。可分性越大,对识别越有利,可分性越小,对识别越不利。 人们对的特征的可分性判据研究很多,然而到目前为止还没有取得一个完全满意的结果,没有哪一个判据能够完全度量出类别的可分性。下面介绍几种常用的判据,我们需要根据实际问题,从中选择出一种。 一般来说,我们希望可分性判据满足以下几个条件: 1. 与识别的错误率由直接的联系,当判据取最大值时,识别的错误率最小; 2. 当特征独立时有可加性,即: ()()121 ,,,N ij N ij k k J x x x J x ==∑

ij J 是第i 类和第j 类的可分性判据,ij J 越大,两类的可分程度 越大,()12,,,N x x x 为N 维特征; 3. 应具有某种距离的特点: 0ij J >,当i j ≠时; 0 ij J =,当i j =时; ij ji J J =; 4. 单调性,加入新的特征后,判据不减小: ()()12121,,,,,,,ij N ij N N J x x x J x x x x +≤ 。 但是遗憾的是现在所经常使用的各种判据很难满足上述全部条件,只能满足一个或几个条件。 基于矩阵形式的可分性判据 1. 类内散度矩阵 设有M 个类别,1,,M ΩΩ ,i Ω类样本集()()(){}12,,,i i i i N X X X ,i Ω类 的散度矩阵定义为: () ()() ( )()() ( ) 1 1i N T i i i i i w k k k i S N == --∑X m X m 总的类内散度矩阵为: ()() ()() () ()() () () 1 1 1 1 i N M M T i i i i i w i w i k k i i k i S P S P N ==== Ω= Ω--∑∑∑X m X m 2. 类间散度矩阵 第i 个类别和第j 个类别之间的散度矩阵定义为: () () () ( )() () ( ) T ij i j i j B S =--m m m m 总的类间散度矩阵可以定义为:

图像颜色特征提取原理

一、颜色特征 1 颜色空间 1.1 RGB 颜色空间 是一种根据人眼对不同波长的红、绿、蓝光做出锥状体细胞的敏感度描述的基础彩色模式,R、 G、B 分别为图像红、绿、蓝的亮度值,大小限定在 0~1 或者在 0~255。 1.2 HIS 颜色空间 是指颜色的色调、亮度和饱和度,H表示色调,描述颜色的属性,如黄、红、绿,用角度 0~360度来表示;S 是饱和度,即纯色程度的量度,反映彩色的浓淡,如深红、浅红,大小限定在 0~1;I 是亮度,反映可见光对人眼刺激的程度,它表征彩色各波长的总能量,大小限定在 0~1。 1.3 HSV 颜色模型 HSV 颜色模型依据人类对于色泽、明暗和色调的直观感觉来定义颜色, 其中H (Hue)代表色度, S (Saturat i on)代表色饱和度,V (V alue)代表亮度, 该颜色系统比RGB 系统更接近于人们的经验和对彩色的感知, 因而被广泛应用于计算机视觉领域。 已知RGB 颜色模型, 令M A X = max {R , G, B },M IN =m in{R , G,B }, 分别为RGB 颜色模型中R、 G、 B 三分量的最大和最小值, RGB 颜色模型到HSV 颜色模型的转换公式为: S =(M A X - M IN)/M A X H = 60*(G- B)/(M A X - M IN) R = M A X 120+ 60*(B – R)/(M A X - M IN) G= M A X 240+ 60*(R – G)/(M A X - M IN) B = M A X V = M A X 2 颜色特征提取算法 2.1 一般直方图法 颜色直方图是最基本的颜色特征表示方法,它反映的是图像中颜色的组成分布,即出现了哪些颜色以及各种颜色出现的概率。其函数表达式如下: H(k)= n k/N (k=0,1,…,L-1) (1) 其中,k 代表图像的特征取值,L 是特征可取值的个数,n k是图像中具有特征值为 k 的象素的个数,N 是图像象素的总数。由上式可见,颜色直方图所描述的是不同色彩在整幅图像中所占的比例,无法描述图像中的对象或物体,但是由于直方图相对于图像以观察轴为轴心的旋转以及幅度不大的平移和缩放等几何变换是不敏感的,而且对于图像质量的变化也不甚敏感,所以它特别适合描述那些难以进行自动分割的图像和不需要考虑物体空间位置的图像。 由于计算机本身固有的量化缺陷,这种直方图法忽略了颜色的相似性,人们对这种算法进行改进,产生了全局累加直方图法和局部累加直方图法。 2.2 全局累加直方图法 全局累加直方图是以颜色值作为横坐标,纵坐标为颜色累加出现的频数,因此图像的累加直方空间 H 定义为:

图象视觉特征的提取与表示

第1章图像视觉特征的提取和表示 1.1引言 图像视觉特征的提取和表示是将图像的视觉信息转化成计算机能够识别和处理的定量形式的过程,是基于视觉内容的图像分类与检索的关键技术,因此,图像视觉特征的提取和表示一直是图像内容分析领域中一个非常活跃的课题。 图像底层视觉特征一定程度上能够反映图像的内容,可以描述图像所表达的意义,因此,研究图像底层视觉特征是实现图像分类与检索的第一步。一般来说,随着具体应用的不同,选用的底层特征也应有所不同,在特定的具体应用中,不同底层视觉特征的选取及不同的描述方式,对图像分类与检索的性能有很大的影响。通常认为,一种良好的图像视觉特征的提取和表示应满足以下几个要求: (1)提取简单,时间和空间复杂度低。 (2)区分能力强,对图像视觉内容相似的图像其特征描述之间也应相近,反之,对于视觉内容不相似的图像其特征描述之间应有一定的差别。 (3)与人的视觉感知相近,对人的视觉感觉相近的图像其特征描述之间也相近,对人的视觉感知有差别的图像其特征描述之间也有一定的差别。 (4)抗干扰能力强,鲁棒性好,对图像大小,方向不敏感,具有几何平移,旋转不变性。 本章重点讨论当前比较成熟的特征提取方法,在此基础上选取合适的特征提取方法,用于图像分类与检索系统的特征提取模块。接下来,将依次介绍颜色,纹理,形状等特征的提取和表示方法,最后对各种特征的特点加以比较。 1.2颜色特征的提取和表示 颜色是图像视觉信息的一个重要特征,是图像分类与检索中最为广泛应用的特征之一。一般来说同一类别的图像之间颜色信息具有一定的相似性,不同类别的图像,其颜色信息具有一定的差异。相对几何特征而言,颜色特征稳定性好,有对大小、方向不敏感等特点。因此,颜色特征的提取受到极大重视并得到深入研究。本章首先介绍几种常用的颜色空间模型,然后介绍各种颜色特征提取和表示方法。 1.2.1颜色空间模型 为了正确地使用颜色这一特征,需要建立颜色空间模型,通常的颜色空间模型可用三个基本量来描述,所以建立颜色空间模型就是建立一个3-D坐标系,其中每个空间点都代表某一种颜色。通常来说,对于不同的应用,应该选取不同的颜色空间模型。常用的颜色空间模型主要有:RGB、HIS、HSV、YUV、YIQ、Munsell、Lu*v*和La*b*等。颜色空间模型的选取需要符合一定的标准,下面就这一标准和最常用的颜色空间模型作一些介绍。 文献[错误!未找到引用源。]中介绍了选择颜色空间模型的标准主要有以下几个: (1)观察角度的鲁棒性

关于图像特征提取

关于图像特征提取 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 特征的定义 至今为止特征没有万能和精确的定义。特征的精确定义往往由问题或者应用类型决定。特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。因此一个算法是否成功往往由它使用和定义的特征决定。因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 有时,假如特征提取需要许多的计算时间,而可以使用的时间有限制,一个高层次算法可以用来控制特征提取阶层,这样仅图像的部分被用来寻找特征。 由于许多计算机图像算法使用特征提取作为其初级计算步骤,因此有大量特征提取算法被发展,其提取的特征各种各样,它们的计算复杂性和可重复性也非常不同。 边缘 边缘是组成两个图像区域之间边界(或边缘)的像素。一般一个边缘的形状可以是任意的,还可能包括交叉点。在实践中边缘一般被定义为图像中拥有大的梯度的点组成的子集。一些常用的算法还会把梯度高的点联系起来来构成一个更完善的边缘的描写。这些算法也可能对边缘提出一些限制。 局部地看边缘是一维结构。 角 角是图像中点似的特征,在局部它有两维结构。早期的算法首先进行边缘检测,然后分析边缘的走向来寻找边缘突然转向(角)。后来发展的算法不再需要边缘检测这个步骤,而是可以直接在图像梯度中寻找高度曲率。后来发现这样有时可以在图像中本来没有角的地方发现具有同角一样的特征的区域。 区域 与角不同的是区域描写一个图像中的一个区域性的结构,但是区域也可能仅由一个像素组成,因此许多区域检测也可以用来监测角。一个区域监测器检测图像中一个对于角监测器来说太平滑的区域。区域检测可以被想象为把一张图像缩小,然后在缩小的图像上进行角检测。 脊 长条形的物体被称为脊。在实践中脊可以被看作是代表对称轴的一维曲线,此外局部针对于每个脊像素有一个脊宽度。从灰梯度图像中提取脊要比提取边缘、角和区域困难。在空中摄影中往往使用脊检测来分辨道路,在医学图像中它被用来分辨血管。 特征抽取 特征被检测后它可以从图像中被抽取出来。这个过程可能需要许多图像处理的计算机。其结果被称为特征描述或者特征向量。 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特

图像特征提取总结

图像常见特征提取方法简介 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一、颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1)颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。 (4)颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。(5)颜色相关图 二纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3-D物体表面真实

图像语义分析与理解综述

*国家自然科学基金资助项目(N o .60875012,60905005) 收稿日期:2009-12-21;修回日期:2010-01-27 作者简介 高隽,男,1963年生,教授,博士生导师,主要研究方向为图像理解、智能信息处理、光电信息处理等.E m a i:l gao j un @hfut .edu .cn .谢昭,男,1980年生,博士,讲师,主要研究方向为计算机视觉、智能信息处理、模式识别.张骏,女,1984年生,博士研究生,主要研究方向为图像理解、认知视觉、机器学习.吴克伟,男,1984年生,博士研究生,主要研究方向为图像理解、人工智能. 图像语义分析与理解综述 * 高 隽 谢 昭 张 骏 吴克伟 (合肥工业大学计算机与信息学院合肥 230009) 摘 要 语义分析是图像理解中高层认知的重点和难点,存在图像文本之间的语义鸿沟和文本描述多义性两大关键问题.以图像本体的语义化为核心,在归纳图像语义特征及上下文表示的基础上,全面阐述生成法、判别法和句法描述法3种图像语义处理策略.总结语义词汇的客观基准和评价方法.最后指出图像语义理解的发展方向.关键词 图像理解,语义鸿沟,语义一致性,语义评价中图法分类号 T P 391.4 I m age Se m antic Anal ysis and Understandi ng :A R eview GAO Jun ,XI E Zhao ,Z HANG Jun ,WU Ke W ei (S chool of C o m puter and Infor m ation,H e fei University o f T echnology,H efei 230009) ABSTRACT Se m antic ana l y sis is the i m portance and diffi c u lty of high level i n terpretati o n i n i m age understandi n g ,i n wh ich there are t w o key issues of text i m age se m an tic gap and tex t descri p ti o n po lyse m y .Concentrating on se m antizati o n o f i m ages onto logy ,three soph i s tica ted m et h odolog ies are round l y rev ie w ed as generati v e ,d iscri m ina ti v e and descriptive gra mm ar on the basis of conc l u d i n g i m ages se m antic fea t u res and context expression .The ob jective benchm ark and eva l u ation for se m an tic vocabu lary are i n duced as w e l.l F i n ally ,the summ arized directions fo r furt h er researches on se m antics i n i m age understand i n g are discussed i n tensively .K ey W ords I m age Understanding ,Se m antic G ap ,Se m an tic Consistency ,Se m an tic Evalua ti o n 1 引 言 图像理解(I m age Understandi n g ,I U )就是对图像的语义解释.它是以图像为对象,知识为核心,研 究图像中何位置有何目标(what is w here)、目标场景之间的相互关系、图像是何场景以及如何应用场景的一门科学.图像理解输入的是数据,输出的是知 识,属于图像研究领域的高层内容[1-3] .语义(Se 第23卷 第2期 模式识别与人工智能 V o.l 23 N o .2 2010年4月 PR &A I A pr 2010

图像特征提取方法

图像特征提取方法 摘要 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 至今为止特征没有万能和精确的图像特征定义。特征的精确定义往往由问题或者应用类型决定。特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。因此一个算法是否成功往往由它使用和定义的特征决定。因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。当光差图像时,常 常看到的是连续的纹理与灰度级相似的区域,他们相结合形成物体。但如果物体的尺寸很小 或者对比度不高,通常要采用较高的分辨率观察:如果物体的尺寸很大或对比度很强,只需 要降低分辨率。如果物体尺寸有大有小,或对比有强有弱的情况下同事存在,这时提取图像 的特征对进行图像研究有优势。 常用的特征提取方法有:Fourier变换法、窗口Fourier变换(Gabor)、小波变换法、最 小二乘法、边界方向直方图法、基于Tamura纹理特征的纹理特征提取等。

设计内容 课程设计的内容与要求(包括原始数据、技术参数、条件、设计要求等):一、课程设计的内容 本设计采用边界方向直方图法、基于PCA的图像数据特征提取、基于Tamura纹理特征的纹理特征提取、颜色直方图提取颜色特征等等四种方法设计。 (1)边界方向直方图法 由于单一特征不足以准确地描述图像特征,提出了一种结合颜色特征和边界方向特征的图像检索方法.针对传统颜色直方图中图像对所有像素具有相同重要性的问题进行了改进,提出了像素加权的改进颜色直方图方法;然后采用非分割图像的边界方向直方图方法提取图像的形状特征,该方法相对分割方法具有简单、有效等特点,并对图像的缩放、旋转以及视角具有不变性.为进一步提高图像检索的质量引入相关反馈机制,动态调整两幅图像相似度中颜色特征和方向特征的权值系数,并给出了相应的权值调整算法.实验结果表明,上述方法明显地优于其它方法.小波理论和几个其他课题相关。所有小波变换可以视为时域频域的形式,所以和调和分析相关。所有实际有用的离散小波变换使用包含有限脉冲响应滤波器的滤波器段(filterbank)。构成CWT的小波受海森堡的测不准原理制约,或者说,离散小波基可以在测不准原理的其他形式的上下文中考虑。 通过边缘检测,把图像分为边缘区域和非边缘区域,然后在边缘区域内进行边缘定位.根据局部区域内边缘的直线特性,求得小邻域内直线段的高精度位置;再根据边缘区域内边缘的全局直线特性,用线段的中点来拟合整个直线边缘,得到亚像素精度的图像边缘.在拟合的过程中,根据直线段转角的变化剔除了噪声点,提高了定位精度.并且,根据角度和距离区分出不同直线和它们的交点,给出了图像精确的矢量化结果 图像的边界是指其周围像素灰度有阶跃变化或屋顶变化的那些像素的集合,边界广泛的存在于物体和背 景之间、物体和物体之间,它是图像分割所依赖的重要特征.边界方向直方图具有尺度不变性,能够比较好的 描述图像的大体形状.边界直方图一般是通过边界算子提取边界,得到边界信息后,需要表征这些图像的边 界,对于每一个边界点,根据图像中该点的梯度方向计算出该边界点处法向量的方向角,将空间量化为M级, 计算每个边界点处法向量的方向角落在M级中的频率,这样便得到了边界方向直方图. 图像中像素的梯度向量可以表示为[ ( ,),),( ,),)] ,其中Gx( ,),),G ( ,),)可以用下面的

语义图像检索研究进展

语义图像检索研究进展 【摘要】本文探讨了基于语义图像检索相关技术,并且通过对语义图像检索技术的了解,我们讨论了语义图像检索存在的问题与其的发展方向。本文的研究具有重要的理论价值,同时为语义图像检索的发展起到启迪的作用。 【关键词】语义;图像检索;研究;进展 一、前言 在当今社会发展不断快捷的今天,人们有时候需要快速地检索出自己需要的图像,但是现在的图像信息是巨大的,这时候我们就需要某项技术能够帮助人们更快的找到我们需要的图像,基于语义的图像检索技术就是检索图像的方式之一,相信通过对其的研究能够达到更好的图像检索效果。 二、基于语义图像检索相关技术 1、图像语义模型 由于人们对图像内容的理解有着不同的层次,有人从图像的颜色去理解,有人从图像的对象去理解,也有人从图像所表现出来的行为去理解,也就是说图像的语义是具有不同层次的。王惠锋、孙正兴在他们的文章中给出了一个图像语义层次模型所示。他们把图像的语义定义为六个层次,从上到下依次为,特征语义,是指图像低层物理特征(颜色、形状、纹理)及其之间的相互组合,如蓝色的天空、红色的太阳;对象语义,是指图像当中出现的具有一定意义的对象,如一条狗、一座山;空间关系语义,是指图像各个对象之间的空间关系,如人旁边有条狗,狗旁边有只猫;场景语义,是指所有图像中对象所在的背景环境,如学校、森林;行为语义,是指图像内容所表现出的某种行为。 2、图像语义表示 如何描述图像的语义对语义的提取以及检索的效率有着十分重要的影响。语义的表示不仅要把图像的内容准确而客观的描述出来,对不同的内容有着不同的抽象,而且表示形式应当尽量简单、直观,同时考虑不同用户的不同需求。目前图像语义的表示方法大概有以下几种。 (1)文本形式。文本形式是最简单,也是最直观的图像语义表示方法。它是用关键字对整幅图像或图像的区域进行注解,另外还可以利用WordNet[26]将关键字之间的语义关系联系起来,而且它具有一定地同义词解析以及模糊匹配的能力。目前大多数的图像检索系统都是采用这种方法来表示图像语义的,比如IRIS 系统。但其不足之处也相当明显,它对具有复杂丰富内容的图像显得无能为力,而且自动获取这些关键字也存在着相当大的困难。 (2)知识表示方法。它是基于人工智能中的一些知识表示方法,如语义网

图像特征提取与分析复习资料

图像分割概念:图像分割就是把图像分成各特性的区域并提取出感兴趣目标的技术和过程。这些区域互相不交叉,每一个区域都满足特定区域的一致性。医学图像的特点:成像设备的局限性、组织的蠕动-----伪影和噪声局部体效应------组织边缘模糊病变组织---------病变边缘不明确不均匀的组织器官-------灰度不均匀模糊、不均匀、个体差异、复杂多样医学图像分割方法的特点1、分割算法一般面向具体的分割任务,没有通用的方法2、重视多种分割算法的有效结合3、需要利用医学中大量领域的知识4、交互式分割方法受到日益重视图像分割算法基于区域的分割方法基于边缘的分割方法基于数学形态学的分割方法灰度阈值法:灰度值域法是把图像的灰度分成不同的等级,然后用设置灰度阈值的方法确定有意义的区域或分割物体的边界. 令f(x,y)原始图像 阈值的选取:1直方图法(极小值点阈值) 2 最小误差阈值 3 迭代阈值分割 4 最大方差阈值分割边缘检测(Edge Detection):基本思想是先检测图像中的边缘点,再按照某种策略将边缘沿点连接成轮廓,从而构成分割区域。边缘:指图像局部亮度变化显著的部分. 边缘的检测方法:最简单的边缘检测方法是并行微分算子法。利用相邻区域的像素值不连续的性

质,采用一阶或二阶导数来检测边缘点。一阶导数求极值点,二阶导数求过零点。一阶梯度算子:Roberts交叉算子Sobel算子 Priwitt 算子二阶拉普拉斯算子:在此基础上LoG 算子 Canny算子 :推导了最优边缘检测算子区域生长(region growing) 基本思想:将具有相似性质的像素集合起来构成区域。具体步骤:先对每个需要分割的区域找一个种子象素作为生长的起点,然后将种子象素周围邻域中与种子象素具有相同或相似性质的像素(根据某种事先确定的生长或相似准则来判定)合并到种子象素所在的区域中。将这些新象素当作新的种子象素继续进行上面的过程,直到在没有满足条件的像素可被包括进来。这样一个区域就生长了。解决的问题:① 如何选择一组能正确代表所需区域的种子象素; ② 如何确定在生长过程中能将相邻象素包括近来的准则;③如何确定生长终止的条件或规则例如:每一步所接受的邻近点的灰度级与先前物体的平均灰度级相差小于2。起始第二步第三步558655865586 48974897 4897 228322832283 333333333333 分裂合并(splitting and merging) 基本思想:从整幅图像开始通过不断分裂得到各个区域.具体步骤:先把图像分成任意大小且不重叠的区域,然后再合并或分裂这些区域以满足

基于语义的图像低层可视特征提取及应用

———————————— 基金项目基金项目::国家自然科学基金资助项目“基于语义网的多源地学空间数据融合与挖掘研究”(41174007)。 作者简介作者简介::韩冬梅(1961-),女,教授、博士生导师,主研方向:图像特征提取,数据挖掘,语义网;王 雯,博士研究生;李博斐,硕士研究生。 收稿日期收稿日期::2013-09-09 修回日期修回日期::2013-11-21 E-mail :wangwen_1010@https://www.doczj.com/doc/3111240303.html, 基于语义的图像低层可视特征提取及应用 韩冬梅1,2,王 雯1,李博斐1 (1. 上海财经大学信息管理与工程学院,上海 200433;2. 上海市金融信息技术研究重点实验室,上海 200433) 摘 要:为实现图像低层可视特征提取及其智能语义推理,从遥感图像解译入手,结合灰度共生矩阵和模糊C 均值分类器提取图像纹理特征。构造基于灰度形态学的多尺度多结构元素边缘检测算子,提取特征知识。构建基于断层带的多源地学数据语义推理模型。以成都附近的断层为研究对象,进行语义推理验证,其解译结果与专家实地解译情况相符,初步验证该模型的可行性,使图像的机器分析结果更加贴近专业人员的目视解译,为地学研究数字化和遥感图像解译信息化提供参考。 关键词关键词::语义网;纹理特征;边缘特征;语义推理;灰度共生矩阵;多源地学数据 Extraction and Application of Image Low-level Visual Features Based on Semantics HAN Dong-mei 1,2, WANG Wen 1, LI Bo-fei 1 (1. School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai 200433, China ; 2. Shanghai Key Laboratory of Financial Information Technology, Shanghai 200433, China) 【Abstract 】In order to realize extraction of image low-level visual features and semantic reasoning, this paper starts from remote sensing image explanations, combines Gray Level Co-occurrence Matrix(GLCM) and Fuzzy C-Means(FCM) classifier to extract texture feature, then detects edge by multi-scale and multi-structuring elements based on grayscale morphology, finally constructs multi-sources geological data based on the fault zone and uses the Chengdu parcels to test and verify the model. The results completely coincide with the expert’s field studies, which demonstrates the feasibility of this model, makes the results of machine analysis closer to results of visual interpretation, and provides valuable preferences fordigitalization of the earth science study and informationization of image interpretation. 【Key words 】semantic Web; texture feature; edge feature; semantic reasoning; Gray Level Co-occurrence Matrix(GLCM); multi-source geosciences data DOI: 10.3969/j.issn.1000-3428.2014.03.051 计 算 机 工 程 Computer Engineering 第40卷 第3期 V ol.40 No.3 2014年3月 March 2014 ·图形图像处理图形图像处理·· 文章编号文章编号::1000-3428(2014)03-0244-05 文献标识码文献标识码::A 中图分类号中图分类号::TP391.41 1 概述 随着语义网与地质学研究的深入,具有地理特征指向性的遥感图像分析日趋完善。然而,现有的图像分析大多存在对研究结果的主观依赖性,如何实现遥感图像特征与地理构造语义的自动匹配就成为一个研究难点。 关于遥感图像低层可视特征提取方面的研究,目前大多数是基于纹理特征的图像特征分析。纹理特征是对图像灰度分布函数的统计[1]。多种用以测量纹理的特征分析算法被陆续提出,大体可分为统计分析、结构分析、模型分析、变换分析方法4类[2]。其中,结构分析方法的应用比较有限,只适用于对一些常规的纹理进行分析;统计分析方法有灰度共生矩阵[3]、游程长度矩阵[4];模型分析方法有自相关[5]、马尔可夫随机场模型[6]、分形[7]。变换分析方法有小波变换 法[8]、滤波变换分析[9]等。其中,应用最为广泛、处理效果较好的是灰度共生矩阵算法。 遥感图像边缘特征提取方面,常用的边缘检测算法可以做如下分类:基于微分或者二阶微分计算的传统算子[10],这类算子在处理时往往要和一定的图像去噪工作结合使 用;基于滤波算法的新兴算子,如Hough 变换和小波变换,这类算法的效果虽然有很大提高,但是算法的构造和处理过程非常复杂,实用性和实时性较差[11]。交叉学科知识构造的创新型算法,将原本未使用在图像分析领域中的其他学科的模型或者建模思想引入到边缘检测中,其中最具代表性的当属基于数学形态学的边缘检测算法[11]。 遥感图像特征的提取离不开语义的解释[12]。文献[13]针对图像目标与特征集之间难以对应的问题,提出一种基于概率潜在语义分析的层次化目标表述方法。文献[14]提出

(完整版)图像特征特点及常用的特征提取与匹配方法

图像特征特点及常用的特征提取与匹配方法 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1) 颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2) 颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡 的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3) 颜色矩

模式识别特征选择与提取

模式识别特征选择与提取 中国矿业大学计算机科学与技术学院电子信息科学系 班级:信科11-1班,学号:08113545,姓名:褚钰博 联系方法(QQ或手机):390345438,e-mail:390345438@https://www.doczj.com/doc/3111240303.html, 日期:2014 年06月10日 摘要 实际问题中常常需要维数约简,如人脸识别、图像检索等。而特征选择和特征提取是两种最常用的维数约简方法。特征选择是从某些事物中提取出本质性的功能、应用、优势等,而特征提取是对特征空间进行变换,将原始特征空间映射到低维空间中。 本文是对主成分分析和线性判别分析。 关键词:特征选择,特征提取,主成分分析,线性判别分析 1.引言 模式识别的主要任务是利用从样本中提取的特征,并将样本划分为相应的模式类别,获得好的分类性能。而分类方法与分类器设计,都是在d(变量统一用斜体)维特征空间已经确定的前提下进行的。因此讨论的分类器设计问题是一个选择什么准则、使用什么方法,将已确定的d维特征空间划分成决策域的问题。对分类器设计方法的研究固然重要,但如何确定合适的特征空间是设计模式识别系统另一个十分重要,甚至更为关键的问题。如果所选用的特征空间能使同类物体分布具有紧致性,即各类样本能分布在该特征空间中彼此分割开的区域内,这就为分类器设计成功提供良好的基础。反之,如果不同类别的样本在该特征空间中混杂在一起,再好的设计方法也无法提高分类器的准确性。本文要讨论的问题就是特征空间如何设计的问题。 基于主成分分析的特征选择算法的思想是建立在这样的基础上的:主成分分析方法将原始特征通过线性变换映射到新的低维空间时,获得的主成分是去了新的物理意义,难以理解,并且主成分是所有原始特征的线性组合。所以将主成分分析与特征选择相结合,设计多种相似性度量准则,通过找到与主成分相关的关键特征或者删除冗余、不相关以及没有意义的特征,将主成分又重新映射到原始空间,来理解成主成分的实际意义。 基于线性判别分析的高维特征选择将单个特征的Fisher准则与其他特征选择算法相结合,分层消除不相关特征与冗余特征。不相关特征滤波器按照每个特征的Fisher评价值进行特征排序,来去除噪音和不相关特征。通过对高维数据特征关联性的分析,冗余特征滤波器选用冗余度量方法和基于相关性的快速过滤器算法。分别在不同情境下进行数据分类实验,验证其性能。

图像特征特点及其常用的特征提取与匹配方法

图像特征特点及其常用的特征提取与匹配方法 [ 2006-9-22 15:53:00 | By: 天若有情 ] 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1)颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(m ean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。(4)颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。 (5)颜色相关图 二纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局

WEB图像语义特征的分析与提取研究及实现【文献综述】

毕业设计文献综述 计算机科学与技术 WEB图像语义特征的分析与提取研究及实现 一、前言部分 随着网络和多媒体技术的发展,在互联网上出现了海量的WEB图像。基于内容的图像检索技术(CBIR)得到了蓬勃发展,但是传统的CBIR系统没有考虑图像的语义信息。另一方面,由于WEB图像的特征维数高,运算复杂度高,从提高检索精度或分类正确率的角度而言,都不可能将所有提取的特征都能用于检索或分类。在提取多种图像语义特征的基础上,提出采用互信息的方法分别研究单一的语义特征和多种特征组合的鉴别力,并分析特征之间的互补或冗余关系,从而进行特征的选择。因此,对图像语义特征进行分析和提取成为这一领域最前沿的研究热点之一。 基于内容的图像检索希望采用图像处理与计算机视觉技术自动地从图像中获得语义内容。由于图像语义的内在复杂性,目前还难以实现对图像语义的自动提取。语义特征的提取,现在只是将图像的底层视觉特征映射到高层语义。但不管如何,图像的底层特征的提取始终是关键。而目前图像的特征提取主要从颜色、纹理、形状等几个方面提取图像的特征。 颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质[1]。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。提取颜色特征常用的方法是利用颜色直方图表示图像颜色的分布特点,另外还有颜色集、颜色矩、颜色聚合向量和颜色相关图等表示图像的颜色特征,每一种表示方法各有其优缺点。 纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法

图像特征提取总结

图像常见xx方法简介 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一、颜色特征 (一)特点: 颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。 一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。 由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的xx与匹配方法 (1)颜色直方图 其优点在于: 它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于: 它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间: RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:

直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。 在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于: 图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。 (4)颜色聚合向量 其核心思想是: 将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。 (5)颜色相关图 二纹理特征 (一)特点: 纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行

相关主题
文本预览
相关文档 最新文档