当前位置:文档之家› 数值分析第一次作业

数值分析第一次作业

数值分析第一次作业
数值分析第一次作业

数值分析专题报告——数值微分

专业:农业工程 姓名:杨文学 学号:2014812077

1 数值微分的用处

数值微分主要通过测量函数一些离散点的值来求得函数的近似导数,对于一些基本的初等函数我们可以用求导公式直接求出,但对于以下几种情况,可能就要用到数值微分的思想了。

① 只给出函数的图像

② 给出表格,一些离散点和它的函数值

③ 一些比较复杂的函数,不能用求导公式直接求出

在解决实际问题中,数值微分也发挥着重要的作用,如解决地下水的寻找问题,图像处理中的边界识别问题,物理学中的波普的波峰问题,当然还有其他学科其他领域,无论科学研究还是实际运用,都是非常重要的。

2 数值微分的内容

值微分就是用离散方法近似地计算函数在某点的导数值,若f (x )在x=A 可导,根据导数的定义,可以用差商近似代替微商(导数),有以下几种数值微分公式

f ′(a) ≈

(1)

f ′(a) ≈ (2)

f ′(a) ≈ (3)

(h >0且足够小)分别称为向前差分,向后差分,中心差分。

高阶导数也可用差商法求得, 例如二阶导数公式为

f ′′(a) ≈

(4)

f ( a + h ) - f ( a )h

f ( a ) - f ( a - h )

h

f ( a + h ) - f ( a - h )

2 h

2

f ( a + h ) - 2 f ( a ) + f ( a - h )

h

2.1误差分析

对于(1)式向前差分,用Taylor 公式展开,出现截断误差:存在ξ∈[]h +a ,a

a ξ a+h 2

f ()()'()()''()()/2!

x f a f a x a f x a ξ=+-+-

2f ()()'()''()/2!a h f a f a h f h ξ+=++

代入(1)式 G (h )= ,有

R(x) = f ′(a)﹣G (h )=()''()h /2!=O f h ξ 同理也可得向后差分的截断误差:

a-h ξ a

R(x) = f ′(a)﹣G (h )=()''()h /2!=O f h ξ

由于中心差分精度较高,下面对其做细致分析。首先计算导数f ′(a)的近似

值,首先必须选取合适的步长,为此需要进行误差分析。分别将f (a ±h )在x= a 处做泰勒展开

代入(3)式得

由此得知,从截断误差的角度看,步长越小,计算结果越准确,下面有截断误差

其中 但是不是步长越小越好呢?其实并不是这样的,我们对y = e x 这个函数来进

行分析,选取不同的步长来算f ′(1.15),观察误差变化规律,确定最佳步长。

f ( a + h ) - f ( a )

h

()()()

()234545f()=()'()''()'''()2!3!4!5!

h h h h a h f a hf a f a f a f a f a ±±+±+±+???()

()245G()='()'''()3!5!h h h f a f a f a +++???

2

|'()()|6

h f a G h M -≤||max |'''()|x a h M f x -≤≥

表 2-1 计算结果

解 用中心差商表示的数值微分计算公式得到: h f ′(1.15) error h f ′(1.15) error 0.1 3.1630 -0.0048 0.09 3.1622 -0.0040 0.08 3.1613 -0.0031 0.07 3.1607 -0.0025

0.06 3.1600 -0.0018 0.05 3.1590 -0.0008 0.04 3.1588 -0.0006 0.03 3.1583 -0.0001 0.02 3.1575 -0.0007

0.01 3.1550 -0.0032

事实上,f ′(1.15)=3.1582,可以看出不是步长越小越好,因为我们还要考虑一个舍入误差,当h 很小时,因f (a + h )与f (a – h )很接近,直接相减会造成有效数字的严重损失,从舍入误差分析,不易过小。下面我们分析舍入误差:

当f (a + h )及f (a -h )分别有舍入误差1ε及2ε,令ε=max{|1ε|,|2ε|},则计算舍入误差的上界为

可以看出h 越小,舍入误差越大,是病态的。所以计算f ′(a)的误差上界为 要使误差最小,用导数,单调性知识分析,当3h=3/M ε,误差E (h )最小

2.2 插值型数值微分

有时候我们会碰到函数y = f (x )以列表形式给出,我们就可以用插值的思想来近似建立一个多项式P n (x )来代替f (x ),但函数值差不多,导数值可能差别很大,所以我们要考虑误差。依据插值余项定理,求导公式的余项为

式中

在这余项中,ξ是x 的未知函数,我们无法对第二项 做

12||||('())|'()()|2f a f a G a h h

εεε

δ+=-≤

=2()6h E h M h

ε

=+

()()

(1)(1)11()()

'()'()'()(1)!1!n n n n n w x f d f x p x w x f n n dx

ξξ++++-=+++10

()()

n

n i i w x x x +==∏-()()(1)

1()1!n n w x d f n dx ξ+++

出进一步说明,导致整个误差也无法估计。但求某个节点x k 的导数,第二项因式w n+1(k )= 0 ,这时有余项公式 (5)

下面我们仅考察节点处的导数,假设所给节点是等距的。

1. 两点公式

设给出点x 0,x 1上函数值f (x 0),f (x 1),做线性插值得 令x 1—x 0 =h ,对上式两端求导,有

于是有下列求导公式:

而利用余项(5)知,带余项的两点公式是

2. 三点公式

设已给出三个节点x 0,x 1= x 0+h ,x 2= x 0+2h 上的函数值,做二次插值

令x=x 0 + th ,上式可表达为 对两端t 求导,有

对t 分别取t=0,1,2,得到3种三点公式:

(1)k k 1k ()

'()'()'()

(1)!

n n n f f x p x w x n ξ++-=+()()01

1010110

()x x x x P x f x f x x x x x --=

+--()()1011

'()P x f x f x h =

-+???

?()()10101'()P x f x f x h =-????()()11101

'()P x f x f x h

=-????()()0101'()''()2h

f x f x f x f h ξ=

--????()()1101'()''()2

h f x f x f x f h ξ=-+????()0201122012010210122021()()()()()()

()()()

()()()()()()

x x x x x x x x x x x x P x f x f x f x x x x x x x x x x x x x ------=

++------()2001211

(1)(2)()(2)()(1)()22

P x th t t f x t t f x t t f x +=

--+-+-()200121

'[(23)()(44)()(21)()]2P x th t f x t f x t f x h

+=

---+-

亦可求得带余项的三点公式:

2.3样条插值微分

三次样条函数S (x )作为f (x )的近似,不但数值接近,导数值也很接近,并有

()(

)

(4)

4

||()()||||||,0

,1,2k k

k k f x S x C

f h k -∞∞

-≤= (3.1) 利用三次样条函数S (x )直接得到

()(

)

()(),0,1,2

k k f x S x k ≈=

可求得

这里 为一阶均差,其误差可由(3.1)式可得

()200121

'[3()4()()]2P x f x f x f x h =

-+-()21021

'[()()]

2P x f x f x h =-+()220121

'[()4()3()]

2P x f x f x f x h =-+()2

001201'[3()4()()]'''()

23h f x f x f x f x f h ξ=-+-+()2

10211'[()()]'''()

26h f x f x f x f h ξ=-+-()2

201221'[()4()3()]'''()

23h f x f x f x f x f h ξ=-++11'()'()[,]36

k k

k k k k k k h h f x S x M M f x x ++≈=--+''()k k

f x M =1[,]k k f x x +(4)3

1

||''||||||24

f S f h ∞∞-≤(4)2

3||''''||||||8

f S f h ∞∞-≤

2.4数值微分的外推法

利用第一个方法中点公式计算导数值时可以看到有

下面对f (x )在x 处做泰勒展开

2412'()()f x G h h h αα=+++???

12i ααα???,可以对照法1获知,但这里与h 无关,利用理查德森外推法对h 分半,若记G 0(h )=G (h ),则有

可以从下表2-4来观察计算过程

表2-4 外推过程

114()()

2(),1,2,41

m m m m m

h

G G h G h m ---==???-f ( a + h ) - f ( a - h )

'()() 2 h

f x G h ≈=

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

数值分析第四章数值积分与数值微分习题答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 011431313A h A h A h -?=?? ? =?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

令4()f x x =,则 455 1012()5 2 ()(0)()3 h h h h f x dx x dx h A f h A f A f h h ---== -++=? ? 故此时, 101()()(0)()h h f x dx A f h A f A f h --≠-++? 故 101()()(0)()h h f x dx A f h A f A f h --≈-++? 具有3次代数精度。 (2)若 21012()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1014h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 2211163 h h A h A -=+ 从而解得 1143 8383A h A h A h -?=-?? ? =?? ?=?? 令3 ()f x x =,则 22322()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

清华大学数值分析A第一次作业

7、设y0=28,按递推公式 y n=y n?1? 1 100 783,n=1,2,… 计算y100,若取≈27.982,试问计算y100将有多大误差? 答:y100=y99?1 100783=y98?2 100 783=?=y0?100 100 783=28?783 若取783≈27.982,则y100≈28?27.982=0.018,只有2位有效数字,y100的最大误差位0.001 10、设f x=ln?(x? x2?1),它等价于f x=?ln?(x+ x2?1)。分别计算f30,开方和对数取6位有效数字。试问哪一个公式计算结果可靠?为什么? 答: x2?1≈29.9833 则对于f x=ln x?2?1,f30≈?4.09235 对于f x=?ln x+2?1,f30≈?4.09407 而f30= ln?(30?2?1) ,约为?4.09407,则f x=?ln?(x+ x2?1)计算结果更可靠。这是因为在公式f x=ln?(x? x2?1)中,存在两相近数相减(x? x2?1)的情况,导致算法数值不稳定。 11、求方程x2+62x+1=0的两个根,使它们具有四位有效数字。 答:x12=?62±622?4 2 =?31±312?1 则 x1=?31?312?1≈?31?30.98=?61.98 x2=?31+312?1= 1 31+312?1 ≈? 1 ≈?0.01613

12.(1)、计算101.1?101,要求具有4位有效数字 答:101.1?101= 101.1+101≈0.1 10.05+10.05 ≈0.004975 14、试导出计算积分I n=x n 4x+1dx 1 的一个递推公式,并讨论所得公式是否计算稳定。 答:I n=x n 4x+1dx 1 0= 1 4 4x+1x n?1?1 4 x n?1 4x+1 dx= 1 1 4 x n?1 1 dx?1 4 x n?1 4x+1 dx 1 = 1 4n ? 1 4 I n?1,n=1,2… I0= 1 dx= ln5 1 记εn为I n的误差,则由递推公式可得 εn=?1 εn?1=?=(? 1 )nε0 当n增大时,εn是减小的,故递推公式是计算稳定的。

数值分析试卷及其答案

1、(本题5分)试确定7 22 作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22 =3.142857…=1103142857 .0-? π=3.141592… 所以 312102 11021005.0001264.0722--?=?=<=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22 作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3102 1 0005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:??? ?? ??=????? ??????? ??--654131*********x x x ; 解 设???? ? ??????? ? ?????? ??===????? ??--11111 1 131321112323121 32 132 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,215 27 ,25,2323121321- ==-== -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23 ,97,910(,)563, 7,4(== (3分) 3、(本题6分)给定线性方程组???????=++-=+-+=-+-=-+17 7222382311387 510432143213 21431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

数值分析作业答案

数值分析作业答案 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange插值基底。 (3)用Newton基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为: , 所以: 所以f(x)的二次插值多项式为: (2)用Lagrange插值基底 Lagrange插值多项式为: 所以f(x)的二次插值多项式为: (3) 用Newton基底: 均差表如下: xk f(xk) 一阶均差二阶均差 1 0 -1 -3 3/2 2 4 7/ 3 5/6 Newton插值多项式为: 所以f(x)的二次插值多项式为: 由以上计算可知,三种方法得到的多项式是相同的。 6、在上给出的等距节点函数表,若用二次插值求ex的近似值,要使截断误差不超过10-6,问使用函数表的步长h应取多少? 解:以xi-1,xi,xi+1为插值节点多项式的截断误差,则有 式中 令得 插值点个数

是奇数,故实际可采用的函数值表步长 8、,求及。 解:由均差的性质可知,均差与导数有如下关系: 所以有: 15、证明两点三次Hermite插值余项是 并由此求出分段三次Hermite插值的误差限。 证明:利用[xk,xk+1]上两点三次Hermite插值条件 知有二重零点xk和k+1。设 确定函数k(x): 当或xk+1时k(x)取任何有限值均可; 当时,,构造关于变量t的函数 显然有 在[xk,x][x,xk+1]上对g(x)使用Rolle定理,存在及使得 在,,上对使用Rolle定理,存在,和使得 再依次对和使用Rolle定理,知至少存在使得 而,将代入,得到 推导过程表明依赖于及x 综合以上过程有: 确定误差限: 记为f(x)在[a,b]上基于等距节点的分段三次Hermite插值函数。在区间[xk,xk+1]上有 而最值 进而得误差估计: 16、求一个次数不高于4次的多项式,使它满足,,。

数值分析第一次作业

数值分析第一次作业 班级 学号 姓名 习题2 4、用Newton法求方程f(x)=x^3-2*x^2-4*x-7=0在[3,4]中的根。 代码: function[x_star,k]=Newton1[fname,dfname,x0,ep,Nmax] if nargin<5 Nmax=500; end if nargin<4 ep=1e-5;end x=x0;x0=x+2*ep;k=0; while abs(x0-x)>ep&kep&k

x0=x1; x1=x2; end x_star=x1; if k==Nmax warning('已迭代上限次数');end fun=inline('x^3-2*x^2-4*x-7'); [x_star,k]=Gline(fun,3,4) x2 = 3.5263 x2 = 3.6168 x2 = 3.6327 x2 = 3.6320 x2 = 3.6320 x_star = 3.6320 k = 5 习题3

数值分析试题答案

数值分析试题答案 1、构造拉格朗日插值多项式(X)p 逼近3 (x)f x =,要求 (1)取节点011,1x x =-=作线性插值 (2)取节点0121,0,1x x x ===作抛物插值 答案:(1)代入方程得 0110 10010 1,1(x)y (x x )x y y y y p x x =-=-=+ -=- (2)代入方程得 1202011220120102101220210.1(x x )(x x )(x x )(x x )(x x )(x x ) (x)y x (x x )(x x )(x x )(x x )(x x )(x x )y y p y y ==------= ++=------ 2、给出数据点:01234 39 61215 i i x y =?? =? 用1234,,,x x x x 构造三次牛顿插 值多项式3 () N x ,并计算 1.5x =的近似值3(1.5)N 。 33333133.15()93(1) 4.5(1)(2)2(1)(2)(3)(1.5) 5.6250, ()36 4.5(1)3(1)(2)(1.5)7.5000, 1.54 (1.5)(1.5)((1.5)(1.5)) 1.17194 N x x x x x x x N N x x x x x x x N R f N N N =+-+------==+--+--=-=-≈ -=四(分) 3、已知 分别用拉格朗日插值法和牛顿插值法求)(x f 的三次插值多项式)(3x P ,并求)2(f 的近似值(保留四位小数)。 答案: )53)(43)(13() 5)(4)(1(6 )51)(41)(31()5)(4)(3(2 )(3------+------=x x x x x x x L

数值分析第一次作业及参考答案

数值计算方法第一次作业及参考答案 1. 已测得函数()y f x =的三对数据:(0,1),(-1,5),(2,-1), (1)用Lagrange 插值求二次插值多项式。(2)构造差商表。(3)用Newton 插值求二次插值多项式。 解:(1)Lagrange 插值基函数为 0(1)(2)1 ()(1)(2)(01)(02)2 x x l x x x +-= =-+-+- 同理 1211 ()(2),()(1)36 l x x x l x x x = -=+ 故 2 20 2151 ()()(1)(2)(2)(1) 23631 i i i p x y l x x x x x x x x x =-==-+-+-++=-+∑ (2)令0120,1,2x x x ==-=,则一阶差商、二阶差商为 011215 5(1) [,]4, [,]20(1) 12 f x x f x x ---= =-= =----- 0124(2) [,,]102 f x x x ---= =- 实际演算中可列一张差商表: (3)用对角线上的数据写出插值多项式 2 2()1(4)(0)1*(0)(1)31P x x x x x x =+--+-+=-+ 2. 在44x -≤≤上给出()x f x e =的等距节点函数表,若用二次插值求x e 的近似值,要使 截断误差不超过6 10-,问使用函数表的步长h 应取多少 解: ()40000(), (),[4,4],,,, 1.x k x f x e f x e e x x h x x h x x th t ==≤∈--+=+≤考察点及

(3) 2000 4 43 4 3 () ()[(()]()[()] 3! (1)(1) (1)(1) 3!3! .(4,4). 6 f R x x x h x x x x h t t t e t h th t h e h e ξ ξ =----+ -+ ≤+??-= ≤∈- 则 4 36 ((1)(1) 100.006. t t t h - -+± << Q在点 得 3.求2 () f x x =在[a,b]上的分段线性插值函数() h I x,并估计误差。 解: 22 22 11 1 111 22 11 11 1 () () k k k k h k k k k k k k k k k k k k k k k k k x x x x x x I x x x x x x x x x x x x x x x x x x x x x ++ + +++ ++ ++ + --- =+= --- ?-? -=+- - [] 2 11 22 11 ()()()[()] 11 ()() 44 h h k k k k k k k k R x f x I x x x x x x x x x x x x x h ++ ++ =-=-+- =--≤-= 4.已知单调连续函数() y f x =的如下数据 用插值法计算x约为多少时() 1. f x=(小数点后至少保留4位) 解:作辅助函数()()1, g x f x =-则问题转化为x为多少时,()0. g x=此时可作新 的关于() i g x的函数表。由() f x单调连续知() g x也单调连续,因此可对() g x的数值进行反插。的牛顿型插值多项式为 1()0.110.097345( 2.23)0.451565( 2.23)( 1.10) 0.255894( 2.23)( 1.10)(0.17) x g y y y y y y y - ==-+++++ -++-

数值分析参考答案(第四章)

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 01 1431313A h A h A h -?=?? ?=?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++= 故 101()()(0)()h h f x dx A f h A f A f h --=-++? 成立。 令4 ()f x x =,则

数值分析整理版试题及答案

数值分析整理版试题及答案

例1、 已知函数表 x -1 1 2 ()f x -3 0 4 求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。 解: (1)k x -1 1 2 k y -3 0 4 插值基函数分别为 ()()()()()()()()()() 1200102121()1211126 x x x x x x l x x x x x x x ----= ==-------- ()()()()()()()() ()()021******* ()1211122x x x x x x l x x x x x x x --+-= ==-+---+- ()()()()()()()()()()0122021111 ()1121213 x x x x x x l x x x x x x x --+-= ==-+--+- 故所求二次拉格朗日插值多项式为 () ()()()()()()()()()()2 20 2()11131201241162314 121123537623k k k L x y l x x x x x x x x x x x x x ==?? =-? --+?-+-+?+-????=---++-=+-∑ (2)一阶均差、二阶均差分别为

[]()()[]()()[][][]010********* 011201202303 ,11204 ,412 3 4,,5 2,,126 f x f x f x x x x f x f x f x x x x f x x f x x f x x x x x ---===-----= = =----=== --- k x ()k f x 一阶 二阶 -1 -3 1 0 3/ 2 2 4 4 5/6 故所求Newton 二次插值多项式为 ()()[]()[]()() ()()()20010012012,,,35 311126537623P x f x f x x x x f x x x x x x x x x x x x =+-+--=-+ +++-=+- 例2、 设2 ()32f x x x =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{} span 1,x Φ=的最佳平方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,且()1x ρ=,这样,有

数值分析作业答案part

6.4.设??? ? ? ??=5010010a b b a A ,0det ≠A ,用a ,b 表示解线性方程组f Ax =的雅可比迭代与 高斯—塞德尔迭代收敛的充分必要条件。 解 雅可比迭代法的迭代矩阵 ? ??? ??? ? ??----=???? ? ??----????? ??=-050100100100000001010101 a b b a a b b a B J , ?? ? ?? -=-1003||2ab B I J λλλ,10||3)(ab B J = ρ。 雅可比迭代法收敛的充分必要条件是3 100 ||

数值分析作业答案(第4章) part2

4.6.若用复化梯形公式计算积分1 x I e dx =? , 问区间[0,1]应人多少等分才能使截断误差不超过 51 102 -??若改用复化辛普森公式,要达到同样精度区间[0,1]应分多少等分? 解:采用复化梯形公式时,余项为 2 ()(),(,)12 n b a R f h f a b ηη-''=- ∈ 又 1 x I e dx =? 故 (),(),0, 1.x x f x e f x e a b ''==== 221()()1212 n e R f h f h η''∴= ≤ 若51 ()102 n R f -≤ ?,则 256 10h e -≤? 当对区间[0,1]进行等分时, 1,h n = 故有 212.85n ≥ = 因此,将区间213等分时可以满足误差要求。 采用复化辛普森公式时,余项为 4(4) ()()(),(,)1802 n b a h R f f a b ηη-=- ∈ 又 (),x f x e = (4)4(4)4 (), 1()|()|28802880 x n f x e e R f h f h η∴=∴=-≤ 若51 ()102 n R f -≤ ?,则 451440 10h e -≤ ?

当对区间[0,1]进行等分时 1n h = 故有 1 54 1440(10) 3.71n e ≥?= 因此,将区间8等分时可以满足误差要求。 4.10.试构造高斯型求积公式 )()()(1 11001 x f A x f A dx x f x +≈? 。 解 令公式对32,,,1)(x x x x f =准确成立,得 ??? ?? ? ??? ??=+=+=+=+,72,52, 32,213103012 1020110010A x A x A x A x A x A x A A ) 4()3()2() 1( 由于 1011001100)()(A x x A A x A x A x -++=+, 利用方程(1),方程(2)可化为 3 2 )(21010= -+A x x x (5) 同样,用方程(2)化方程(3),方程(3)化方程(4),分别得 52 )(3211010=-+A x x x x (6) 7 2 )(52121010=-+A x x x x (7) 用方程(5)消去方程(6)中的101)(A x x -,即将101)(A x x -用023 2 x -代替,得 5 2 )32(32100=-+x x x (8) 用方程(6)消去方程(7)中的1101)(A x x x -,即将1101)(A x x x -用03 2 52x -代替,得

数值分析试卷及其答案1

1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限。(4分) 解: 由已知可知6 5.0102 1 ,0,6,10325413.0016*1=?= =-=?=ε绝对误差限n k k X 2分 620*2102 1 ,6,0,10325413.0-?= -=-=?=ε绝对误差限n k k X 2分 2. 已知?? ???=0 01 A 220- ?????440求21,,A A A ∞ (6分) 解: {}, 88,4,1max 1==A 1分 {}, 66,6,1max ==∞A 1分 () A A A T max 2λ= 1分 ?????=0 1 A A T 4 2 ???? ? -420?????0 01 2 20 - ???? ?440= ?????0 01 80 ???? ?3200 2分 {}32 32,8,1max )(max ==A A T λ

1分 24322==A 3. 设32)()(a x x f -= (6分) ① 写出f(x)=0解的迭代格式 ② 当a 为何值时,)(1k k x x ?=+ (0,1……)产生的序列{}k x 收敛于 2 解: ①迭代格式为: x a x x x a x a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(2 2 32 1 += +=---=-=+? 3 分 ②时迭代收敛即当222,112 10)2(',665)('2<<-<-=-= a a x a x ?? 3分 4. 给定线性方程组,其中:?? ?=13A ?? ?2 2,?? ? ???-=13b 用迭代公式 )()()()1(k k k Ax b x x -+=+α(0,1……)求解,问取什么实数α ,可使 迭代收敛 (8分) 解: 所给迭代公式的迭代矩阵为?? ? --???--=-=ααααα21231A I B 2分

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字. 8. 当N 充分大时,怎样求 2 11N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误 差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 ln(ln(x x =- 计算,求对数时误差有多大?

数值分析第一次作业

问题1:20.给定数据如下表: 试求三次样条插值S(x),并满足条件 (1)S`(0.25)=1.0000,S`(0.53)=0.6868; (2)S ’’(0.25)=S ’’(0.53)=0。 分析:本问题是已知五个点,由这五个点求一三次样条插值函数。边界条件有两种,(1)是 已知一阶倒数,(2)是已知自然边界条件。 对于第一种边界(已知边界的一阶倒数值),可写出下面的矩阵方程。 ????????????????=???????? ?? ??? ???????????????????4321043210343 22 110d M M M M M 2000200 00 02 002 2d d d d λμμλμλμλ 其中μj = j 1-j 1-j h h h +,λi= j 1-j j h h h +,dj=6f[x j-1,x j ,x j+1], μn =1,λ0=1 对于第一种边界条件d 0= 0h 6(f[x 0,x 1]-f 0`),d n =1 -n h 6 (f`n-f `[x n-1,x n ]) 解:由matlab 计算得: 由此得矩阵形式的线性方程组为: ? ?????????????=???????????????????????? ?????? 2.1150-2.4286-3.2667-4.3143-5.5200-M M M M M 25714.0000 120 4286.0000 04000.02 6000.0006429.023571.00 012 432 10 解得 M 0=-2.0286;M 1=-1.4627;M 2= -1.0333; M 3= -0.8058; M 4=-0.6546 S(x)= ??? ????∈-+-+-∈-+-+-∈-+-+-∈-+-+-]53.0,45.0[x 5.40x 9.1087x 35.03956.8.450-x 1.3637-x .5301.67881- ]45.0,39.0[x 9.30x 11.188x 54.010.418793.0-x 2.2384 -x .450(2.87040-]39.0,30.0[x 03.0x 6.9544x 9.30 6.107503.0-x 1.9136-x .3902.708779 -]30.0,25.0[x 5.20x 10.9662x 0.3010.01695.20-x 4.8758-x .3006.76209-333 33 33 3),()()()(),()()()),()()()(),()()()( Matlab 程序代码如下:

数值分析试题及答案.

一、单项选择题(每小题3分,共15分) 1. 和分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110 l x = B . () 00l x =0, ()111 l x = C . () 00l x =1, ()111 l x = D . () 00l x =1, ()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组12312312 20223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A .232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案

二、填空题(每小题3分,共15分) 1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数 ()()() 33301213,88C C C === ,那么() 3 3C = 4. 因为方程 ()420 x f x x =-+=在区间 []1,2上满 足 ,所以 ()0 f x =在区间内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公 式 . 填空题答案

数值分析(第五版)计算实习题第四章作业

第四章: 1、(1):复合梯形 建立m文件: function t=natrapz(fname,a,b,n) h=(b-a)/n; fa=feval(fname,a);fb=feval(fname,b); f=feval(fname,a+h:h:b-h+0.001*h); t=h*(0.5*(fa+fb)+sum(f)); 输入: >> syms x >> f=inline('sqrt(x).*log(x);'); >> natrapz(f,eps,1,10) 输出: ans = -0.417062831779470 输入: >> syms x >> f=inline('sqrt(x).*log(x);'); >> natrapz(f,eps,1,100) 输出: ans = -0.443117908008157 输入: >> syms x >> f=inline('sqrt(x).*log(x);'); >> natrapz(f,eps,1,1000) 输出: ans = -0.444387538997162 复合辛普森 建立m文件: function t=comsimpson(fname,a,b,n)

h=(b-a)/n; fa=feval(fname,a);fb=feval(fname,b); f1=feval(fname,a+h:h:b-h+0.001*h); f2=feval(fname,a+h/2:h:b-h+0.001*h); t=h/6*(fa+fb+2*sum(f1)+4*sum(f2)); 输入: >> syms x >> f=inline('sqrt(x).*log(x);'); >> format long; >>comsimpson(f,eps,1,10) 输出: ans = -0.435297890074689 输入: >>syms x >>f=inline('sqrt(x).*log(x);'); >>comsimpson(f,eps,1,100) 输出: ans = -0.444161178415673 输入: >>syms x >>f=inline('sqrt(x).*log(x);'); >>comsimpson(f,eps,1,1000) 输出: ans = -0.444434117614180 (2)龙贝格 建立m文件: function [RT,R,wugu,h]=Romberg(fun,a,b,wucha,m) %RT是龙贝格积分表 %R是数值积分值 %wugu是误差估计 %h是最小步长 %fun是被积函数 %a b是积分下、上限

数值分析试题及答案

数值分析试题及答案 一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为的近似数具有()和()位有效数字. A.4和3 B.3和2 C.3和4 D.4和4 2. 已知求积公式,则=() A. B.C.D. 3. 通过点的拉格朗日插值基函数满足() A.=0,B.=0, C.=1,D.=1, 4. 设求方程的根的牛顿法收敛,则它具有()敛速。 A.超线性B.平方C.线性D.三次 5. 用列主元消元法解线性方程组作第一次消元后得到的第3个方程(). A.B. C.D. 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得分评卷 人 二、填空题(每小题3分,共15分) 1. 设, 则, . 2. 一阶均差 3. 已知时,科茨系数,那么 4. 因为方程在区间上满足,所以在区间内有根。 5. 取步长,用欧拉法解初值问题的计算公式.填空题答案

1. 9和 2. 3. 4. 5. 得分评卷 人 三、计算题(每题15分,共60分) 1. 已知函数的一组数据:求分段线性插值函数,并计算的近似值. 计算题1.答案 1. 解, , 所以分段线性插值函数为 2. 已知线性方程组 (1)写出雅可比迭代公式、高斯-塞德尔迭代公式; (2)对于初始值,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算(保留小数点后五位数字). 计算题2.答案 1.解原方程组同解变形为 雅可比迭代公式为 高斯-塞德尔迭代法公式 用雅可比迭代公式得 用高斯-塞德尔迭代公式得 3. 用牛顿法求方程在之间的近似根 (1)请指出为什么初值应取2? (2)请用牛顿法求出近似根,精确到0.0001. 计算题3.答案

《数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 );

12、 为了使计算 32)1(6)1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-改写为 199920012 + 。 13、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。 14、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 0.4268 ,用 辛卜生公式计算求得的近似值为 0.4309 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 15、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿插值 多项式为 )1(716)(2-+=x x x x N 。 16、 求积公式?∑=≈b a k n k k x f A x x f )(d )(0的代数精度以( 高斯型 )求积公式为最高,具有 ( 12+n )次代数精度。 17、 已知f (1)=1,f (3)=5,f (5)=-3,用辛普生求积公式求?5 1 d )(x x f ≈( 12 )。 18、 设f (1)=1, f (2)=2,f (3)=0,用三点式求≈')1(f ( 2.5 )。 19、如果用二分法求方程043 =-+x x 在区间]2,1[内的根精确到三位小数,需对分( 10 )次。 20、已知?????≤≤+-+-+-≤≤=31)1()1()1(2110)(2 33x c x b x a x x x x S 是三次样条函数,则 a =( 3 ),b =( 3 ),c =( 1 )。 21、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( 1 ),∑== n k k j k x l x 0 )(( j x ),当2≥n 时 = ++∑=)()3(20 4x l x x k k n k k ( 32 4++x x )。 22、区间[]b a ,上的三次样条插值函数)(x S 在[]b a ,上具有直到_____2_____阶的连续导数。

相关主题
文本预览
相关文档 最新文档