当前位置:文档之家› 第9章 正弦稳态电路的分析

第9章 正弦稳态电路的分析

第9章 正弦稳态电路的分析
第9章 正弦稳态电路的分析

第九章正弦稳态电路的分析

重点:1. 复阻抗、复导纳的概念以及它们之间的等效变换

2. 正弦稳态电路的分析

3. 正弦稳态电路中的平均功率、无功功率、视在功率、复功率、功率因数的概念及计算

4. 最大功率传输

难点:1. 复阻抗和复导纳的概念以及它们之间的等效变换

2. 直流电路的分析方法及定理在正弦稳态电路分析中的应用

3. 正弦稳态电路中的功率与能量关系,如平均功率、无功功率、视在功率、复功率、功率因数的概念及计算。

4. 应用相量图分析电路的方法

本章与其它章节的联系:

本章内容以直流电路的分析和第八章阐述的相量法为基础,正弦稳态电路的分析方法在第10、11、12章节中都要用到。

预习知识:

复数概念和复数运算

§9-1 阻抗和导纳

阻抗和导纳的概念以及对它们的运算和等效变换是线性电路正弦稳态分析中的重要内容。

1. 阻抗

1)阻抗的定义

图9.1所示的无源线性一端口网络,当它在角频率为的正弦电源激励下处于稳定状态时,端口的电压相量和电流相量的比值定义为该一端口的阻抗 Z 。即

单位:Ω

上式称为复数形式的欧姆定律,其中

称为阻抗模,图9.1 无源线性一端口网络

图9.2 等效电路

称为阻抗角。由于 Z 为复数,也称为复阻抗,这样

图9.1所示的无源一端口网络可以用图9.2所示的等效电路表示,所以Z 也称为一端口网络的等效阻抗或输入阻抗。 2)单个元件的阻抗

当无源网络内为单个元件时,等效阻抗分别为:

a 图

b 图

c 图

说明 Z 可以是纯实数,也可以是纯虚数。

a 电阻

b 电容

c 电感

图 9.3 单个元件的网络

3) RLC 串联电路的阻抗 由 KVL 得:

因此,等效阻抗为

图 9.4 RLC 串联电路

其中 R —等效电阻 (阻抗的实部);X —等效电抗(阻抗的虚部);Z 、R 和 X 之间的转换关系为:

图 9.5 阻抗三角形

可以用图 9.5 所示的阻抗三角形表示。结论:对于RL 串联电路:

(1)当ωL>1/ωC 时,有X>0,φz>0,表现为电压领先电流,称电路为感性电路,其相量图(以电流为参考相量)和等效电路如图 9.6 所示;

图9.6 ωL > 1/ωC时的相量图和等效电路

(2)对于RLC串联电路当ωL

<1/ωC时,有X<0,φz<0,

表现为电流领先电压,称电路

为容性电路,其相量图(以电

流为参考相量)和等效电路如

图 9.7 所示;

图9.7ωL < 1/ωC时的相量图和等效电路

(3)当ωL =1/ωC时,有X=0 ,φz=0 ,表现为电压和电流同相位,此时电路发生了串联谐振,电路呈现电阻性,其相量图(以电流为参考相量)和等效电路如图9.8所示;

图9.8ωL = 1/ωC时的相量图和等效电路

(4)RLC 串联电路的电压U R 、U X 、U 构成电压三角形,它和阻抗三角形相似。

满足:

注:从以上相量图可以看出,正弦交流RLC串联电路中,会出现分电压大于总电压的现象。

2. 导纳

1)导纳的定义

图9.1所示的无源线性一端口网络,当它在角频率为的正弦电源激励下处于稳定状态时,端口的电流相量和电压相量的比值定义为该一端口的导纳 Y 。即

单位:S

上式仍为复数形式的欧姆定律,其中

称为导纳模,

称为导纳角。由于Y 为复数,称为复导纳,这样图9.1

所示的无源一端口网络可以用图9.9所示的等效电路表示,所以 Y 也称为一端口网络的等效导纳或输入导纳。

图9.9 无源线性一端口 网络等效导纳

2)单个元件的导纳

当无源网络内为单个元件时如图 9.3 所示,等效导纳分别为:

a 图

b 图

c 图

说明 Y 可以是纯实数,也可以是纯虚数。 3) RLC 并联电路的导纳 由 KCL 得:

因此,等效导纳为

图 9.10 RLC 并联电路

其中G—等效电导(导纳的实部);B—等效电纳(导纳的虚部);

Y 、G 和 B 之间的转换关系为:

可以用图 9.11 所示的导纳三角形表示。

图 9.11 导纳三角形

结论:对于 RLC 并联电路:

(1)当ωL>1/ωC时,有B>0 ,φy>0 ,表现为电流超前电压,称电路为容性电路,其相量图(以电压为参考相量)和等效电路如图 9.12 所示;

图 9.12 ωL >1/ωC时的相量图和等效电路

(2)当ωL<1/ωC 时,有B<0,

φy<0,表现为电压超前电流,称电路为

感性电路,其相量图(以电压为参考相

量)和等效电路如图 9.13 所示;

图 9.13 ωL < 1/ωC时的相量图和等效电路(3)当ωL=1/ωC时,有X=0,

φz=0,表现为电压和电流同相位,此

时电路发生了并联谐振,电路呈现电

阻性,其相量图(以电流为参考相量)

和等效电路如图9.14所示。

图 9.14 ωL=1/ωC时的相量图和等效电路(4)RLC 并联电路的电流I R、I X 、I 构成电流三角形,它和阻抗三角形相似。满足

注:从以上相量图可以看出,正弦交流RLC并联电路中,会出现分电流大于总电流的现象。

3. 复阻抗和复导纳的等效互换

同一个两端口电路阻抗和导纳可以互换,互换的条件为:

即:

9.15 串联电路和其等效的并联电路

如图 9.15

的串联电路,它的阻抗为:

其等效并联电路的导纳为:

即等效电导和电纳为:

同理,对并联电路,它的导纳为

其等效串联电路的阻抗为:

即等效电阻和电抗为:

例 9-1 ,

电路如图(a)所示,已知:R =15Ω,L =0.3mH,

C

=0.2mF,

i ,u R ,u L ,u C 。

解:电路的相量模型如图(b)所示,其中:

例 9-1 图(a )

例 9-1(b)例 9-1(c)

因此总阻抗为

总电流为

电感电压为

电阻电压为

电容电压为

相量图如图(c)所示,各量的瞬时式为:

注意U L=8.42>U=5,说明正弦电路中分电压的有效值有可能大于总电压的有效值。

例 9-2RL 串联电路如图(a)所示,求在ω=106rad/s 时的等效并联电路图(b)。

例 9-2 图(a)

解:RL 串联电路的阻抗为:

导纳为:

得等效并联电路的参数

例 9-2 图(b)

§9-2 阻抗(导纳)的串联和并联

1. 阻抗的串联

图 9.16 为 n 个阻抗串联的电路,根据 KVL 得:

图 9.16 n 个阻抗串联

其中

Z 为等效阻抗,因此图 9.16 的电路可以用图 9.17 的等效电路替代。串联电路中各个阻抗的电压分配为:

其中

为总电压,为第 k 个阻抗的电压。

图 9.17 图9.16的等效电路

2. 导纳的并联

图 9.18 为 n 个阻抗并联的电路,根据 KCL 得:

其中

图 9.18 n 个阻抗并联

Y 为等效导纳,因此图 9.18 的电路可以用图 9.19 的等效电路替代。并联电路中各个阻抗的电流分配为:

其中

为总电流,

为第 k 个导纳的电流。

两个阻抗 Z 1、Z 2

的并联等效阻抗为:

图 9.19 图 9.18 的等效电路

注:阻抗的串联和并联计算及分压和分流计算在形式上与电阻的串联和并联及分压和分流计算相似。

例 9-

3 ,求图示电路的等效阻抗, 已知 ω=105

rad/s 。

解: 感抗和容抗为:

所以电路的等效阻抗为

例 9-4 ,图示电路对外呈现感性还是容性?

例 9-4 图

解:图示电路的等效阻抗为:

所以电路对外呈现容性。

例 9-5

图示为 RC 选频网络,试求u1和u0同相位的条

件及

例 9-5 图

解:设:

输出电压

输出电压和输入电压的比值

因为

当,上式比值为实数,则u1和u0同相位,此时有

§9-3 正弦稳态电路的分析

1.电阻电路与正弦电流电路的分析比较

结论:引入相量法和阻抗的概念后,正弦稳态电路和电阻电路依据的电路定律是相似的。因此,可将电阻电路的分析方法直接推广应用于正弦稳态电路的相量分析中。 2. 典型例题 例 9-6 ,

求图(a)电路中各支路的电流。已知电路参数为

例 9-6 图(a )

例 9-6 图(b )

解:电路的相量模型如图(b )所示。

各支路电流为

例9-7,列写图(a)电路的回路电流方程和节点电压方程

例 9-7 图(a)

解:选取回路电流方向如图(b)所示,回路电流方程为:

回路 1

回路 2

回路 3

回路 4

(b)(c)结点选取如图(c)所示,则结点电位方程为:

结点

1

结点

2

结点

3

§9-4 正弦稳态电路的功率

1. 瞬时功率

设无源一端口网络如图9.20所示,在正弦稳态情况下,端口电压和电流为:

图 9.20

式中φ是电压和电流的相位差,对无源网络,为其等效阻抗的阻抗角。

则一端口网络吸收的瞬时功率为:

上式可以分解为:

从上式可以看出瞬时功率有两个分量,一个为恒定量,一个为两倍电压或电流频率的正弦量, P(t)的波形如图9.21所示。

瞬时功率还可以写为:

图 9.21

上式中第一项始终大于零,

为瞬时功率的不可逆部分,第二

项为两倍电压或电流频率的正弦

量,是瞬时功率的可逆部分,代

表电源和一端口之间来回交换的

能量。P(t)的波形如图9.22示。

图 9.22

注意:瞬时功率有时为正,有时为负,p>0,表示电路吸收功率,p<0,表示电路发出功率。

2. 平均功率P

为了便于测量,通常引入平均功率的概念。平均功率为瞬时功率在一个周期内的平均值,即:

P 的单位是W(瓦)。式中cosφ称为功率因数,说明平均功率不仅与电压和电流的乘积有关,而且与它们之间的相位差有关。

注意:

当cosφ =1, 表示一端口网络的等效阻抗为纯电阻,平均功率达到最大。

当cosφ =0 ,表示一端口网络的等效阻抗为纯电抗,平均功率为零。

一般有0 ≤|cosφ|≤1 。因此,平均功率实际上是电阻消耗的功率,亦称为有功功率。表示电路实际消耗的功率。

3. 无功功率Q

工程中还引入无功功率的概念,其定义为:单位:var (乏) 。

当Q >0 ,认为网络吸收无功功率;Q <0 ,认为网络发出无功功率。

注意:

当cosφ = 1, 有sinφ = 0 ,纯电阻网络的无功功率为零。

当cosφ = 0,有sinφ = 1 ,表示纯电抗网络无功功率最大。

因此Q 的大小反映网络与外电路交换功率的大小。是由储能元件L、C 的性质决定的。

4. 视在功率S

定义视在功率为电压和电流有效值的乘积,即:单位: VA (伏安)

视在功率反映电气设备的容量。

有功功率,无功功率和视在功率满足图 9.23 所示的功率三角形关系:

图 9.23

5. 任意阻抗的功率计算

以上式子说明功率三角形与阻抗三角形是相似三角形。

图9.24(a )

图9.24(b)和(c)为图 9.24(a)所示的RLC 串联电路中电感和电容的瞬时功率的波形,从中可以看出,当 L 发出功率时,C 刚好吸收功率,当C 发出功率时,L 刚好吸收功率,说明电感、电容的无功具有互相补偿的作用。

图9.24(b )

图9.24(c )

6. 功率因数的提高

有功功率的表达式说明当功率一定时,若提高电压 U 和功率因素 cos φ,可以减小线路中的电流,从而减小线路上的损耗,提高传输效率。电力系统中就是采用高压传输和并联电容提高功率因素的方式来提高传输效率。

图 9.25(a)给出了电感性负载与电容的并联电路,图(b)为其相量图,显然并联电容后,原负载的电压和电流不变,吸收的有功功率和无功功率不变,即:负载的工作状态不变。但电路的功率因数提高了。

根据相量图可以确定并联电容的值,由图可知:

图 9.25(a)图 9.25(b)

因此

注意:并联电容后,电源向负载输送的有功功率UI L cosφ1 = UI cosφ2不变,但是电源向负载输送的无功UI sinφ 2 <UI L sinφ1减少了,减少的这部分无功就由电容“产生”的无功来补偿,使感性负载吸收的无功不变,而功率因数得到改善。

例 9-9,

图示电路是用三表法测线圈参数。已知f=50Hz,

且测得U=50V,I=1A,P=30W ,求线圈参数。

例 9-9图

解:

方法一,由电表的读数知:

视在功率

无功功率

因此

方法二,由

所以

方法三,由

所以

例 9-10

图示电路,已知:f =50Hz, U =220V, P =10kW, 线圈的

功率因素cosφ=0.6,采用并联电容方法提高功率因素,

问要使功率因数提高到0.9, 应并联多大的电容C,并联

前后电路的总电流各为多大?

例 9—10 图

解:

所以并联电容为:

未并电容时,电路中的电流为:

并联电容后,电路中的电流为:

§9-5复功率

正弦电流电路的有功功率、无功功率和视在功率三者之间的关系可以通过“复功率”表述。

1. 复功率

设一端口网络的电压相量和电流相量为,定义复功率为:

单位:VA

因此

复功率也可表示为:

注意:

(1)复功率把P、Q、S 联系在一起,它的实部是平均功率,虚部是无功功率,模是视在功率;辐角是功率因素角。

(2)复功率是复数,但不是相量,它不对应任意正弦量;

(3)复功率满足复功率守恒。因为在正弦稳态下,任一电路的所有支路吸收的有功功率之和为零,吸收的无功功率之和为零,即:

因此

例9-11电路如图所示,求各支路的复功率。

例 9 — 11 图

解:输入阻抗

电压

电源发出的复功率

支路的复功率为

§9-6 最大传输功率

图 9.26(a)所示电路为含源一端口网路向终端负载传输功率,下面分析在正弦稳态条件

课件-第4章 正弦稳态电路分析--例题

第4章 正弦稳态电路分析 --例题 √【例4.1】已知两个同频正弦电流分别为 ()A 3314cos 2101π+=t i ,()A 65314cos 2222π-=t i 。求(1) 21i i +;(2)dt di 1;(3)?dt i 2。 【解】 (1)设()i t I i i i ψω+=+=cos 221,其相量为i I I ψ∠=? (待求),可得: ()()()()A 54.170314cos 224.14A 54.17014.24A 34.205.14 A 1105.19A j8.665 A 15022A 601021?-=?-∠=--=--++=?-∠+?∠=+=? ? t i j j I I I (2)求 dt di 1可直接用时域形式求解,也可以用相量求解 () () ?+?+=?+?-=9060314cos 23140 60314sin 3142101 t t dt di 用相量形式求解,设dt di 1的相量为K K ψ∠,则有 )9060(31406010314K 1K ?+?∠=?∠?==∠? j I j ωψ 两者结果相同。 (3)?dt i 2的相量为 ?∠=? ∠?-∠=? 12007.0903********ωj I

【例4.2】 图4-9所示电路中的仪表为交流电流表,其仪表所指示的读数为电流的有效值,其中电流表A 1的读数为5 A ,电流表A 2的读数为20 A ,电流表A 3的读数为25 A 。求电流表A 和A 4的读数。 图4-9 例4.2图 【解】 图中各交流电流表的读数就是仪表所在支路的电流相量的模(有效值)。显然,如果选择并联支路的电压相量为参考相量,即令 V 0?∠=? S S U U ,根据元件的VCR 就能很方便地确定这些并联支路中电流 的相量。它们分别为: A 25 ,A 20 ,A 053 21j I j I I =-=?∠= 根据KCL ,有: ()A 095A 5A 457.07A 553 2 4 321?∠==+=?∠=+=++=j I I I j I I I I 所求电流表的读数为:表A :7.07 A ;表A 4:5 A

正弦稳态交流电路及谐振电路仿真实验

实验报告三 一、实验目的 1.通过仿真电路理解相量形式的欧姆定律、基尔霍夫定律。 2.通过仿真实验理解谐振电路工作特点。 二、实验内容 1. 建立仿真电路验证相量形式欧姆定律、基尔霍夫定律; 2. 建立仿真电路验证RLC 串联、并联谐振电路工作特点; 三、实验环境 计算机、MULTISIM 仿真软件 四、实验电路 2.3.1欧姆定律的向量形式仿真实验 1.实验电路 2.理论分析计算 由向量发和欧姆定律可知, ωω=+-≈∠Ω。1 1040.416Z R j L j C = =∠. . 。9.6116m V I A Z

= ≈13.59Rm V V ω= ≈0.43Lm V L V ω=≈1 4.33Cm V V C 3.实验结果 2.3.1欧姆定律的向量形式仿真实 1.实验电路

2.理论分析计算 (1)相量形式的基尔霍夫电压定律 由向量法和欧姆定律可知, ωω=+-1 Z R j L j C = =. . 0.329V I A Z = ≈32.91Rm V V ω= ≈10.34Lm V L V ω=≈1 104.72Cm V V C (2)相量形式的基尔霍夫电流定律: 1.实验电路

2.理论分析计算 . . . . R C L I I I I =++ . . . . R C L U U U U === ... //I U R U L U C ωω=++ 代入数据得: 假设: . 。0U U =∠ 则 1R I A = 3.183L I A = 0.314C I A = . 。。。0-9090=3.038R C L I I I I A =∠+∠+∠ 2.5.1 RLC 串联电路仿真 (R=1Ω): 1.实验电路

第9章 正弦稳态电路的分析(答案)

第9章 正弦稳态电路的分析 答案 例 如图所示正弦稳态电路,已知I1=I2=10A,电阻R 上电压的初相位为零,求相量? I 和 ? S U 。 解: 电路中电阻R 和电容C 并联,且两端电压的初相为0。由电阻和电容傻姑娘的电压与电流的相位关系可知:电阻电流?1I 与电压?R U 同相,电容电流?2I 超前电压? R U 相角90○ ,故 ο 0101∠=? I A ο90102∠=? I A 由KCL 方程,有 ()101021j I I I +=+=? ??A 由KVL 方程,有 ? ? ? ? ∠==++-=+=9010010010010010010101 j j I I j U S V 例 如图所示正弦稳态电路,R 1=R 2=1Ω。 (1)当电源频率为f 0时,X C2=1Ω,理想电压表读数V 1=3V ,V 2=6V ,V 3=2V,求I S 。 (2)电路中电阻、电容和电感的值不变,现将电源的频率提高一倍,即为2 f 0,若想维持V 1的读数不变,I S 问应变为多少

如果把电源的频率提高一倍,而维持V1的读数不变,即R1上的电压有效值U R1=3V,那么R1 上的电流的有效值I也不变,此时仍把? I设置为参考相量,故? ? ∠ =0 3 I A。由于L和C 1上的 电流? I不变,根据电感和电容上电压有效值与频率的关系,电源的频率提高一倍,电感上电 压表的读数增大一倍,而电容上电压表的读数降为原来的一半,故 电源得频率提高一倍,X C2也降为原来得一半,即 所以 例如图所示正弦稳态电路,已知I1=10A,I2=20A,R2=5Ω,U=220V,并且总电压 ? U与总 电流? I同相。求电流I和R,X2,X C的值。

正弦稳态电路的分析

x 第九章 正弦稳态电路 的分析 本章重点: 1. 阻抗,导纳及的概念 2. 正弦电路的分析方法 3. 正弦电路功率的计算 4. 谐振的概念及谐振的特点 本章难点:如何求电路的参数 主要内容 X arctg 为阻抗角(辐角); R 1 1 可见,当X.>0,即L 一时,Z 是感性; 当X<0,即卩L 一时,Z 呈容性。 c c (3)阻抗三角形: 1 ?阻抗 (1)复阻抗:Z § 9-1 阻抗和导纳 R jX R=Re[Z] Z cos z 称为电阻; X=Im[Z]= ⑵RLC 串联电路的阻抗: 称电抗。 Z sin z j( L j(X L 丄) c X C ) R jX 式中X L L 称为感抗;X C 称为容抗; X X L X C L — c 式中Z 为阻抗的模; Z R

2 ?导纳 x

1 (1)复导纳:丫 一 Z ⑵RLC 并联电路的导纳: (3)导纳三角形: 3.阻抗和导纳的等效互换 § 9-2 阻抗(导纳)的串联和并联 1. 阻抗串联: (1) 等效阻抗:Z e q 乙Z 2川Z n (2) 分压作用:U |K 互U, k 1,2,|||,n Z eq 2. 导纳并联 (1) 等效导纳:Y eq 丫1 丫2 |||Y n (2) 分流作用:|[ 丫M 〔, k 1,2,|||, n 3. 两个阻抗并联: 式中Y I 一 「.G 2 B 2称为导纳的模; B Y arCtan G 称为导纳角; G Re[Y] 丫 cos 丫称为电导; lm[Y] Y sin 丫称为电纳。 Y G jB 1 c 飞) j(B c B L ) G jB Y 式中B L —称为感纳; L L 可见,当B 0,即c —时, L B c C 称为容纳; B B c B L Y 呈容性;当B 0,即c 1 —,丫呈感性 (1)RLC 串联电路的等效导纳: ⑵RLC 并联电路的等效阻抗: Y R R 2 X 2 G j 一 G B G X J " R 2 X 2 B B B G Y

Multisim 10-正弦稳态交流电路仿真实验

暨南大学本科实验报告专用纸 课程名称电路分析CAI 成绩评定 实验项目名称正弦稳态交流电路仿真实验指导教师 实验项目编号05实验项目类型验证型实验地点计算机中心C305 学生姓学号 学院电气信息学院专业实验时间 2013 年5月28日 一、实验目的 1.分析和验证欧姆定律的相量形式和相量法。 2.分析和验证基尔霍夫定律的相量形式和相量法。 二、实验环境定律 1.联想微机,windows XP,Microsoft office, 2.电路仿真设计工具Multisim10 三、实验原理 1在线性电路中,当电路的激励源是正弦电流(或电压)时,电路的响应也是同频的正弦向量,称为正弦稳态电路。正弦稳态电路中的KCL和KVL适用于所有的瞬时值和向量形式。 2.基尔霍夫电流定律(KCL)的向量模式为:具有相同频率的正弦电流电路中的任一结点,流出该结点的全部支路电流向量的代数和等于零。 3. 基尔霍夫电压定律(KVL)的向量模式为:具有相同频率的正弦电流电路中的任一回路,沿该回路全部的支路电压向量的代数和等于零。 四、实验内容与步骤 1. 欧姆定律相量形式仿真 ①在Multisim 10中,搭建如图(1)所示正弦稳态交流实 验电路图。打开仿真开关,用示波器经行仿真测量,分别测

量电阻R、电感L、电容C两端的电压幅值,并用电流表测 出电路电流,记录数据于下表 ②改变电路参数进行测试。电路元件R、L和C参数不变, 使电源电压有效值不变使其频率分别为f=25Hz和f=1kHz 参照①仿真测试方法,对分别对参数改变后的电路进行相同 内容的仿真测试。 ③将三次测试结果数据整理记录,总结分析比较电路电源频 率参数变化后对电路特性影响,研究、分析和验证欧姆定律 相量形式和相量法。 暨南大学本科实验报告专用纸(附页) 欧姆定律向量形式数据 V Rm/V V Lm/V V Cm/V I/mA 理论计算值 仿真值(f=50Hz) 理论计算值 仿真值(f=25Hz) 理论计算值 仿真值(f=1kHz) 2.基尔霍夫电压定律向量形式 在Multisim10中建立如图(2)所示仿真电路图。 打开仿真开关,用并接在各元件两端的电压表经行 仿真测量,分别测出电阻R、电感L、电容C两端 的电压值。用窜连在电路中的电流表测出电路中流 过的电流I,将测的数记录在下表。 ②改变电路参数进行测试。电路元件R=300Ω、L=

第九章正弦稳态电路的分析

第九章 正弦稳态电路的分析 本章重点: 1.阻抗,导纳及的概念 2.正弦电路的分析方法 3.正弦电路功率的计算 4.谐振的概念及谐振的特点 本章难点:如何求电路的参数 主要内容 §9-1阻抗和导纳 1.阻抗 (1)复阻抗:u i Z U U Z Z R jX I I ψψ?==-=∠=+&& 式中22U Z R X I ==+为阻抗的模; Z u i X arctg R ?ψψ=-=为阻抗角(辐角); R=Re[Z]cos z Z ?=称为电阻; X=Im[Z]=sin z Z ?称电抗。 (2)RLC 串联电路的阻抗: 1 U Z R j L I j c ωω==++ =&& 1 ()()L C Z R j L c R j X X R jX Z ωω?+- = ++=+=∠ 式中L X L ω=称为感抗;1C X c ω=- 称为容抗;1L C X X X L c ωω=+=- 可见,当X.>0,即1L c ωω>时,Z 是感性; 当X<0,即1L c ωω<时,Z 呈容性。 (3)阻抗三角形: 2.导纳 Z ?Z R X Z &U &+ — I &U &+ — C L

(1)复导纳:1i u Y I I Y Y G jB Z U U ψψ?===∠-=∠=+&& 式中I Y U = =称为导纳的模;arctan Y B G ψ=称为导纳角; Re[]cos Y G Y Y ψ==称为电导; Im[]sin Y B Y Y ψ==称为电纳。 (2)RLC 并联电路的导纳: 1111 ()I Y j c j c U R j L R L ωωωω==++=+-=&& ()C L Y G j B B G jB Y ψ++=+=∠ 式中1L B L ω=- 称为感纳;C B C ω=称为容纳;1C L B B B c L ωω=+=-;1 G R =。 可见,当0,B >即1c L ωω>时,Y 呈容性;当0,B <即1 ,c L ωω

电路基础-实验2 正弦稳态交流电路(操作实验)

实验二正弦稳态交流电路相量的研究 一、实验目的 1.研究正弦稳态交流电路中电压、电流相量之间的关系。 2.掌握日光灯线路的接线。 3.理解改善电路功率因数的意义并掌握其方法。 二、原理说明 1. 在单相正弦交流电路中,用交流电流表测得各支路的电流值,用交流电压表测得回路各元件两端的 电压值,它们之间的关系满足相量形式的基尔霍夫定律,即∑?=0和∑? =0. 2.图2-1所示的RC串联电路,在正弦稳态信号?的激励下, ?R与?C保持有900的相位差,即当R 阻值改变时,?R的相量轨迹是一个半圆。?、?R与?C三者形成一个直角形的电压三角形,如图2-2所示。R值改变时,可改变?角的大小,从而达到移相的目的。 图2-1 图2-2 3.日光灯线路如图2-3所示,图中A是日光灯管,L是镇流器,S是启辉器,C是补偿电容器,用以 Cos值)。有关日光灯的工作原理请自行翻阅有关资料。 改善电路的功率因数(? 图2-3 三、实验设备

四、实验内容 1、按图16-1接线。R 为220V 、15W 的白炽灯,电容器为4.7Uf/450V 。经指导教师检查后,接通实验电源,将自耦调压器输出(即U )调制220V 。记录U 、U R 、U C 值,验证电压三角形关系。 2、日光灯线路接线与测量。 按图2-4接线。经指导教师检查后接通实验台电源,调节自耦调压器的输出,使其输出电压缓缓增大, 直到日光灯刚启辉点亮为止,记下三表得指示值。然后将电压调节至220V ,测量功率P ,电流I ,电压U ,U L ,U A 等值,验证电压、电流向量关系。 图2-4

3、并联电路——电路功率因数的改善。按图2-5组成实验电路。 图2-5 经指导老师检查后,接通实验台电源,将自耦调压器输出调制220V,记录功率表、电压表读数。通过一只电流表和三个电流插座分别测得三条之路的电流,改变电容值,进行三次重复测量。数据计入下页表中。 五、实验注意事项 1、本实验用交流市电220V,务必注意用电合人身安全。 2、功率表要真确接入电路。 3、线路接线正确,日光灯不能启辉时,应检查启辉器及其接触是否良好。

正弦稳态交流电路相量的研究

实验二 正弦稳态交流电路相量的研究 一、实验目的 1.掌握正弦交流电路中电压、电流相量之间的关系。 2.掌握功率的概念及感性负载电路提高功率因数的方法。 3.了解日光灯电路的工作原理,学会日光灯电路的连接。 4.学会使用功率表。 二、实验原理 1.R 、C 串联电路 在单相正弦交流电路中,用交流电流表测得各支路的电流值,用交流电压表测得回路各元件两端的电压值,它们之间的关系应满足相量形式的基尔霍夫定律,即 ∑=0I 和 0=∑U 实验电路为RC串联电路,如图1(a )所示,在正弦稳态信号U 的激励下,则有: )(C C R jX R I U U U -?=+= U 、R U 与C U 相量图为一个直角电压三角形。当阻值R 改变时,R U 与C U 始终保持着 90°的相位差,所以R U 的相量轨迹是一个半圆,如图1(b )所示。从图中我们可知,改变C 或R 值可改变φ角的大小,从而达到移相的目的。 (a )原理图 (b )向量图 图(c )Multisim 仿真电路图 图1 RC 串联电路及相量图 C R U U I

2.日光灯电路及其功率因数的提高 日光灯实验电路如图3(a)所示,日光灯电路由灯管、镇流器和启动器三部分组成。 灯管是一根普通的真空玻璃管,管内壁涂上荧光粉,管两端各有一根灯丝,用以发射电子。管内抽真空后充氩气和少量水银。在一定电压下,管内产生弧光放电,发射一种波长很短的不可见光,这种光被荧光粉吸收后转换成近似日光的可见光。 镇流器是一个带铁芯的电感线圈,启动时产生瞬时高电压,促使灯管放电,点燃日光灯。在点燃后又限制了灯管的电流。 启动器(如图2(a)所示)是一个充有氖气的玻璃泡,其中装有一个不动的静触片和一个用双金属片制成的U形可动触片,其作用是使电路自动接通和断开。在两电极间并联一个电容器,用以消除两触片断开时产生的火花对附近无线电设备的干扰。 (a) (b) (c) 图2启动器示意图和日光灯灯点燃过程 日光灯的点燃过程如下:当日光灯刚接通电源时,灯管尚未通电,启动器两极也处于断开位置。这时电路中没有电流,电源电压全部加在启动器的两电极上,使氖管产生辉光放电而发热,可动电极受热变形,于是两触片闭合,灯管灯丝通过启动器和镇流器构成回路,如图2(b)所示。灯丝通电加热发射电子,当氖管内两个触片接通后,触片间不存在电压,辉光放电停止,双金属片冷却复原,两触片脱开,回路中的电流瞬间被切断。这时镇流器产生相当高的自感电动势,它和电源电压串联后加在灯管两端,促使管内氩气首先电离,氩气放电产生的热量又使管内水银蒸发,变成水银蒸气。当水银蒸气电离导电时,激励管壁上的荧光粉而发出近似日光的可见光。 灯管点燃后,镇流器和灯管串联接入电源,如图2(c)所示。由于电源电压部分降落在镇流器上,使灯管两端电压(也就是启动器两触片间的电压)较低,不足以引起启动器氖管再次产生辉光放电,两触片仍保持断开状态。因此,日光灯正常工作后,启动器在日光灯电路中不再起作用。 日光灯点燃后的等效电路如图3(b)所示,其中灯管相当于纯电阻负载R,镇流器可用 静触片

电路 第9章习题2 正弦稳态电路的分析

9-001、 已知图示正弦电路中,电压表的读数为V 1 :6V ;V 2 :2V ; U S =10V 。求: (1)、图中电压表V 3、V 4的读数; (2)、若A I 1.0=,求电路的等效复阻抗; (3)、该电路呈何性质 答案 (1)V U U U 32.62 2 214=+= V 4的读数为 ; 2322 1)(U U U U S -+= 64)(212 232=-=-U U U U s 832±=-U U 取 V U 10823=+=,所以V 3的读数为10 V 。 (2)、A I 1.0=,电路的等效复阻抗: Ω===1001 .010I U Z ?-=-=-=1.536 8 arctan arctan 132U U U ? Ω-=?-+?=)8060()1.53sin(1.53cos 100j j Z (3)、由于复阻抗虚部为负值,故该电路呈电容性。 9-002、 答案 V 1 - R V 3 L u V 2 + C V 4

9-003、 求图示电路的等效阻抗,已知ω=105 rad/s 。 例9 — 3 图解:感抗和容抗为: 所以电路的等效阻抗为 9-004、 例9-4图示电路对外呈现感性还是容性 例9 — 4 图解:图示电路的等效阻抗为:

所以 电路对外呈现容性。 9-005、3-9日光灯电源电压为V 220,频率为Hz 50,灯管相当于Ω300的电阻,与灯管串联的镇流器(电阻忽略不计)的感抗为Ω500,试求灯管两端电压与工作电流的有效值。 解:电路的总阻抗为 Ω≈+=58350030022Z 此时电路中流过的电流: A Z U I 377.0583 220=== 灯管两端电压为: V RI U R 113377.0300=?== 9-006、5、 与上题类似 今有一个40W 的日光灯,使用时灯管与镇流器(可近似把镇流器看作纯电感)串联在电压为220V ,频率为50Hz 的电源上。已知灯管工作时属于纯电阻负载,灯管两端的电压等于110V ,试求镇流器上的感抗和电感。这时电路的功率因数等于多少 解:∵P =40W U R =110(V) ω=314rad/s ∴36.0110 40=== =R L R U P I I (A) ∵U U U L R 2 22+= ∴5.1901102202222=-= -=U U U R L (V) ∴529 36.05.190=== I U X L L L (Ω) 69.1314 529 ===ωX L L (H) 这时电路的功率因数为: 5.0220 110 cos cos ===U U R ?

正弦稳态交流电路相量的研究含数据处理

实验十三正弦稳态交流电路相量的研究 专业 学号姓名实验日期 、实验目的 1. 2. 3?理解改善电路功率因数的意义并掌握其方法。 1?在单相正弦交流电路中,用交流电流表则得各支中的电流值,用交流电压表测得回路各元件两端的电压值,它们之间的关系满足相量形式的基尔霍夫定律, ' i =0 2?如图13-1所示的RC串联电路,在正弦稳态信号 相位差,即当阻值R改变时,U R的相量轨迹是一个半圆 的电压三角形。R值改变时,可改变0角的大小, 图13-1 器,用以改善电路的功率因数(COS?值)。 有关日光灯的工作原理请自行翻阅有关资料。 U的激励下,U R与U c保持有90°的 ,U、U C与U R三者形成一个直角形3?日光灯线路如图13-2所示,图中A是日光灯管,1是镇流器,S是启辉器,C是补偿电容 图13-2

序号 名称型号与规格数量备注 1 单相交流电源0~220V 1 2 三相自耦调压器 1 3 交流电压表 1 4 交流电流表 1 5 功率因数表 1 DGJ-07 6 白炽灯组15W/220V 2 DGJ-04 7 镇流器与30W灯管配用 1 DGJ-04 8 电容器1uf,2.2uf, 4.7 〃450V DGJ-04 9 启辉器与30W灯管配用 1 DGJ-04 10 日光灯灯管30W 1 DGJ-04 11 电门插座 3 DGJ-04 四、实验内容 (1)用两只15W /220V的白炽灯泡和4.7^/450V电容器组成加图13-1所示的实验电路,经指导老师检查后,接通市电220V电源,将自藕调压器输出调至220V。记录U、U R、U C 值, 白炽灯盏数测量值计算值 U(V) U R(V) U C(V) U 'V) 0 2 220 200 84 217 22.8 1 220 213 45 218 11.9 图13-3 按图13-3组成线路,经指导教师检查后按下闭合按钮开关,调节自耦调压器的输出,使其 输出电压缓慢增大,直到日光灯刚启辉点亮为止,记下三表的指示值。然后将电压调至220 V,

正弦稳态电路的分析

第九章 正弦稳态电路的分析 1内容提要 正弦稳态电路的分析应用相量法。通过引入相量法,建立了阻抗和导纳的概 念,给出了 KCL 、KVL 和欧姆定律的相量形式,山于它们与直流电路分析中所 用的同一公式在形式上完全相同,因此能够把分析直流电路的方法、原理、定律, 例如,网孔法(回路法)、结点法、叠加定理、戴维宇定理、等效电源原理等等 直接应用于分析正弦电路的相量模型,其区别在于:⑴不直接引用电压电流的瞬 时表达式来表征各种关系,而是用对应的相量形式来表征各种关系;⑵相应的运 算不是代数运算,而是复数的运算,因而运算比直流复杂。根据复数运算的特点, 可画岀相量图,利用相量图的儿何关系来帮助分析和简化计算,从而扩大了求解 问题的思路和方法。⑶引入了一些新的概念,如平均功率、无功功率、视在功率、 复功率、最大功率传输、谐振等。认识以上区别,对正弦稳态电路的分析是有益 的。 2例题 例1求图示电路中各支路电流i :, L, i 5 il 1 - R 5Q 解:①画运 算电路模型,取网孔电流 L 、L 如图。 (5-/2)/. -5/. =100 ② 列网孔方程: ' 「. -571+(5 + J 5)/2=-J 1OO 可用行列式求解: i 一人=29.23 + J6.16 = 29.87Z11.90 ③ :.i,(r) = 27.73V2cos(^-56.31°) A i 2(r) = 32.35^2 c os 伽 -115.35°) A i() = 29.87血 cos 伽 + 11.90。)A 当然此题也可以用结点电压法、或貝它 方法。 例2图中电流i 和Uzi 。 已知:Usi = IOO5/2 COS6X V q 2 =100V2COS (6X + 90°) V y 100^0° i\ = 100 -5 -ylOO 5 + j5 5-)2 一5 ?()() =15.38- J23.07 = 27.73Z - 56.31° A 10+ J15 5 + )5 i 2 = 5-)2 一5 100 一 J100 300-J500 5-J2 -5 -5 5 + )5 io+ ,i5 =-13.85-;29.23 = 32.35Z-H5.35? A 2 U 2=100Z90°

正弦稳态交流电路相量的研究实验报告

一、实验目的 1.研究正弦稳态交流电路中电压、电流相量之间的关系。 2. 掌握日光灯线路的接线。 3. 理解改善电路功率因数的意义并掌握其方法。 二、原理说明 1. 在单相正弦交流电路中,用交流电流表测得 各支路的电流值,用交流电压表测得回路各元件两 端的电压值,它们之间的关系满足相量形式的基尔 霍夫定律,即。 图4-1 RC 串联电路 2. 图4-1所示的RC 串联电路,在正弦稳态信 号U 的激励下,U R 与U C 保持有90o的相位差,即当 R 阻值改变时,U R 的相量轨迹是一个半园。U 、U C 与 U R 三者形成一个直角形的电压三角形,如图4-2所 示。R 值改变时,可改变φ角的大小,从而达到 移相的目的。 3. 日光灯线路如图4-3所示,图中 A 是日光灯管,L 是镇流器, S 是启辉器,C 是补偿电容器,用以改善电路的功率因数(cos φ值)。有关日光灯的工作原理请自行翻阅有关资料。 图4-3 日光灯线路 序号 名称 数量 备注 1 电源控制屏(调压器、日光灯管) 1 DG01或GDS-01 2 交流电压表 1 D36或GDS-11 3 交流电流表 1 D35或GDS-12 4 三相负载 1 DG08或GDS-06B 5 荧光灯、可变电容 1 DG09或GDS-09 6 起辉器、镇流器、电容、电门插座 DG09或GDS-09 7 功率表 1 D34或GDS-13 220V L S A C R jXc Uc U R I U R U U c I φ

四、实验内容 1. 按图4-1接线。R为220V、15W的白炽灯泡,电容器为4.7μF/450V。经指导教师检查后,接通实验台电源,将自耦调压器输出(即U)调至220V。记录 U、U R 、U C 值,验证电压三角形关系。 2. 日光灯线路接线与测量。 图4-4 (1)按图4-4接线。 (2)经指导教师检查后接通实验台电源,调节自耦调压器的输出,使其输 出电压缓慢增大,直到日光灯刚刚启辉点亮为止,记下三表的指示值。 (3)将电压调至220V,测量功率P,电流I,电压U,U L ,U A 等值,验证电压、电流相量关系。 测量值P(W)CosφI(A)U(V)U L (V)U A (V)启辉值 正常工作值48.80.540.393237.7184.7102.1 3. 并联电路──电路功率因数的改善。 测量值计算值 U(V)U R (V)U C (V) U′(与U R ,U C 组成Rt△) (U′=2 2 C R U U ) △U = U′-U (V) △U/U(%)240.3234.151.4 239.6 0.62 0.26

正弦稳态电路的分析

第九章 正弦稳态电路的分析 第一节 用相量法分析R 、L 、C 串联电路 — 阻抗 一、R 、L 、C 串联电路中电流与电压的大小、相位关系: 电路如图9-1-1。设)t (ISin 2)t (Sin I i i i m ?+ω=?+ω= 则电路中各元件的电压及总电压均为与电流同频率的正弦量。由KVL ,C L R u u u u ++= 用相量表示: 其中: )(I U I U I U Z z R x tg x R jx R )x x j R C 1L j R Z i u i u .. 122C L ?-?∠=?∠?∠= = ?∠=∠+=+=-+=ω-ω+=-或()( z 称为阻抗的模,?称为阻抗的幅角,由于阻抗本身不是正弦量,是一个纯复数,因此不用“.” 表示。?又称为阻抗角。 复阻抗与元件的参数和激励的角频率有关,而与电压、电流相量无关,阻抗角是由于储能元件L 、C 造成的。 当00x x 0x x 0x i u C L C L >?-?>?>>->,时即,电压超前电流一个角度?,电路 为感性; 当00x x 0x x 0x i u C L C L 0)为例,如图9-1-2。 .... . . C . L .R ..I Z I ]C 1 L j R [I C 1j I L j I R U C L R U U U U =ω-ω+=ω-ω+=++=)(量关系表达式 的电压、电流之间的相、、 带入

正弦稳态交流电路相量的研究(含数据处理)

实验十三 正弦稳态交流电路相量的研究 1.研究正弦稳态交流电路中电压、电流相量之间的关系 2.掌握日光灯线路的接线。 3.理解改善电路功率因数的意义并掌握其方法。 二、原理说明 1.在单相正弦交流电路中,用交流电流表则得各支中的电流值,用交流电压表测得回路各元件两端的电压值,它们之间的关系满足相量形式的基尔霍夫定律,即 i =∑0 和 U =∑ 0 2.如图13-1 所示的RC 串联电路,在正弦稳态信号 U 的激励下,R U 与 U C 保持有90°的 相位差,即当阻值R改变时, U R 的相量轨迹是一个半圆, U 、 U C 与 U R 三者形成一个直角形的电压三角形。R值改变时,可改变φ角的大小,从而达到移相的目的。 图 13-1 3.日光灯线路如图13-2 所示,图中A是日光灯管,L是镇流器,S是启辉器,C是补偿电容 器,用以改善电路的功率因数(cos φ值)。 图 13-2 有关日光灯的工作原理请自行翻阅有关资料。

三、实验设备 四、实验内容 (1)用两只15W /220V的白炽灯泡和4.7μf/450V电容器组成加图13-1所示的实验电路,经指导老师检查后,接通市电220V电源,将自藕调压器输出调至220V。记录U、U R、U C 值,验证电压三角形关系。 (2)日光灯线路接线与测量 图13-3 按图13-3组成线路,经指导教师检查后按下闭合按钮开关,调节自耦调压器的输出,使其输出电压缓慢增大,直到日光灯刚启辉点亮为止,记下三表的指示值。然后将电压调至220V,

测量功率P,电流I,电压 U U U L A ,,等值,验证电压、电流相量关系。 (3)并联电路——电路功率因数的改善 按图13-4组成实验线路 图 13-4 经指导老师检查后,按下绿色按钮开关调节自耦调压器的输出调至220V,记录功率表,电压表读数,通过一只电流表和三个电流取样插座分别测得三条支路的电流,改变电容值,进行三次重复测量。 五、实验注意事项 1.本实验用交流市电220V ,务必注意用电和人身安全。 2.在接通电源前,应将自藕调压器手柄置在零位上。 3.功率表要正确接入电路,读数时要注意量程和实际读数的折算关系。 4..线路接线正确,日光灯不能启辉时,应检查启辉器及其接触是否良好。 七、实验报告 1.完成数据表格中的计算,进行必要的误差分析。 误差分析: 1、仪表精确度; 2、读数时存在误差 2.根据实验数据,分别绘出电压、电流相量图,验证相量形式的基尔霍夫定律。

正弦稳态交流电路相量的研究实验报告

一、实验目的 1.通过测量,计算变压器的各项参数。 2. 学会测绘变压器的空载特性与外特性 二、原理说明 1. 图6-1为测试变压器参数的电路。由各仪表读得变压器原边 (AX,低压侧)的U1、I1、P1及付边(ax,高压侧)的U2、I2,并用万用表R×1档测出原、副绕组的电阻R1和R2,即可算得变压器的以下各项参数值: 2. 铁芯变压器是一个非线性元件,铁心中的磁感应强度B决定于 外加电压的有效值U。当副边开路(即空载)时,原边的励磁电

流I10与磁场强度H成正比。在变压器中,副边空载时,原边电压与电流的关系称为变压器的空载特性,这与铁芯的磁化曲线(B-H曲线)是一致的。空载实验通常是将高压侧开路,由低压侧通电进行测量,又因空载时功率因数很低,故测量功率时应采用低功率因数瓦特表。此外因变压器空载时阻抗很大,故电压表应接在电流表外侧。 3. 变压器外特性测试。 为了满足三组灯泡负载额定电压为220V的要求,故以变压器 的低压(36V)绕组作为原边,220V 的高压绕组作为副边,即 当作一台升压变压器使用。 在保持原边电压U1(=36V)不变时,逐次增加灯泡负载(每只灯为15W),测定U1、U2、I1和I2,即可绘出变压器 的外特性,即负载特性曲线U2=f(I2)。 三、实验设备

四、实验内容 1. 按图6-1线路接线。其中A、X为变压器的低压绕组,a、x 为 变压器的高压绕组。即电源经屏内调压器接至低压绕组,高压绕组220V接ZL即15W的灯组负载(3只灯泡并联),经指导教师检查后方可进行实验。 2. 将调压器手柄置于输出电压为零的位置(逆时针旋到底),合上 电源开关,并调节调压器,使其输出电压为36V。令负载开路及逐次增加负载。实验完毕将调压器调回零位,断开电源。 3 调节调压器输出电压,使U1从零逐次上升到1.2倍的额定电压 (1.2×36V),分别记下各次测得的U1,U20和I10数据,记入 自拟的数据表格,用U1和I10绘制变压器的空载特性曲线。 五、实验注意事项 1. 本实验是将变压器作为升压变压器使用,并用调节调压器提供 原边电压U1,故使用调压器时应首先调至零位,然后才可合上电源。此外,必须用电压表监视调压器的输出电压,防止被测变压器输出过高电压而损坏实验设备,且要注意安全,以防高压触电。 2. 由负载实验转到空载实验时,要注意及时变更仪表量程。 3. 遇异常情况,应立即断开电源,待处理好故障后,再继续实验。 六、预习思考题 为什么本实验将低压绕组作为原边进行通电实验? 七、实验报告

Multisim 10-正弦稳态交流电路仿真实验

暨南大学本科实验报告专用纸 课程名称 电路分析CAI 成绩评定 实验项目名称 正弦稳态交流电路仿真实验 指导教师 实验项目编号0806109705实验项目类型 验证型 实验地点 计算机中心C305 学生姓 学号 学院 电气信息学院 专业实验时间 2013 年5月28日 一、 实验目的 1.分析和验证欧姆定律的相量形式和相量法。 2.分析和验证基尔霍夫定律的相量形式和相量法。 二、实验环境定律 1.联想微机,windows XP ,Microsoft office , 2.电路仿真设计工具Multisim10 三、实验原理 1在线性电路中,当电路的激励源是正弦电流(或电压)时,电路的响应也是同频的正弦向量,称为正弦稳态电路。正弦稳态电路中的KCL 和KVL 适用于所有的瞬时值和向量形式。 2.基尔霍夫电流定律(KCL )的向量模式为:具有相同频率的正弦电流电路中的任一结点,流出该结点的全部支路电流向量的代数和等于零。 3. 基尔霍夫电压定律(KVL )的向量模式为:具有相同频率的正弦电流电路中的 任一回路,沿该回路全部的支路电压向量的代数和等于零。 四、实验内容与步骤 1. 欧姆定律相量形式仿真 ①在Multisim 10中,搭建如图(1)所示正弦稳态交流实 验电路图。打开仿真开关,用示波器经行仿真测量,分别测 量电阻R 、电感L 、电容C 两端的电压幅值,并用电流表测 出电路电流,记录数据于下表 ②改变电路参数进行测试。电路元件R 、L 和C 参数不变, 使电源电压有效值不变使其频率分别为f =25Hz 和f =1kHz 参照①仿真测试方法,对分别对参数改变后的电路进行相同 内容的仿真测试。 ③将三次测试结果数据整理记录,总结分析比较电路电源频 率参数变化后对电路特性影响,研究、分析和验证欧姆定律 相量形式和相量法。

正弦稳态交流电路相量的研究(含数据处理)

实验十三 正弦稳态交流电路相量的研究 专业 学号 姓名 实验日期 一、实验目的 1.研究正弦稳态交流电路中电压、电流相量之间的关系 2.掌握日光灯线路的接线。 3.理解改善电路功率因数的意义并掌握其方法。 二、原理说明 1.在单相正弦交流电路中,用交流电流表则得各支中的电流值,用交流电压表测得回路各元件两端的电压值,它们之间的关系满足相量形式的基尔霍夫定律,即 i =∑0 和 &U =∑02.如图13-1 所示的RC 串联电路,在正弦稳态信号的激励下,与保持有90°&U R U &&U C 的相位差,即当阻值R改变时,的相量轨迹是一个半圆,、与三者形成一个直角 &U R &U &U C &U R 形的电压三角形。R值改变时,可改变φ角的大小,从而达到移相的目的。 图 13-1 3.日光灯线路如图13-2 所示,图中A是日光灯管,L是镇流器,S是启辉器,C是补偿电容 器,用以改善电路的功率因数(cos φ值)。 图 13-2 有关日光灯的工作原理请自行翻阅有关资料。

三、实验设备 序号名称型号与规格数量备注 1单相交流电源0~220V 12三相自耦调压器13交流电压表14交流电流表15功率因数表1 DGJ-076白炽灯组15W/220V 2DGJ-047镇流器与30W 灯管配用 1 DGJ-048电容器 1uf,2.2uf, 4.7μf/450V DGJ-04 9启辉器与30W 灯管配用 1DGJ-0410日光灯灯管30W 1DGJ-0411电门插座 3 DGJ-04 四、实验内容 (1)用两只15W /220V 的白炽灯泡和4.7μf/450V 电容器组成加图13-1所示的实验电路,经指导老师检查后,接通市电220V 电源,将自藕调压器输出调至220V 。记录U 、U R 、U C 值 ,验证电压三角形关系。 测量值 计算值 白炽灯盏数 U(V) U R (V) U C (V) U’(V) φ2 220 200 84 217 22.8 1 220 213 45 218 11.9 (2)日光灯线路接线与测量 图 13-3 按图13-3组成线路,经指导教师检查后按下闭合按钮开关,调节自耦调压器的输出,使其

正弦稳态电路分析习题讨论课

第3章 正弦稳态电路分析习题讨论课 Ⅰ 本章要奌归纳 1、正弦量的三要素:),(,T f U m ω,?{要求:①由正弦时间函数、由波形会求三个“要 素”;②由三个“要素”会写正弦时间函数、会画波形图。} 有效值:m U U 21= ,m I I 2 1 =;{注意:①交流电流表的读数一般为有效值;②若知有效值写时间函数表达式,一定将有效值换算为振幅值。} 相 量:{要求:①由正弦量u ,i 会写对应的相量I U ,;②由相量再告知(ω或T 或f )会写相应的正弦时间函数。} 2、基本元件VCR 的相量形式 R I R U = L I L j U ω= C C j U ω1-= I KL 相量形式 KCL 相量形式 ∑=0I KVL 相量形式 ∑=0U 3、阻抗与导纳定义及其串并联等效 ?? ? ???????+== jX R e Z I U Z z j ? (1) ?? ????????+==jB G e Y U I Y y j ? (2) 显然二者互为倒数关系:,1Y Z = Z Y 1 = 阻抗串、并联求等效阻抗的公式,串联分压、并联分流公式类同电阻串、并联相应的公式。 导纳串、并联求等效导纳的公式,串联分压、并联分流公式类同电导串、并联相应的公式。 C j ω1-

注意这里的运算都是复数运算。 4.相量用于正弦稳态电路分析 (1)正弦函数激励的线性时不变渐近稳定电路,且电路达到稳态,只求稳态响应,称正弦 稳态电路分析。 (2)若单一频率正弦函数激励源的正弦稳态电路分析,应用相量分析法。 基本思路: 5、正弦稳态电路中的功率 (1)平均功率 )cos(i u UI P ??-= (1) 应用式(1)计算平均功率时,N 内含有电源不含电源均可使用。 若N 内不含电源,则z i u θ??=- 则 z UI P θcos = (2) 式(2)中z θcos 称功率因数,这时P 又称为有功功率。 (2)无功功率 z UI Q θsin = (3)视在功率 UI S = (4)复功率 S ~ =jQ P +I U =* 注意:整体电路与各部分电路间的几种功率关 k m k P P ∑ == 1 ∑==m k k Q Q 1 ∑==m k k S S 1 ~ ~ (S ≠)1 ∑=m k k S 若为简单电路若为复 杂电路:: 利用阻抗、导纳串并联等 效,结合KCL 、KVL 求解。 应用网孔法、节奌法、等 效电源定理求解。

正弦稳态交流电路相量的研究(含数据处理)

实验十三正弦稳态交流电路相量的研究专业学号姓名实验日期 1.研究正弦稳态交流电路中电压、电流相量之间的关系 2.掌握日光灯线路的接线。 3.理解改善电路功率因数的意义并掌握其方法。 二、原理说明 1.在单相正弦交流电路中,用交流电流表则得各支中的电流值,用交流电压表测得回路各元件两端的电压值,它们之间的关系满足相量形式的基尔霍夫定律,即 i= ∑0 和 U= ∑0 2.如图13-1 所示的RC串联电路,在正弦稳态信号 U的激励下, R U 与 U C 保持有90°的相位差,即当阻值R改变时, U R的相量轨迹是一个半圆, U、 U C与 U R三者形成一个直角形的电压三角形。R值改变时,可改变φ角的大小,从而达到移相的目的。 图13-1 3.日光灯线路如图13-2 所示,图中A是日光灯管,L是镇流器,S是启辉器,C是补偿电容器,用以改善电路的功率因数(cosφ值)。 图13-2 有关日光灯的工作原理请自行翻阅有关资料。

三、实验设备 序号 名称型号与规格数量备注 1 单相交流电源0~220V 1 2 三相自耦调压器 1 3 交流电压表 1 4 交流电流表 1 5 功率因数表 1 DGJ-07 6 白炽灯组15W/220V 2 DGJ-04 7 镇流器与30W灯管配用 1 DGJ-04 8 电容器1uf,2.2uf, 4.7μf/450V DGJ-04 9 启辉器与30W灯管配用 1 DGJ-04 10 日光灯灯管30W 1 DGJ-04 11 电门插座 3 DGJ-04 四、实验内容 (1)用两只15W /220V的白炽灯泡和4.7μf/450V电容器组成加图13-1所示的实验电路,经指导老师检查后,接通市电220V电源,将自藕调压器输出调至220V。记录U、U R、U C 值,验证电压三角形关系。 白炽灯盏数测量值计算值 U(V) U R(V) U C(V) U’(V) φ 2 220 200 84 217 22.8 1 220 213 45 218 11.9 (2)日光灯线路接线与测量 图13-3 按图13-3组成线路,经指导教师检查后按下闭合按钮开关,调节自耦调压器的输出,使其输出电压缓慢增大,直到日光灯刚启辉点亮为止,记下三表的指示值。然后将电压调至220V,

相关主题
文本预览
相关文档 最新文档