当前位置:文档之家› 随机过程-电子科技大学-彭江燕 (6)

随机过程-电子科技大学-彭江燕 (6)

§2.2 维纳过程

维纳过程是最基本、最简单同时又是最重要的随机过程, 而且许多过程可以看成是它在某种意义下的推广, 现已广泛应用于物理、经济、通信、生物、管理科学与数理统计中.

维纳过程的研究成果应用于计量经济学,使其方法论产生了一次飞跃,成功地应用于非平稳的经济过程,如变化激烈的金融商品价格的研究等.

1

2将一个小球投入无限大高尔顿钉板内,小球各以的概率向左或向右移动一格.21EX.1(高尔顿钉板模拟试验)

演示

随机游动数学模型

3????=.

1;,1)(层向左位移一格在第,层向右位移一格在第k k k X P {X (k )=i }-1 1X (k )

2/12

/1{X (k ), k ∈N +}是一个独立随机过程,令

∑==

n k k X n Y 0),()(小球在第n 次碰撞后所处位置

{Y(n),n ∈

N +}是一个平稳独立增量过程.

4(),0][)]([1==∑=n

k k X E n Y E 均值函数为

,

)]([)]([1∑===n

k n k X D n Y D 方差函数为由独立同分布中心极限定理知)()()(1y y n k X P y n n Y P n k Φ→??????????????≤=??????≤∑=∞

→n as ",2,1,)()(*==n n

n Y n Y 即依分布收敛于标准正态分布随机变量.

2.2.1 维纳过程的数学模型及定义

维纳过程是英国植物学家罗伯特.布朗在观察漂浮在液面的花粉运动—布朗运动规律时建立的随机游动数学模型.

在一条直线上的简单对称的随机游动.

设一粒质点(花粉)每隔时间Δt, 随机地以概率p =1/2向右移动Δx(>0), 以概率q =1/2向左移动一个Δx, 而且每次移动相互独立. 5

6x t x t +Δx

x t -Δx p =1/2q =1/2

",2,1.

,1,,1=????=i i i X i ,次向左移动第次向右移动第记则t 时刻质点的位置为

)(][

21t t t X X X x X ΔΔ+++="取整运算()0,i E X =因()0,t E X =故2()()[]t t D X x t =ΔΔ2()()1,1,2i i D X E X i ==="

7]

[)()(,0)(2

t

t x X D X E t t ΔΔ==故实际粒子的不规则运动是连续进行的, 考虑的情形.

0→t Δ由物理实验结论,可假定0).

x t c Δ=Δ>为常数(1)有

并令代入上式0,→t Δt c t

t t c t t x X D t t t t 220200][lim ][)(lim )(lim ===→→→ΔΔΔΔΔΔΔ0)(lim 0=→t t X E Δ和显然

X 0= 0.(2)

8又因由泛函中心极限定理, 对任意的有

对任意t >0 )

(][21t t t X X X x X ΔΔ+++="可看为个相互独立同分布的随机变量之和,

][t t

Δ(3)0,[]t t t

Δ→→∞Δ时0,>∈t R x }0,{>t X t 故过程是平稳独立增量过程.

)(Φ}0{lim }{lim 2][0020x x t

c X x P x t c X P i t t i t t t =≤?=≤∑

=→→ΔΔΔΔ即当时, X t 趋于正态分布N (0, c 2t ).0→t Δ(4)

9定义2.2.1若随机过程满足

}0,{≥t W t (1) 平稳独立增量过程;

(2) 对任意t >0, );0(),0(~2

>σ,σt N W t 1

}0{)3(0==W P 称{W t ,t ≥0}是参数为σ2的维纳过程.D (W t )随时间的推移而增大

特别当σ=1,称{W t ,t ≥0}是参数为

σ2的标准维纳过程.

101.一维分布:W t ~N (0,σ2t );

2.增量分布:W t -W s ~N (0,σ2|t -s |);设t >s,因W 0=0, 且W t 是平稳独立增量过程,故

有相同分布N (0,σ2(t

-s )).2.2.2 维纳过程的分布及性质

s

s s t s t W W W W ?=?+?0t s t s

W W W ???=与

11证

设维纳过程{ W ( t ),t ≥0}的参数是σ2,,

121n t t t n <<<≥"及任取

n

k W W X W X k k t t k t ,,3,2,?,?111"=?==?n k t t N X k k k ,,2,1)),(,0(~12"=??σX 1, X 2…, X n 相互独立, 且k t X X X W k +++="21则有独立增量过程是可加过程

定理2.2.1维纳过程是正态过程.

分析需证对任意的,

0121n t t t n <<<<≥"及T t t t n

W W W ),,,(21"服从n 为联合正态分布.

12??????????????=000O #??????????????????=?)()(B 121221

2n n t t t t t σσσ%随机向量可表示为T t t t n W W W ),,,(21"T n X X X )

,,,(21"的满秩线性变换:

其中故服从n 维联合正态分布N (O,B). T n X X X ),,,(21"

13????????????????n t t t W W W #21????????????????=11111

001110001100001#####????????????n X X X #21由正态分布的线性变换不变性可知

T

t t t n W W W ),,,(21"或CX

W =满秩矩阵

是非退化n 维正态随机向量.

14由维纳过程的定义可得

1. E (W t )=0, D (W t ) =σ2t ;

2. C (s, t )=R (s,t )=σ2min (s,t )维纳过程是平稳独立增量过程(性质1.

3.1)

根据定理2.1.3之推论1可知的均值向量为CO=O, 协方差矩阵为

T

t t t n W W W )

,,,(21"ΓW = CBC T ???????

???

??????=n t t t t t t t t t 22212222212121212σσσσσσσσσ"#%##""维纳过程的数字特征

15故维纳过程的n 维联合概率密度为=),,,(21,,,21n t t t x x x f n ""????????X X 1W 21W

2Γτ21exp Γ2π1n 其中.

),,,(21T n x x x "=X 一维概率密度为

R x t x t x f t ∈?=

},2exp{21)(22σσπ

16EX.2设{W (t ), t ≥0}是参数为σ2的维纳过程, 求下列过程的均值函数和相关函数.

1) X (t )=W 2(t ), t ≥0;

.

0),1()()2>=t t tW t X 解1)m X (t )=E [X (t )]=E [W 2(t )]

=D [W (t )]+{E [W (t )]}2= σ2t.

)]()([)]()([),(2

2t W s W E t X s X E t s R X ==})]()()()[({22s W s W t W s W E +?=( s

17)]}

()()[({2)]([})]()()[({3

422s W t W s W E s W E s W t W s W E ?++?=)]([})]()({[)]([422s W E s W t W E s W E +?=独立

增量)),(min 2(),(24t s st t s R X +σ=故

)2(3)(2

42422s st s s t s +=+?=σσσσ)]()([)]()([),(22t W s W E t X s X E t s R X ==}

)]()()()[({22s W s W t W s W E +?=( s

另因若X ~N (0,σ2), 有?????=??σ=="""6,4,2,

1)3)(1(,5,3,1,0)(n n n n X E n n

18.0,0)]1([)]([)()2>===t t W tE t X E t m X )]1()1([)]1()1([),(t W s W stE t tW s sW E t s R X ==).,min()1,1min(22

t s t s st σσ==EX.2设{W (t ), t ≥0}是参数为σ

2的维纳过程, 求下列过程的均值函数和相关函数.

1) X (t )=W 2(t ), t ≥0;.0),1()()2>=t t

tW t X

19定理2.2.2 (判断正态过程是否为维纳过程的充分必要条件)0),,min()(2

>=C t s C W W E t s 且轨道连续, 则{Wt , t ≥0}是维纳过程, 反之亦然.

轨道连续: 过程的样本函数是连续函数.结论维纳过程{W t ,t ≥0}几乎所有样本函数都是连续的. 即存在A Ω, P (A )=1, 使ω∈Ω时,W t (ω)在[0, ∞)上连续.

?设{W t , t ≥0}是正态过程, W 0= 0, 对任意t , s >0 有E (W t )= 0 及

20思考题设是参数为σ2的维纳过

程,a 为一正常数,令

}0),({≥t t W 0

)()()(≥?+=t t W a t W t X 试讨论是否为正态过程, 是否为维纳过程.

}0),({≥t t X

最新随机过程考试试题及答案详解1

随机过程考试试题及答案详解 1、(15分)设随机过程C t R t X +?=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间上的均 匀分布。 (1)求)(t X 的一维概率密度和一维分布函数; (2)求)(t X 的均值函数、相关函数和协方差函数。 【理论基础】 (1)? ∞ -= x dt t f x F )()(,则)(t f 为密度函数; (2))(t X 为),(b a 上的均匀分布,概率密度函数?? ???<<-=其他,0,1 )(b x a a b x f ,分布函数 ?? ??? >≤≤--<=b x b x a a b a x a x x F ,1,,0)(,2)(b a x E += ,12)()(2a b x D -=; (3)参数为λ的指数分布,概率密度函数???<≥=-0,00 ,)(x x e x f x λλ,分布函数 ?? ?<≥-=-0 ,00,1)(x x e x F x λ,λ1)(=x E ,21 )(λ=x D ; (4)2 )(,)(σμ==x D x E 的正态分布,概率密度函数∞<<-∞= -- x e x f x ,21 )(2 22)(σμπ σ, 分布函数∞<<-∞= ? ∞ --- x dt e x F x t ,21)(2 22)(σμπ σ,若1,0==σμ时,其为标准正态分布。 【解答】本题可参加课本习题2.1及2.2题。 (1)因R 为]1,0[上的均匀分布,C 为常数,故)(t X 亦为均匀分布。由R 的取值范围可知, )(t X 为],[t C C +上的均匀分布,因此其一维概率密度?? ???+≤≤=其他,0,1 )(t C x C t x f ,一维分布 函数?? ??? +>+≤≤-<=t C x t C X C t C x C x x F ,1,,0)(;

随机过程-答案

2012-2013学年第一学期统计10本 《随机过程》期中考试 一. 填空题 1.设马氏链的一步转移概率矩阵()ij P p =,n 步转移矩阵() ()n ij P p =,二者之间的关系为 (n) n P P = 2.状态i 常返的充要条件为( ) n i i n p ∞ ==∑∞。 3.在马氏链{},0n X n ≥中,记() n i j p ={}0,11,n P Xm j m n X j X i ≠≤≤-==,n ≥1. i j p =( ) 1n i j n p ∞ =∑,若i j p <1,称状态i 为 。 二. 判断题 1. S 是一个可数集,{:0n n X ≥}是取值于S 的一列随机变量,若 ( ) 1 01110011111 1,,...,(,...,)n n n n n n n n n n n n i i S P i X i X i X i P i i -+++--++-?≥?∈X =|====X =|X =并且满足,则{:0n n X ≥}是一个马氏链。 × 2. 任意状态都与它最终到达的状态是互通的,但不与它自己是互通的。 × 3. 一维与二维简单随机游动时常返的,则三维或更高维的简单随机游动也是常返的。× 4. 若状态i ?状态j ,则i 与j 具有相同的周期。 √ 5. 一个有限马尔科夫链中不可能所有的状态都是暂态。 √ 三. 简答题 1.什么是随机过程,随机序列? 答:设T 为[0,+∞)或(-∞,+∞),依赖于t(t ∈T)的一族随机变量(或随机向量){t ξ}通称为随机过程,t 称为时间。当T 为整数集或正整数集时,则一般称为随机序列。 2 .什么是时齐的独立增量过程?

应用随机过程学习总结

应用随机过程学习总结 一、预备知识:概率论 随机过程属于概率论的动态部分,即随机变量随时间不断发展变化的过程,它以概率论作为主要的基础知识。 1、概率空间方面,主要掌握sigma代数和可测空间,在随机过程中由总体样本空间所构成的集合族。符号解释: sup表示上确界, inf表示下确界。 本帖隐藏的内容 2、数字特征、矩母函数与特征函数:随机变量完全由其概率分布来描述。其中由于概率分布较难确定,因此通常计算随机变量的数字特征来估算分布总体,而矩母函数和特征函数便用于随机变量的N阶矩计算,同时唯一的决定概率分布。 3、独立性和条件期望:独立随机变量和的分布通常由卷积来表示,对于同为分布函数的两个函数,卷积可以交换顺序,同时满足结合律和分配率。条件期望中,最重要的是理解并记忆E(X) = E[E(X|Y)] = intergral(E(X|Y=y))dFY(y)。 二、随机过程基本概念和类型 随机过程是概率空间上的一族随机变量。因为研究随机过程主要是研究其统计规律性,由Kolmogorov定理可知,随机过程的有限维分布族是随机过程概率特征的完整描述。同样,随机过程的有限维分布也通过某些数值特征来描述。 1、平稳过程,通常研究宽平稳过程:如果X(t1)和X(t2)的自协方差函数 r(t1,t2)=r(0,t-s)均成立,即随机过程X(t)的协方差函数r(t,s)只与时间差 t-s有关,r(t) = r(-t)记为宽平稳随机过程。 因为一条随机序列仅仅是随机过程的一次观察,那么遍历性问题便是希望将随即过程的均值和自协方差从这一条样本路径中估计出来,因此宽平稳序列只需满足其均值遍历性原理和协方差遍历性原理即可。 2、独立增量过程:若X[Tn]– X[T(n-1)]对任意n均相互独立,则称X(t)是独立增量过程。若独立增量过程的特征函数具有可乘性,则其必为平稳增量过程。 兼有独立增量和平稳增量的过程称为平稳独立增量过程,其均值函数一定是时间t的线性函数。

中国科学大学随机过程(孙应飞)复习题及答案

(1) 设}0),({≥t t X 是一个实的零均值二阶矩过程,其相关函数为 t s s t B t X s X E ≤-=),()}()({,且是一个周期为T 的函数,即0),()(≥=+τττB T B ,求方差函数)]()([T t X t X D +-。 解:由定义,有: )(2)0()0()}()({2)0()0()]} ()()][()({[2)] ([)]([)]()([=-+=+-+=+-+--++=+-T B B B T t X t X E B B T t EX T t X t EX t X E T t X D t X D T t X t X D (2) 试证明:如果}0),({≥t t X 是一独立增量过程,且0)0(=X ,那么它必是一个马 尔可夫过程。 证明:我们要证明: n t t t <<<≤? 210,有 } )()({})(,,)(,)()({11112211----=≤=====≤n n n n n n n x t X x t X P x t X x t X x t X x t X P 形式上我们有: } )()(,,)(,)({} )()(,,)(,)(,)({} )(,,)(,)({} )(,,)(,)(,)({})(,,)(,)()({1122221111222211112211112211112211--------------========≤= ======≤=====≤n n n n n n n n n n n n n n n n n n n n x t X x t X x t X x t X P x t X x t X x t X x t X x t X P x t X x t X x t X P x t X x t X x t X x t X P x t X x t X x t X x t X P 因此,我们只要能证明在已知11)(--=n n x t X 条件下,)(n t X 与2 ,,2,1,)(-=n j t X j 相互独立即可。 由独立增量过程的定义可知,当2,,2,1,1-=<<<-n j t t t a n n j 时,增量 )0()(X t X j -与)()(1--n n t X t X 相互独立,由于在条件11)(--=n n x t X 和0)0(=X 下,即 有)(j t X 与1)(--n n x t X 相互独立。由此可知,在11)(--=n n x t X 条件下,)(n t X 与 2,,2,1,)(-=n j t X j 相互独立,结果成立。 (3) 设随机过程}0,{≥t W t 为零初值(00=W )的、有平稳增量和独立增量的过程, 且对每个0>t ,),(~2t N W t σμ,问过程}0,{≥t W t 是否为正态过程,为什么? 解:任取n t t t <<<≤? 210,则有: n k W W W k i t t t i i k ,,2,1][1 1 =-=∑=-

随机过程试题带答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。 2.设随机过程X(t)=Acos( t+),-t t 则 {(5)6|(3)4}______P X X === 9.更新方程()()()()0t K t H t K t s dF s =+-?解的一般形式为 。 10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。 二、证明题(本大题共4道小题,每题8分,共32分) P(BC A)=P(B A)P(C AB)。 1.为it (e -1) e λ。2. 1(sin(t+1)-sin t)2ωω。3. 1 λ 4. Γ 5. 212t,t,;e,e 33?????? 。 6.(n)n P P =。 7.(n) j i ij i I p (n)p p ∈=?∑。 8.6 18e - 9。()()()()0 t K t H t K t s dM s =+-? 10. a μ 2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

概率论与随机过程考点总结

概率论与随机过程考点总 结 This manuscript was revised by the office on December 10, 2020.

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数?∞-=x dt t f x F )()( 2.n 维随机变量),,,(21n X X X X = 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X ?∞ ∞-=dx x xf EX )( 方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,):DY DX B XY XY ?= ρ 若0=ρ,则称Y X ,不相关。 独立?不相关?0=ρ 4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞-=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 母函数:∑∞ ===0 )()(k k k k z p z E z g !) 0()(k g p k k = )1()('g X E = 2''")]1([)1()1()(g g g X D -+= 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 ! )(k e k X P k λλ -== λ=EX λ=DX 均匀分布略 正态分布),(2σa N 2 22)(21)(σσ πa x e x f -- = a EX = 2σ=DX 指数分布 ???<≥=-0,00,)(x x e x f x λλ λ1=EX 21 λ=DX 6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X

期末随机过程试题及标准答案

《随机过程期末考试卷》 1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。 2.设随机过程X(t)=Acos( t+),-t t 则 {(5)6|(3)4}______P X X === 9.更新方程()()()()0t K t H t K t s dF s =+-?解的一般形式为 。 10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。 二、证明题(本大题共4道小题,每题8分,共32分) 1.设A,B,C 为三个随机事件,证明条件概率的乘法公式: P(BC A)=P(B A)P(C AB)。 2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

电子科大随机信号分析随机期末试题答案

电子科技大学2014-2015学年第 2 学期期 末 考试 A 卷 一、设有正弦随机信号()cos X t V t ω=, 其中0t ≤<∞,ω为常数,V 是[0,1)均匀 分布的随机变量。( 共10分) 1.画出该过程两条样本函数。(2分) 2.确定02t πω=,134t πω=时随机信号()X t 的 一维概率密度函数,并画出其图形。(5 分) 3.随机信号()X t 是否广义平稳和严格平 稳?(3分) 解:1.随机信号()X t 的任意两条样本函 数如题解图(a)所示: 2.当02t πω=时,()02X πω=,()012P X πω??==????, 此时概率密度函数为:(;)()2X f x x πδω =

当34t πω=时, 3()42X πω=-,随机过程的一维 概率密度函数为: 3. ()[]1cos cos 2E X t E V t t ωω==???? 均值不平稳, 所以()X t 非广义平稳,非严格平稳。 二、设随机信号()()sin 2X n n πφ=+与 ()()cos 2Y n n πφ=+,其中φ为0~π上均 匀分布随机变量。( 共10分) 1.求两个随机信号的互相关函数 12(,)XY R n n 。(2分) 2.讨论两个随机信号的正交性、互不 相关性与统计独立性。(4分) 3.两个随机信号联合平稳吗?(4分) 解:1.两个随机信号的互相关函数 其中()12sin 2220E n n ππφ++=???? 2. 对任意的n 1、n 2 ,都有12(,)0XY R n n =, 故两个随机信号正交。

又 故两个随机信号互不相关, 又因为 故两个随机信号不独立。 3. 两个随机信号的均值都平稳、相关函数都与时刻组的起点无关,故两个信号分别平稳,又其互相关函数也与时刻组的起点无关,因而二者联合平稳。 三、()W t 为独立二进制传输信号,时隙长度T 。在时隙内的任一点 ()30.3P W t =+=????和 ()30.7P W t =-=????,试求( 共10分) 1.()W t 的一维概率密度函数。(3分) 2.()W t 的二维概率密度函数。(4分) 3.()W t 是否严格平稳?(3分)

随机过程试题及答案

一.填空题(每空2分,共20分) 1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为it (e -1) e λ。 2.设随机过程X(t)=Acos( t+),-

(完整版)北邮研究生概率论与随机过程2012-2013试题及答案

北京邮电大学2012——2013学年第1学期 《概率论与随机过程》期末考试试题答案 考试注意事项:学生必须将答题内容(包括填空题)做在试题答题纸上,做在试卷纸上一律无效。在答题纸上写上你的班号和选课单上的学号,班内序号! 一. 单项选择题和填空题:(每空3分,共30分) 1.设A 是定义在非空集合Ω上的集代数,则下面正确的是 .A (A )若A B ∈∈A,A ,则A B -∈A ; (B )若A A B ∈?A,,则B ∈A ; (C )若12n A n =∈?A,,,,则 1 n n A ∞=∈A ; (D )若12n A n =∈?A,,,,且123A A A ??? ,则 1 n n A ∞ =∈A . 2. 设(),ΩF 为一可测空间,P 为定义在其上的有限可加测度,则下面正确的是 .c (A )若A B ∈∈F,F ,则()()()P A B P A P B -=-; (B )若12n A n =∈?F,,,,,且123A A A ??? ,则1 li ( )()m n n n n P A A P ∞→∞ ==; (C )若A B C ∈∈∈F,F,F,,则()()()()P A B C P A P AB P A BC =++; (D )若12n A n =∈?F,,,,,且,i j A i j A =??=/,1 1 ( )()n n n n P P A A ∞ ∞===∑. 3.设f 为从概率空间(),P ΩF,到Borel 可测空间(),R B 上的实可测函数,表达式为100 0()k A k f kI ω==∑,其中1000 ,, i j n n i j A A A ==??=Ω/=,则fdP Ω=? ;

随机过程知识点汇总

第一章随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量,分布函数 离散型随机变量的概率分布用分布列分布函数 连续型随机变量的概率分布用概率密度分布函数 2.n维随机变量 其联合分布函数 离散型联合分布列连续型联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量连续型随机变量 方差:反映随机变量取值的离散程度 协方差(两个随机变量): 相关系数(两个随机变量):若,则称不相关。 独立不相关 4.特征函数离散连续 重要性质:,,, 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 二项分布 泊松分布均匀分布略 正态分布 指数分布 6.N维正态随机变量的联合概率密度 ,,正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义 设是概率空间,是给定的参数集,若对每个,都有一个随机变量与之对应,则称随机变量族是上的随机过程。简记为。 含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。 当固定时,是随机变量。当固定时,时普通函数,称为随机过程的一个样本函数或轨道。 分类:根据参数集和状态空间是否可列,分四类。也可以根据之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。 2.随机过程的分布律和数字特征 用有限维分布函数族来刻划随机过程的统计规律性。随机过程的一维分布,二维分布,…,维分布的全体称为有限维分布函数族。随机过程的有限维分布函数族是随机过程概率特征的完整描述。在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代。(1)均值函数表示随机过程在时刻的平均值。 (2)方差函数表示随机过程在时刻对均值的偏离程度。 (3)协方差函数且有 (4)相关函数(3)和(4)表示随机过程在时刻,时的线性相关程度。

随机过程习题及答案

第二章 随机过程分析 学习指导 1.1.1 要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2. 随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为 F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1) 如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 1111111 (,) (, ) (2 - 2)?=?F x t f x t x 对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率 {}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤ 称为随机过程 (t )的二维分布函数。如果 2212122121212 (,;,) (,;,) (2 - 4)F x x t t f x x t t x x ?=??? 存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程 (t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(),,() (2 - 5) =≤≤≤L L L F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程 (t )的n 维分布函数。如果 n n 12n 12n n 12n 12n 12n (x )() (2 - 6)?=???L L L L L F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,, 存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程 (t )的n 维概率密度函数。 3. 随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程 (t )在任意给定时刻t 的取值 (t )是一个随机变量,其均值为 []1()(, )d (2 - 7)E t xf x t x ξ∞ -∞ =?

概率论与随机过程考点总结定稿版

概率论与随机过程考点 总结 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数?∞-=x dt t f x F )()( 2.n 维随机变量),,,(21n X X X X = 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X ?∞ ∞-=dx x xf EX )( 方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,):DY DX B XY XY ?=ρ 若0=ρ,则称Y X ,不相 关。 独立?不相关?0=ρ

4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞ -=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 母函数:∑∞ ===0 )()(k k k k z p z E z g !) 0()(k g p k k = )1()('g X E = 2''")]1([)1()1()(g g g X D -+= 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 ! )(k e k X P k λλ -== λ=EX λ=DX 均匀分布略 正态分布),(2σa N 2 22)(21)(σσ πa x e x f -- = a EX = 2σ=DX 指数分布 ???<≥=-0,00,)(x x e x f x λλ λ1=EX 21 λ=DX 6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X T n a a a a ),,,(21 =,T n x x x x ),,,(21 =,n n ij b B ?=)(正定协方差阵 3.随机向量的变换 二.随机过程的基本概念 1.随机过程的一般定义

学期数理统计与随机过程(研)试题(答案)

北京工业大学2009-20010学年第一学期期末 数理统计与随机过程(研) 课程试卷 学号 姓名 成绩 注意:试卷共七道大题,请写明详细解题过程。 考试方式:半开卷,考试时只允许看教材《概率论与数理统计》 浙江大学 盛 骤等编第三版(或第二版)高等教育出版社。可以看笔记、作业,但不允许看其它任何打印或复印的资料。考试时允许使用计算器。考试时间120分钟。考试日期:2009年12月31日 一、随机抽取某班28名学生的英语考试成绩,算得平均分数为80=x 分,样本标准差8=s 分,若全年级的英语成绩服从正态分布,且平均成绩为85分,问:能否认为该班的英语成绩与全年级学生的英语平均成绩有显著差异(取显著性水平050.=α)? 解:这是单个正态总体 ),(~2σμN X ,方差2σ未知时关于均值μ的假设检验问题,用T 检验法. 解 85:0=μH ,85:1≠μH 选统计量 n s x T /0 μ-= 已知80=x ,8=s ,n =28,850=μ, 计算得n s x T /0μ-= 31 .328/885 80=-= 查t 分布表,05.0=α,自由度27,临界值052.2)27(025.0=t . 由于052.2>T 2622.2>,故拒绝 0H ,即在显著水平05.0=α下不能认为 该班的英语成绩为85分.

050.= 解:由极大似然估计得.2?==x λ 在X 服从泊松分布的假设下,X 的所有可能的取值对应分成两两不相交的子集A 0, A 1,…, A 8。 则}{k X P =有估计 =i p ?ΛΛ,7,0, !2}{?2 ===-k k e k X P k =0?p

随机过程学习总结

随机过程学习报告 通过这一段时间以来的学习,我认识到我们的生活中充满了随机过程的实例,在生活中我们经常需要了解在一定时间间隔[0,t)内某随机事件出现次数的统计规律,如到某商店的顾客数;某电话总机接到的呼唤次数;在电子技术领域中的散粒噪声和脉冲噪声;已编码信号的误码数等。在我们的专业学习——通信工程中,研究数字通信中已编码信号的误码流,数模变换中对信号进行采样等也都会应用到随机过程的知识,因此这门课程的学习是非常重要的。 一、认识泊松过程与复合泊松过程的区别 泊松过程是一类很重要的随机过程,随机质点流描述的随机现象十分广泛,下面我就通过运用泊松过程的知识解答一道书本中的实际应用题目: 设移民到某地区定居的户数是一泊松过程,平均每周有两户定居,即λ=2。若每户的人口数是随机变量,一户4人的概率是1/6,一户3人的概率是1/3,一户两人的概率是1/3,一户一人的概率是1/6,且每户的人口数是相互独立的,①5周内移民到该地区定居的人口数是否为泊松过程?②求上述随机过程的数学期望与方差。 分析:这道题目中的问题就是复合泊松过程的实际应用,这类过程具有泊松过程的一部分性质,不同的地方就在于随机质点流的到达不必再满足每次只能到一个的标准,这就将随机过程的研究与实际相融合,生活中的大部分过程其实是不可能满足每次到达一个这样的苛刻要求的,比如调查到达商场购物的人数等问题时,实际去商场购物时人们大多都是与好朋友结伴出行而不可能存在每个人都是独自来购物的现象,所以引入复合泊松过程是十分有必要的。 解:设[0,t)时间内到该地定居的户数为N(t),则{N(t),t>=0}是一泊松过程,X(n)为第n 户移民到该地定居的家庭人口数,{X(0)=0,X(n),n=1,2,3···}是独立同分布随机变量列,Y(t)为[0,t)时间内定居到该地的人数。 则Y(t)=∑=) (0 )n (X t N n t>=0 为一复合泊松过程, )()(υ?n X =4γi e *1/6+3γi e *1/3+2γi e *1/3+γi e *1/6 )()t (υ?Y =)1)((t )1(-γ?λX e 由特征函数的唯一性可知,Y(t)不是泊松过程。 E[X(n)]=4*1/6+3*1/3+2*1/3+1*1/6=5/2 E[)(n X 2 ]=16*1/6+9*1/3+4*1/3+1*1/6=43/6 则E[Y(t)]=λt*E[X(1)]=t*5; D[Y(t)]=λt*E[)(1X 2 ]=t*43/3; 则五周内定居到该地的人数数学期望为:5*5=25 方差为:5*43/3=215/3

概率论与随机过程考点总结

概率论与随机过程考点 总结 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数?∞-=x dt t f x F )()( 2.n 维随机变量),,,(21n X X X X = 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X ?∞ ∞-=dx x xf EX )( 方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,):DY DX B XY XY ?= ρ 若0=ρ,则称Y X ,不相关。 独立?不相关?0=ρ 4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞-=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 母函数:∑∞ ===0 )()(k k k k z p z E z g !) 0()(k g p k k = )1()('g X E = 2''")]1([)1()1()(g g g X D -+= 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 ! )(k e k X P k λλ -== λ=EX λ=DX 均匀分布略 正态分布),(2σa N 2 22)(21)(σσ πa x e x f -- = a EX = 2σ=DX 指数分布 ???<≥=-0,00,)(x x e x f x λλ λ1=EX 21 λ=DX 6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X

随机过程复习试题及答案

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 证明:当12n 0t t t t <<< <<时, 1122n n P(X(t)x X(t )=x ,X(t )=x ,X(t )=x )≤= n n 1122n n P(X(t)-X(t )x-x X(t )-X(0)=x ,X(t )-X(0)=x , X(t )-X(0)=x )≤= n n P(X(t)-X(t )x-x )≤,又因为n n P(X(t)x X(t )=x )=≤n n n n P(X(t)-X(t )x-x X(t )=x )≤= n n P(X(t)-X(t )x-x )≤,故1122n n P(X(t)x X(t )=x ,X(t )=x , X(t )=x )≤=n n P(X(t)x X(t )=x )≤ 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

随机过程试题及解答

2016随机过程(A )解答 1、(15分)设随机过程V t U t X +?=)(,),0(∞∈t ,U ,V 是相互独立服从正态分布(2,9)N 的随机变量。 1) 求)(t X 的一维概率密度函数; 2) 求)(t X 的均值函数、相关函数和协方差函数。 3) 求)(t X 的二维概率密度函数; 解: 由于U ,V 是相互独立服从正态分布(2,9)N 的随机变量,所以V t U t X +?=)(也服从正态分布, 且: {}{}{}{}()()22m t E X t E U t V t E U E V t ==?+=?+=+ {}{}{}{}22()()99D t D X t D U t V t D U D V t ==?+=+=+ 故: (1) )(t X 的一维概率密度函数为:()2 22218(1) (),x t t t f x e x --- += -∞≤≤∞ (2) )(t X 的均值函数为:()22m t t =+;相关函数为: {}{} (,)()()()()R s t E X s X t E U s V U t V =?=?+??+ {}{}{} 22()13()413 st E U s t E U V E V st s t =?++??+=?++?+ 协方差函数为:(,)(,)()()99B s t R s t m s m t st =-?=+ (3)相关系数: (,)s t ρρ== == )(t X 的二维概率密度函数为: 2212222(22)(22)12(1)9(1)4(1),12(,)x s x t s t s t f x x e ρ????-----?? +????-++???????? = 2、(12分)某商店8时开始营业,在8时顾客平均到达率为每小时4人,在12时顾客的 平均到达率线性增长到最高峰每小时80人,从12时到15时顾客平均到达率维持不变为每小时80人。问在10:00—14:00之间无顾客到达商店的概率是多少?在10:00—14:00之间到达商店顾客数的数学期望和方差是多少? 解: 到达商店顾客数服从非齐次泊松过程。 将8时至15时平移到0—7时,则顾客的到达速率函数为: 419,04 ()80,47t t t t λ+≤≤?=? <≤? 在10:00—14:00之间到达商店顾客数(6)(2)X X -服从泊松分布,其均值: 6 4 6 2 2 4 (6)(2)()(419)80282m m t dt t dt dt λ-==++=???

(完整版)随机过程知识点汇总

第一章随机过程 的基本概念与基本类型 一.随机变量及其分布 X ,分布函数 F (x) P(X x) 1.随机变量 离散型随机变量 X 的概率分布用分布列 p P(X x k ) F(x) p k f (t)dt 分布函数 k x X 的概率分布用概率密度 f (x) F(x) 分布函数 连续型随机变量 2.n 维随机变量 X (X ,X , , X ) 1 2 n F(x) F(x ,x , ,x ) P(X x , X 2 x , , X n x n ,) 其联合分布函数 1 2 n 1 1 2 离散型 联合分布列 连续型联合概率密度 3.随机变量 的数字特征 数学期望:离散型随机变量 X EX x p k k X EX xf (x)dx 连续型随机变量 2 DX E(X EX) 2 EX (EX) 2 方差: 反映随机变量取值 的离散程度 协方差(两个随机变量 X ,Y ): B E[( X EX)(Y EY)] E(XY) EX EY XY B XY 相关系数(两个随机变量 X,Y ): 0,则称 X ,Y 不相关。 若 XY DX DY 独立 不相关 itX g(t) E(e ) itx e p k 连续 g(t) k e itx f (x)dx 4.特征函数 离散 g(t) 重要性质: g(0) 1, g(t) 1 g( t) g(t) , , g (0) i EX k k k 5.常见随机变量 的分布列或概率密度、期望、方差 0-1分布 二项分布 P( X 1) p,P( X 0) q EX p DX pq P(X k) C p q n k k k EX np DX n p q n k 泊松分布 P( X k) e k! EX DX 均匀分布略 ( x a)2 1 2 N(a, ) f (x) 2 2 2 EX a 正态分布 e DX 2

相关主题
文本预览
相关文档 最新文档