当前位置:文档之家› 半导体物理教学大纲

半导体物理教学大纲

半导体物理教学大纲
半导体物理教学大纲

《半导体物理》教学大纲

课程名称:半导体物理学英文名称:Semiconductor Physics

课程编号:14010022 课程类别:专业选修课

使用对象:应用物理、电信专业本科生

总学时: 48 学分: 3

先修课程:热力学与统计物理学;量子力学;固体物理学

使用教材:《半导体物理学》刘恩科等主编,电子工业出版社出版

一、课程性质、目的和任务

本课程是高等学校应用物理专业、电子与信息专业本科生的专业选修课。本课程的目的和任务是:通过本课程的学习使学生获得半导体物理方面的基本理论、基本知识和方法。通过本课程的学习要为应用物理与电信专业本科生的半导体集成电路、激光原理与器件、功能材料等后续课程的学习奠定必要的理论基础

二、教学内容及要求

本课程所使用的教材,共13章,概括可分为四大部分。第1~5章,晶体半导体的基本知识和性质的阐述;第6~9章归结为半导体的接触现象;第10~12章,半导体的各种特殊效应;第13章,非晶态半导体。

全部课堂教学为48学时,对上述内容作了必要的精简。10~13章全部不在课堂讲授,留给学生自学或参考,其他各章的内容也作了部分栅减。具体内容和要求如下:

第1章半导体中的电子状态

1.半导体的晶格结构和结合性质

2.半导体中的电子状态和能带

3.半导体中电子的运动有效质量

4.本征半导体的导电机构空穴

5.回旋共振

6.硅和锗的能带结构

7.III-V族化合物半导体的能带结构

8.II-VI族化合物半导体的能带结构

9.Si1-xGex合金的能带

10.宽禁带半导体材料

基本要求:将固体物理的晶体结构和能带论的知识应用到半导体中,以深入了解半导体中的电子状态;明确回旋共振实验的目的、意义和原理,进而了解主要半导体材料的能带结构。(限于学时,本章的第7-10节可不讲授,留学生参阅,不作具体要求)。

重点:半导体中的电子运动;有效质量;空穴概念。

难点:能带论的定性描述和理解;锗、硅、砷化镓能带结构

第2章半导体中杂质和缺陷能级

1.硅、锗晶体中的杂质能级

2.III-V族化合物中的杂质能级

3.氮化镓、氮化铝、氮化硅中的杂质能级

4.缺陷、位错能级

基本要求:根据不同杂质在半导体禁带中引入能级的情况,了解其性质和作用,由其分清浅杂质能级(施主和受主)和深能级杂质的性质和作用;了解缺陷、位错能级的特点和作用。(限于学时,本章的第3节可不讲授,留学生参阅,不作具体要求)。

重点:杂质类型;施主杂质,施主能级,受主杂质,受主能级等概念;浅能级杂质,深能级杂质;杂质补偿作用。

难点:杂质能级;杂质电离的过程

第3章半导体中载流子的统计分布

1.状态密度

2.费米能级和载流子的统计分布

3.本征半导体的载流子浓度

4.杂质半导体的载流子浓度

5.一般情况下的载流子统计分布

6.简并半导体

7.电子占据杂质能级的概率

基本要求:通过本章的学习,应熟练掌握课本中所阐明的基本概念和各种关系,能顺利导出有关重要基本公式,准确计算在各种不同杂质浓度和温下的费米能级位置和载流子浓度,从而对半导体性质有更深入的理解。(限于学时,本章的第7节可不讲授,留学生参阅,不作具体要求)。

重点:波矢空间的量子态的分布;半导体导带底,价带顶附近的状态密度计算;费米分布函数和玻耳兹曼分布函数及其物理意义;本征半导体,杂质半导体载流子浓度的计算.

难点:半导体导带底,价带顶附近的状态密度计算;费米能级和载流子的统计分布;杂质半导体载流子浓度的计算

第4章半导体的导电性

1.载流子的漂移运动和迁移率

2.载流子的散射

3.迁移率与杂质浓度和温度的关系

4.电阻率及其与杂质浓度和温度的关系

5.玻耳兹曼方程、电导率的统计理论

6.强电场下的效应、热载流子

7.多能谷散射、耿氏效应

基本要求:通过学习应了解几种主要散射机构的机理、散射几率与杂质浓度及温度的关系,从而明确迁移率、电导率、电阻率与杂质浓度及温度的关系。最后以半导体在强电场下的效应及耿氏效应进行定性解释。(限于学时,本章的第5、6、7节可不讲授,留学生参阅,不作具体要求)。

重点:电导率、迁移率概念及相互关系;迁移率、电阻率随温度和杂质浓度的变化规律;强电场效应

难点:载流子的散射机构;电导率与迁移率的关系;强电场效应;热载流子

第5章非平衡载流子

1.非平衡载流子的注入与复合

2.非平衡载流子的寿命

3.准费米能级

4.复合理论

5.陷阱效应

6.载流子的扩散运动

7.载流子的漂移运动,爱因斯坦关系式

8.连续性方程式

9.硅的少数载流子寿命与扩散长度

基本要求:在了解本章各种基本要领的基础上,应牢固掌握非平衡载流子的产生、复合、扩散等运动规律,并对总结出来的电流密度方程和连续性方程有深入的理解和灵活应用。(限于学时,本章的第9节可不讲授,留学生参阅,不作具体要求)。

重点:非平衡载流子的产生、复合;非平衡载流子寿命;载流子的扩散和漂移运动;连续性方程运用

难点:复合理论;爱因斯坦关系;连续性方程的应用

第6章pn结

1.pn结及其能带图

2.pn结电流电压特性

3.pn结电容

4.pn结击穿

5.pn结隧道效应

基本要求:了解pn结的物理特性以及能带图,掌握pn结接触电势差的计算,理解pn结的电流电压pn结电容的意义和计算,了解pn结的击穿机制和隧道效应重点:空间电荷区、pn结接触电势差、载流子分布、电流电压特性、结电容、击穿机制、隧道效应

难点:电流电压特性、结电容

第7章金属和半导体的接触

1.金属半导体接触及其能级图

2.金属半导体接触整流理论

3.少数载流子的注入和欧姆接触

基本要求:通过本章学习,应对理想和实际的金—半接触能带图应深入理解,在此基础上,对其电流传输理论的几种模型建立,应用和推导要有所了解,并掌握实现良好欧姆接触和整流接触的原理和方法。

重点:金属和半导体接触的能带弯曲过程分析及简图画法

难点:金属和半导体接触的能带弯曲过程分析,热电子发射理论

第8章半导体表面与MIS结构

1.表面态

2.表面电场效应

3.MIS结构的电容—电压特性

4.硅—二氧化硅系统的性质

5.表面电导及迁移率

6.表面电导对pn结特性的影响

基本要求:通过学习,在认识表面状态的基础上,对理想MIS结构的表面电场效应、电容电压特性有深刻理解,对实际MIS结构中出现的各种情况进行分析,并与理想C-V特性相比较,从而明确如何用C-V法来了解半导体的表面状况,进而对使用最多的Si-SiO2系统的性质有详细的了解。(限于学时,本章的第5、6节可不讲授,留学生参阅,不作具体要求)。

重点:半导体表面电场效应,MIS结构的电容一电压特性

难点:硅-二氧化硅系统的性质

第9章异质结

1.半导体异质结及其能带图

2.半导体异质pn结的电流电压特性及注入特性

3.半导体异质节量子阱结构及其电子能态与特性

4.半导体应变异质结构

5.GaN基半导体异质结构

6.半导体超晶格

基本要求:通过学习应熟练掌握各种理想异质结能带图的画法,了解异质结几种电流传输模型和重要应用,并对半导体超晶格材料有初步了解。(限于学时,本章的第3-6节可不讲授,留学生参阅,不作具体要求)。

重点:理想异质结能带图的画法

难点:异质结能带图的画法

第10章半导体的光学性质和光电与发光现象

1.半导体的光学常数

2.半导体的光吸收

3.半导体的光电导

4.半导体的光生伏特效应

5.半导体发光

6.半导体激光

7.半导体异质结在光电子器件中的应用

基本要求:半导体的光学性质及光电效应,是半导体特殊效应中最重要的,通过对其性质和机理的研究,不仅可发展各种光敏器件、光电池发光管和激光器等,而且还可以了解半导体本身的许多性质。(限于学时,本章可根据需要与可能选择讲述)。

重点:半导体的光吸收及发光现象,半导体光电导、光生伏特效应、半导体激光难点:光电导效应;电致发光机构

第11章半导体的热电性质

1.热电效应的一般描述

2.半导体的温差电动势率

3.半导体的珀尔帖效应

4.半导体的汤姆逊效应

5.半导体的热导率

6.半导体热电效应的应用

基本要求:了解半导体的热电效应的种类、应用和物理机制,掌握半导体温差电动势率的计算和影响因素。(限于学时,本章留学生参阅,不作具体要求)。重点:塞贝克效应、珀尔帖效应、汤姆逊效应、温差电动势率、热导率

难点:温差电动势率

第12章半导体磁和压阻效应

1. 霍耳效应

2. 磁阻效应

3. 磁光效应

4. 量子化霍耳效应

5. 热磁效应

6. 光磁电效应

7. 压阻效应

基本要求:了解半导体霍尔效应、磁阻效应、磁光效应、量子化霍尔效应、热磁效应、光生伏特效应、压阻效应的物理机制和应用。(限于学时,本章留学生参阅,不作具体要求)。

重点:霍尔效应、磁阻效应、磁光效应、量子化霍尔效应、热磁效应、光生伏特效应、压阻效应

难点:量子化霍尔效应

第13章非晶半导体

1.非晶半导体的结构

2.非晶半导体中的电子态

3.非晶半导体中的缺陷、隙态与掺杂效应

4.非晶半导体中的电学性质

5.非晶半导体中的光学性质

6.α–Si:H的pn结余金属-半导体接触特性

基本要求:了解非晶半导体的能带结构的特点,理解非晶半导体的迁移率边、隙态与掺杂效应的物理意义,掌握非晶半导体光学与电学性质的特点以及应用。(限于学时,本章留学生参阅,不作具体要求)。

重点:非晶半导体的能带、迁移率边、隙态与掺杂效应、非晶半导体的导电机制和光电导

难点:非晶半导体的迁移率边、隙态与掺杂效应

三、教学日历

专业名称:物理学院课堂教学时数:48

*内容为选讲内容。

四、参考资料

1、《半导体物理》,作者:钱佑华,徐至中,高等教育出版社2003

简介:全书包括七章:第一章在能带的框架内讲解半导体电子的能量状态;第二章简要介绍电子的平衡统计;第三章讲述能带电子的输运规律;第四章说明外界作用引起额外载流子的行为;第五章讨论半导体的表面与界面;第六章介绍金属一半导体接触、pn结、异质结、量子阱及超晶格;第七章讲解半导体光谱。

2、《半导体器件物理》(第3版),作者:耿莉,张瑞智译|(美)S. M. Sze, Kwok K. Ng著,西安交通大学出版社 2008

简介:该版保留了重要半导体器件的最为详尽的知识内容,并做了更新和重新组织,反映了当今器件在概念和性能等方面的巨大进展,可以使读者快速地了解当今半导体物理和所有主要器件,如双极、场效应、微波、光子器件和传感器的性能特点。

本书专为研究生教材和参考所需设计,新版本包括:以最新进展进行了全面更新;包括了对三维MOSFET、MODFET、共振隧穿二极管、半导体传感器、量子级联激光器、单电子晶体管、实空间转移器件等新型器件的叙述;对内容进行了重新组织和安排;各章后面配备了习题;重新高质量地制作了书中的所有插图。

《半导体器件物理》(第3版)为工程师、研究人员、科技工作者、高校师生提供了解当今应用中最为重要的半导体器件的基础知识,对预测未来器件性能和局限性提供了良好的基础。

3、《Semiconductor Physics and Devices:Basic Principles》 3rd Ed.半导体物理与器件--基本原理(第3版)作者: (美)Donald A. Neamen 清华大学出版社 2003

《半导体物理与器件》(第三版) 国外电子与通信教材系列作者: (美)Donald A.Neamen 电子工业出版社2005

简介:本书是微电子技术领域的基础教程。全书涵盖了量子力学、同固体物理、半导体材料物理以及半导体器件物理等内容,共分为三部分,十五章。第一部分介绍基础物理,包括固体晶格结构、量子力学和固体物理;第二部分介绍 pn结、金属半导体接触、异质结以及双极晶体管、MOS场效应晶体管、结型场效应晶体管等。最后论述了光子器件和功率半导体器件。书中既讲述了半导体基础知识,也分析讨论了小尺寸器件物理问题,具有一定的深度和广度。

4、《半导体物理学学习辅导与典型题解》--高等学校理工科电子科学与技术类课程学习辅导丛书,作者:田敬民电子工业出版社2006

5、半导体物理讲义与视频资料,作者:蒋玉龙

物理学相关 半导体物理与器件实验教学大纲

《半导体物理与器件》课程实验教学大纲 Semiconductor Physics and devices 课程编号:(03320070) 课程教学总学时:45 实验总学时:3 总学分:3 先修课程:普通物理、量子力学、半导体物理 适用专业:光电信系科学与工程 一、目的与任务 本课程实验是光信息科学与技术专业及光电信息工程专业的主要基础课程实验之一。 本系列实验的目的和任务是通过对本实验课程的教学,培养学生对半导体拉曼光谱的测量的专业实验知识和技能,充分发挥学生的主动性和培养独立实验能力,使学生系统地掌握拉曼散射的基本原理,提高学生实验技能,学习使用拉曼光谱仪测量物质的谱线,知道简单的谱线分析方法。 二、实验教学的基本要求 (1)掌握实验的基本原理; (2)了解所涉及的常用装置、仪器的正确使用方法; (3)测试有关数据; (4)数据处理,将理论计算结果与实验测试结果进行比较,得出拉曼光谱线,并对其进行分析。 通过实验,使学生能正确进行相应的仪器操作和使用、准确判断实验现象和结果的合理性,同时具有处理测量数据的能力。 三、本课程开设的实验项目: 注:1、类型---指设计性、综合性、验证性;2、要求---指必修、选修;3、该表格不够可拓展。 四、实验成绩的考核与评定办法: 实验成绩的考核,以实验报告和实验过程为考核依据,实验报告要求对基本原理、测量方法、实验数据记录和处理等过程描述详细准确。考试课成绩按百分制记分,实验课成绩在本门课程总成绩中由任课老师在10%~15%内确定。五、大纲说明

学生在实验前应认真阅读实验指导书,了解实验目的和实验原理, 明确本次实验中所需测量结果, 所采用的实验方法, 使用什么仪器, 控制什么条件,需要注意什么问题,并设计好记录数据表格(包含原始数据、中间计算数据及实验结果)等。在检查完实验器材完整后,根据预习内容进行实验,认真分析实验现象,整理实验结果,填写在实验报告相应位置处。老师检查实验结果并认可后,学生须切断电源、清理实验仪器、整洁实验台面,经老师同意后学生方可离开实验室。 制定人:祝远锋审定人:批准人: 时间: 2013/4/25

半导体物理学基础知识_图文(精)

1半导体中的电子状态 1.2半导体中电子状态和能带 1.3半导体中电子的运动有效质量 1半导体中E与K的关系 2半导体中电子的平均速度 3半导体中电子的加速度 1.4半导体的导电机构空穴 1硅和锗的导带结构 对于硅,由公式讨论后可得: I.磁感应沿【1 1 1】方向,当改变B(磁感应强度)时,只能观察到一个吸收峰 II.磁感应沿【1 1 0】方向,有两个吸收峰 III.磁感应沿【1 0 0】方向,有两个吸收峰 IV磁感应沿任意方向时,有三个吸收峰 2硅和锗的价带结构 重空穴比轻空穴有较强的各向异性。 2半导体中杂质和缺陷能级 缺陷分为点缺陷,线缺陷,面缺陷(层错等 1.替位式杂质间隙式杂质

2.施主杂质:能级为E(D,被施主杂质束缚的电子的能量状态比导带底E(C低ΔE(D,施主能级位于离导带底近的禁带中。 3. 受主杂质:能级为E(A,被受主杂质束缚的电子的能量状态比价带E(V高ΔE(A,受主能级位于离价带顶近的禁带中。 4.杂质的补偿作用 5.深能级杂质: ⑴非3,5族杂质在硅,锗的禁带中产生的施主能级距离导带底较远,离价带顶也较远,称为深能级。 ⑵这些深能级杂质能产生多次电离。 6.点缺陷:弗仑克耳缺陷:间隙原子和空位成对出现。 肖特基缺陷:只在晶体内部形成空位而无间隙原子。 空位表现出受主作用,间隙原子表现出施主作用。 3半导体中载流子的分布统计 电子从价带跃迁到导带,称为本征激发。 一、状态密度 状态密度g(E是在能带中能量E附近每单位间隔内的量子态数。 首先要知道量子态,每个量子态智能容纳一个电子。 导带底附近单位能量间隔内的量子态数目,随电子的能量按抛物线关系增大,即电子能量越高,状态密度越大。 二、费米能级和载流子的统计分布

半导体材料课程教学大纲

半导体材料课程教学大纲 一、课程说明 (一)课程名称:半导体材料 所属专业:微电子科学与工程 课程性质:专业限选 学分: 3 (二)课程简介:本课程重点介绍第一代和第二代半导体材料硅、锗、砷化镓等的制备基本原理、制备工艺和材料特性,介绍第三代半导体材料氮化镓、碳化硅及其他半导体材料的性质及制备方法。 目标与任务:使学生掌握主要半导体材料的性质以及制备方法,了解半导体材料最新发展情况、为将来从事半导体材料科学、半导体器件制备等打下基础。 (三)先修课程要求:《固体物理学》、《半导体物理学》、《热力学统计物理》; 本课程中介绍半导体材料性质方面需要《固体物理学》、《半导体物理学》中晶体结构、能带理论等章节作为基础。同时介绍材料生长方面知识时需要《热力学统计物理》中关于自由能等方面的知识。 (四)教材:杨树人《半导体材料》 主要参考书:褚君浩、张玉龙《半导体材料技术》 陆大成《金属有机化合物气相外延基础及应用》 二、课程内容与安排 第一章半导体材料概述 第一节半导体材料发展历程 第二节半导体材料分类 第三节半导体材料制备方法综述 第二章硅和锗的制备 第一节硅和锗的物理化学性质 第二节高纯硅的制备 第三节锗的富集与提纯

第三章区熔提纯 第一节分凝现象与分凝系数 第二节区熔原理 第三节锗的区熔提纯 第四章晶体生长 第一节晶体生长理论基础 第二节熔体的晶体生长 第三节硅、锗单晶生长 第五章硅、锗晶体中的杂质和缺陷 第一节硅、锗晶体中杂质的性质 第二节硅、锗晶体的掺杂 第三节硅、锗单晶的位错 第四节硅单晶中的微缺陷 第六章硅外延生长 第一节硅的气相外延生长 第二节硅外延生长的缺陷及电阻率控制 第三节硅的异质外延 第七章化合物半导体的外延生长 第一节气相外延生长(VPE) 第二节金属有机物化学气相外延生长(MOCVD) 第三节分子束外延生长(MBE) 第四节其他外延生长技术 第八章化合物半导体材料(一):第二代半导体材料 第一节 GaAs、InP等III-V族化合物半导体材料的特性第二节 GaAs单晶的制备及应用 第三节 GaAs单晶中杂质控制及掺杂 第四节 InP、GaP等的制备及应用 第九章化合物半导体材料(二):第三代半导体材料 第一节氮化物半导体材料特性及应用 第二节氮化物半导体材料的外延生长 第三节碳化硅材料的特性及应用 第十章其他半导体材料

半导体物理学(第7版)第三章习题和答案

第三章习题和答案 1. 计算能量在E=E c 到2 *n 2 C L 2m 100E E 之间单位体积中的量子态数。 解: 2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。 3 22 23 3*28100E 21 23 3 *22100E 002 1 233*231000L 8100)(3 222)(22)(1Z V Z Z )(Z )(22)(23 22 C 22 C L E m h E E E m V dE E E m V dE E g V d dE E g d E E m V E g c n c C n l m h E C n l m E C n n c n c )() (单位体积内的量子态数) () (21)(,)"(2)()(,)(,)()(2~.2'2 1 3'' ''''2'21'21'21' 2 2222 22C a a l t t z y x a c c z l a z y t a y x t a x z t y x C C e E E m h k V m m m m k g k k k k k m h E k E k m m k k m m k k m m k ml k m k k h E k E K IC E G si ? 系中的态密度在等能面仍为球形等能面 系中在则:令) (关系为 )(半导体的、证明: 3 1 23 2212 32' 2123 2 31'2 '''')()2(4)()(111100)()(24)(4)()(~l t n c n c l t t z m m s m V E E h m E sg E g si V E E h m m m dE dz E g dk k k g Vk k g d k dE E E ?? ? ? )方向有四个, 锗在(旋转椭球,个方向,有六个对称的导带底在对于即状态数。 空间所包含的空间的状态数等于在

半导体物理知识点总结

半导体物理知识点总结 本章主要讨论半导体中电子的运动状态。主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。阐述本征半导体的导电机构,引入了空穴散射的概念。最后,介绍了Si、Ge和GaAs的能带结构。 在1.1节,半导体的几种常见晶体结构及结合性质。(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。(重点掌握)在1.3节,引入有效质量的概念。讨论半导体中电子的平均速度和加速度。(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。(理解即可)在1.6节,介绍Si、Ge的能带结构。(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。(掌握能带结构特征)本章重难点: 重点: 1、半导体硅、锗的晶体结构(金刚石型结构)及其特点; 三五族化合物半导体的闪锌矿型结构及其特点。 2、熟悉晶体中电子、孤立原子的电子、自由电子的运动有何不同:孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,而晶体中的电子是在严格周期性重复排列的原子间运动(共有化运动),单电子近似认为,晶体中的某一个电子是在周期性排列且固定不动的原子核的势场以及其它大量电子的平均势场中运动,这个势场也是周期性变化的,而且它的周期与晶格周期相同。 3、晶体中电子的共有化运动导致分立的能级发生劈裂,是形成半导体能带的原因,半导体能带的特点: ①存在轨道杂化,失去能级与能带的对应关系。杂化后能带重新分开为上能带和下能带,上能带称为导带,下能带称为价带②低温下,价带填满电子,导带全空,高温下价带中的一部分电子跃迁到导带,使晶体呈现弱导电性。

半导体集成电路课程教学大纲(精)

《半导体集成电路》课程教学大纲 (包括《集成电路制造基础》和《集成电路原理及设计》两门课程) 集成电路制造基础课程教学大纲 课程名称:集成电路制造基础 英文名称:The Foundation of Intergrate Circuit Fabrication 课程类别:专业必修课 总学时:32 学分:2 适应对象:电子科学与技术本科学生 一、课程性质、目的与任务: 本课程为高等学校电子科学与技术专业本科生必修的一门工程技术专业课。半导体科学是一门近几十年迅猛发展起来的重要新兴学科,是计算机、雷达、通讯、电子技术、自动化技术等信息科学的基础,而半导体工艺主要讨论集成电路的制造、加工技术以及制造中涉及的原材料的制备,是现今超大规模集成电路得以实现的技术基础,与现代信息科学有着密切的联系。本课程的目的和任务:通过半导体工艺的学习,使学生掌握半导体集成电路制造技术的基本理论、基本知识、基本方法和技能,对半导体器件和半导体集成电路制造工艺及原理有一个较为完整和系统的概念,了解集成电路制造相关领域的新技术、新设备、新工艺,使学生具有一定工艺分析和设计以及解决工艺问题和提高产品质量的能力。并为后续相关课程奠定必要的理论基础,为学生今后从事半导体集成电路的生产、制造和设计打下坚实基础。 二、教学基本要求: 1、掌握硅的晶体结构特点,了解缺陷和非掺杂杂质的概念及对衬底材料的影响;了解晶体生长技术(直拉法、区熔法),在芯片加工环节中,对环境、水、气体、试剂等方面的要求;掌握硅圆片制备及规格,晶体缺陷,晶体定向、晶体研磨、抛光的概念、原理和方法及控制技术。 2、掌握SiO2结构及性质,硅的热氧化,影响氧化速率的因素,氧化缺陷,掩蔽扩散所需最小SiO2层厚度的估算;了解SiO2薄膜厚度的测量方法。 3、掌握杂质扩散机理,扩散系数和扩散方程,扩散杂质分布;了解常用扩散工艺及系统设备。 4、掌握离子注入原理、特点及应用;了解离子注入系统组成,浓度分布,注入损伤和退火。 5、掌握溅射、蒸发原理,了解系统组成,形貌及台阶覆盖问题的解决。 6、掌握硅化学汽相淀积(CVD)基本化学过程及动力学原理,了解各种不同材料、不同模式CVD方法系统原理及构造。 7、掌握外延生长的基本原理;理解外延缺陷的生成与控制方法;了解硅外延发展现状及外延参数控制技术。 8、掌握光刻工艺的原理、方法和流程,掩膜版的制造以及刻蚀技术(干法、湿法)的原理、特点,光刻技术分类;了解光刻缺陷控制和检测以及光刻工艺技术的最新动态。 9、掌握金属化原理及工艺技术方法;理解ULSI的多层布线技术对金属性能的基本要求,用Cu布线代替A1的优点、必要性;了解铝、铜、低k材料的应用。 10、掌握双极、CMOS工艺步骤;了解集成电路的隔离工艺,集成电路制造过程中质量管理基础知识、统计技术应用和生产的过程控制技术。 三、课程内容: 1、介绍超大规模集成电路制造技术的历史、发展现状、发展趋势;硅的晶体结构特点;微电子加工环境要求、单晶硅的生长技术(直拉法、区熔法)和衬底制备(硅圆片制备及规格,

半导体物理学(刘恩科第七版)半导体物理学课本习题解

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近 能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V - =-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1== π (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43 (0,060064 3 382324 3 0)(2320 212102220 202 02022210 1202==-==<-===-==>=+===-+ 因此:取极大值 处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 32 2 2*8 3)2(1 m dk E d m k k C nC ===

s N k k k p k p m dk E d m k k k k V nV /1095.704 3 )() ()4(6 )3(25104 3002 2 2*1 1 -===?=-=-=?=- == 所以:准动量的定义: 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计 算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=? s a t s a t 137 19 282 1911027.810 10 6.1)0(102 7.810106.1) 0(----?=??-- =??=??-- = ?π π 补充题1 分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提 示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示: (a )(100)晶面 (b )(110)晶面

半导体物理学第七版 完整课后题答案

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)与价带极大值附近 能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1==π (1)禁带宽度; (2) 导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064 30382324 30)(2320212102 2 20 202 02022210 1202==-==<-===-== >=+== =-+ηηηηηηηη因此:取极大值处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 3222* 83)2(1m dk E d m k k C nC ===η

s N k k k p k p m dk E d m k k k k V nV /1095.704 3)()()4(6 )3(25104300222* 11-===?=-=-=?=-==ηηηηη所以:准动量的定义: 2、 晶格常数为0、25nm 的一维晶格,当外加102V/m,107 V/m 的电场时,试分别计 算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=?η s a t s a t 13719282 1911027.810106.1) 0(1027.810106.1) 0(----?=??--= ??=??-- =?π πηη 补充题1 分别计算Si(100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先 画出各晶面内原子的位置与分布图) Si 在(100),(110)与(111)面上的原子分布如图1所示: (a)(100)晶面 (b)(110)晶面

(完整版)半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1.1 半导体 通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1.2能带 晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。 1.2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1.2导带与价带 1.3有效质量 有效质量是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k

半导体物理(刘恩科)--详细归纳总结

第一章、 半导体中的电子状态习题 1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说 明之。 1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 1-3、试指出空穴的主要特征。 1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。 1-5、某一维晶体的电子能带为 [])sin(3.0)cos(1.01)(0ka ka E k E --= 其中E 0=3eV ,晶格常数a=5х10-11m 。求: (1) 能带宽度; (2) 能带底和能带顶的有效质量。 题解: 1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成 为导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。 1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温 度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。因此,Ge 、Si 的禁带宽度具有负温度系数。 1-3、 解:空穴是价带中未被电子占据的空量子态,被用来描述半满带中的大量 电子的集体运动状态,是准粒子。主要特征如下: A 、荷正电:+q ; B 、空穴浓度表示为p (电子浓度表示为n ); C 、E P =-E n D 、m P *=-m n *。 1-4、 解: (1) Ge 、Si: a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ; b )间接能隙结构 c )禁带宽度E g 随温度增加而减小; (2) GaAs : a )E g (300K )= 1.428eV ,Eg (0K) = 1.522eV ; b )直接能隙结构; c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ; 1-5、 解: (1) 由题意得: [][] )sin(3)cos(1.0)cos(3)sin(1.002 22 0ka ka E a k d dE ka ka aE dk dE +=-=

半导体物理知识点梳理

半导体物理考点归纳 一· 1.金刚石 1) 结构特点: a. 由同类原子组成的复式晶格。其复式晶格是由两个面心立方的子晶格彼此沿其空间对角线位移1/4的长度形成 b. 属面心晶系,具立方对称性,共价键结合四面体。 c. 配位数为4,较低,较稳定。(配位数:最近邻原子数) d. 一个晶体学晶胞内有4+8*1/8+6*1/2=8个原子。 2) 代表性半导体:IV 族的C ,Si ,Ge 等元素半导体大多属于这种结构。 2.闪锌矿 1) 结构特点: a. 共价性占优势,立方对称性; b. 晶胞结构类似于金刚石结构,但为双原子复式晶格; c. 属共价键晶体,但有不同的离子性。 2) 代表性半导体:GaAs 等三五族元素化合物均属于此种结构。 3.电子共有化运动: 原子结合为晶体时,轨道交叠。外层轨道交叠程度较大,电子可从一个原子运动到另一原子中,因而电子可在整个晶体中运动,称为电子的共有化运动。 4.布洛赫波: 晶体中电子运动的基本方程为: ,K 为波矢,uk(x)为一个与晶格同周期的周期性函数, 5.布里渊区: 禁带出现在k=n/2a 处,即在布里渊区边界上; 允带出现在以下几个区: 第一布里渊区:-1/2a

半导体物理-兰州大学物理学院

《半导体物理实验》课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:半导体物理实验 所属专业:电子材料与器件工程专业本科生 课程性质:专业必修课 学分: 4 (二)课程简介、目标与任务; 本课程是为物理科学与技术学院电子材料与器件工程专业大四本科生所开设的实验课,是一门专业性和实践性都很强的实践教学课程。开设本课程的目标和任务是使学生熟练掌握半导体材料和器件的制备、基本物理参数以及物理性质的测试原理和表征方法,为半导体材料与器件的开发设计与研制坚定基础。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 由于是实验课,所以需要学生首先掌握《半导体物理》和《半导体器件》的基本知识,再通过本课程培养学生对半导体材料和器件的制备及测试方法的实践能力。其具体要求包括:1、了解半导体材料与器件的基本研究方法;2、理解半导体材料与器件相关制备与基本测试设备的原理、功能及使用方法,并能够独立操作;3、通过亲自动手操作提高理论与实践相结合的能力,提高理论学习的主动性。开设本课程的目的是培养学生实事求是、严谨的科学作风,培养学生的实际动手能力,提高实验技能。 (四)教材与主要参考书。 教材:《半导体物理实验讲义》,自编教材 参考书:1. 半导体器件物理与工艺(第三版),施敏,苏州大学出版社, 2. [美]A.S.格罗夫编,齐健译.《半导体器件物理与工艺》.科学出版社,1976 二、课程内容与安排 实验一绪论

1、介绍半导体物理实验的主要内容 2、学生上课要求,分组情况等 实验二四探针法测量电阻率 一、实验目的或实验原理 1、了解四探针电阻率测试仪的基本原理; 2、了解的四探针电阻率测试仪组成、原理和使用方法; 3、能对给定的薄膜和块体材料进行电阻率测量,并对实验结果进行分析、处理。 二、实验内容 1、测量单晶硅样品的电阻率; 2、测量FTO导电层的方块电阻; 3、对测量结果进行必要的修正。 三、实验仪器与材料 四探针测试仪、P型或N型硅片、FTO导电玻璃。 实验三椭圆偏振法测量薄膜的厚度和折射率 一、实验目的或实验原理 1、了解椭圆偏振法测量薄膜参数的基本原理; 2、掌握椭圆偏振仪的使用方法,并对薄膜厚度和折射率进行测量。 二、实验内容 1、测量硅衬底上二氧化硅膜的折射率和厚度; 三、实验主要仪器设备及材料 椭圆偏振仪、硅衬底二氧化硅薄膜。 实验四激光测定硅单晶的晶向 一、实验目的或实验原理 1、理解激光测量Si单晶晶面取向的原理;

半导体物理学刘恩科习题答案权威修订版(DOC)

半导体物理学 刘恩科第七版习题答案 ---------课后习题解答一些有错误的地方经过了改正和修订! 第一章 半导体中的电子状态 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别 为: 2 20122021202236)(,)(3Ec m k m k k E m k k m k V - =-+= 0m 。试求:为电子惯性质量,nm a a k 314.0,1==π (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:10 9 11010 314.0=-?= =π π a k (1) J m k m k m k E k E E m k k E E k m dk E d k m k dk dE J m k Ec k k m m m dk E d k k m k k m k dk dE V C g V V V V c C 17 31 210340212012202 1210 12202220 21731 2 103402 12102 02022210120210*02.110 108.912)1010054.1(1264)0()43(6)(0,0600610*05.310108.94)1010054.1(4Ec 430 382324 3 0) (232------=????==-=-== =<-===-==????===>=+== =-+= 因此:取极大值处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带:

04 32 2 2*8 3)2(1 m dk E d m k k C nC === s N k k k p k p m dk E d m k k k k V nV /1095.71010054.143 10314.0210625.643043)() ()4(6 )3(2510349 3410 4 3 002 2 2*1 1 ----===?=???=?? ??=-=-=?=- ==ππ 所以:准动量的定义: 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能 带底运动到能带顶所需的时间。 解:根据:t k qE f ??== 得qE k t -?=? s a t s a t 137 19282 199 3421911028.810106.1) 0(1028.810106.11025.0210625.610106.1)0(-------?=??--=??=??-?-??=??--=?π π ππ 第二章 半导体中杂质和缺陷能级 7. 锑化铟的禁带宽度Eg=0.18eV ,相对介电常数εr =17,电子的有效质量 *n m =0.015m 0, m 0为电子的惯性质量,求①施主杂质的电离能,②施主的弱束缚电子基态轨道半径。

半导体物理学第七版完整答案修订版

半导体物理学第七版完 整答案修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k) 分别为: E C (K )=0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V - =-+ (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子 自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=? 补充题1 分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提 示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示:

(a )(100)晶面 (b )(110)晶面 (c )(111)晶面 补充题2 一维晶体的电子能带可写为)2cos 81 cos 8 7()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求 (1)布里渊区边界; (2)能带宽度; (3)电子在波矢k 状态时的速度; (4)能带底部电子的有效质量* n m ; (5)能带顶部空穴的有效质量*p m 解:(1)由 0)(=dk k dE 得 a n k π = (n=0,?1,?2…) 进一步分析a n k π ) 12(+= ,E (k )有极大值, a n k π 2=时,E (k )有极小值

半导体物理知识

半导体物理知识整理

————————————————————————————————作者:————————————————————————————————日期:

基础知识 1.导体,绝缘体和半导体的能带结构有什么不同?并以此说明半导体的导电机理(两种载流子参与导电)与金属有何不同? 导体:能带中一定有不满带 半导体:T=0K,能带中只有满带和空带;T>0K,能带中有不满带 禁带宽度较小,一般小于2eV 绝缘体:能带中只有满带和空带 禁带宽度较大,一般大于2eV 在外场的作用下,满带电子不导电,不满带电子可以导电 总有不满带的晶体就是导体,总是没有不满带的晶体就是绝缘体 半导体不时最容易导电的物质,而是导电性最容易发生改变的物质,用很方便的方法,就可以显著调节半导体的导电特性 金属中的电子,只能在导带上传输,而半导体中的载流子:电子和空穴,却能在两个通道:价带和导带上分别传输信息 2.什么是空穴?它有哪些基本特征?以硅为例,对照能带结构和价键结构图理解空穴概念。 当满带附近有空状态k’时,整个能带中的电流,以及电流在外场作用下的变化,完全如同存在一个带正电荷e和具有正有效质量|m n* | 、速度为v(k’)的粒子的情况一样,这样假想的粒子称为空穴 3.半导体材料的一般特性。 电阻率介于导体与绝缘体之间 对温度、光照、电场、磁场、湿度等敏感(温度升高使半导体导电能力增强,电阻率下降;适当波长的光照可以改变半导体的导电能力) 性质与掺杂密切相关(微量杂质含量可以显著改变半导体的导电能力) 4.费米统计分布与玻耳兹曼统计分布的主要差别是什么?什么情况下费米分布函数可以转化为玻耳兹曼函数。为什么通常情况下,半导体中载流子分布都可以

半导体物理学(刘恩科第七版)课后习题解第五章习题及答案

第五章习题 1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。计算空穴的复合率。 2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为, 空穴寿命为τ。 (1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。 3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10Ω?cm 。今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3?s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例? s cm p U s cm p U p 31710 10010 313/10U 100,/10613 ==?= ====?-??-τ τμτ得:解:根据?求:已知:τ τ τ ττ g p g p dt p d g Ae t p g p dt p d L L t L =?∴=+?-∴=?+=?+?-=?∴-. 00 )2()(达到稳定状态时,方程的通解:梯度,无飘移。 解:均匀吸收,无浓度cm s pq nq q p q n pq np cm q p q n cm g n p g p p n p n p n p n L /06.396.21.0500106.1101350106.11010.0:101 :1010100 .19 16191600'000316622=+=???+???+=?+?++=+=Ω=+==?==?=?=+?-----μμμμμμσμμρττ光照后光照前光照达到稳定态后

4. 一块半导体材料的寿命τ=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几? 5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度?n=?p=1014cm -3。计算无光照和有光照的电导率。 % 2606.38.006.3500106.1109. ,.. 32.0119 161 0' '==???=?∴?>?Ω==-σσ ρp u p p p p cm 的贡献主要是所以少子对电导的贡献献 少数载流子对电导的贡 。 后,减为原来的光照停止%5.1320%5.13) 0() 20()0()(1020 s e p p e p t p t μτ ==???=?--cm s q n qu p q n p p p n n n cm p cm n cm p n cm n K T n p n i /16.21350106.110:,/1025.2,10/10.105.1,30019160000003403160314310=???=≈+=?+=?+=?===?=??==---μμσ无光照则设半导体的迁移率) 本征空穴的迁移率近似等于的半导体中电子、注:掺杂有光照131619140010(/19.20296.016.2)5001350(106.11016.2) (: --=+=+???+≈+?++=+=cm cm s nq q p q n pq nq p n p n p n μμμμμμσ

半导体集成电路课程教学大纲

《太阳能电池及其应用》课程教学大纲 (春季) 课程英文名称:Solar cells and their applications 一、先修课程:半导体物理,微电子器件与IC设计,微电子工艺学 二、适用专业:集成电路工程领域工程硕士 三、课程性质:选修 四、教学目的及要求 本课程讲授太阳能电池的理论基础和设计技术,介绍太阳能电池的制备技术,太阳能电池光伏应用技术,为太阳能电池的设计与开发提供理论指导,为今后从事光伏技术工作打下良好基础。 要求掌握各种太阳能电池的工作原理,太阳能电池光伏应用基础,太阳能电池的设计方法和太阳能电池的关键制备技术,光伏发电系统与设计。主要内容有:太阳能电池概论;硅太阳能电池;薄膜太阳能电池;纳米技术在太阳能电池中的应用;柔性太阳能电池;太阳能电池发展方向;太阳能电池关键技术;透明导电薄膜技术;太阳能电池新技术;太阳能电池设计;太阳能光伏发电系统;太阳能电池应用。 五、教学内容 第一章绪论 §1-1 能源概论 §1-2 太阳能资源分布 §1-3 太阳辐射 §1-4 太阳能利用 第二章太阳能电池概论 §2-1 光电转换 §2-2 太阳能电池性能参数与测试 §2-3 电池效率极限 第三章各种太阳能电池 §3-1 晶体硅电池

§3-2 砷化镓电池 §3-3 CIGS系列太阳能电池 §3-4 有机与燃料敏化电池 §3-5 CdTe电池 §3-6 薄膜技术与薄膜电池 §3-7 其他新型电池 第四章太阳能电池制备技术 §4-1 单晶硅电池制备技术 §4-2 多晶硅电池制备技术 §4-3 其他电池制备技术 第五章太阳能电池应用技术 §5-1 应用概论 §5-2 光伏系统 §5-3 蓄电池 §5-4 逆变器 §5-5 充放电控制 §5-6 发电系统的设计 六、学时分配 七、主要参考书 [1] Practical Handbook of Photovoltaics: Fundamentals and Applications ,Edited by: Tom Markvart and Luis Castaner.

半导体物理与器件基础知识

9金属半导体与半导体异质结 一、肖特基势垒二极管 欧姆接触:通过金属-半导体的接触实现的连接。接触电阻很低。 金属与半导体接触时,在未接触时,半导体的费米能级高于金属的费米能级,接触后,半导体的电子流向金属,使得金属的费米能级上升。之间形成势垒为肖特基势垒。 在金属与半导体接触处,场强达到最大值,由于金属中场强为零,所以在金属——半导体结的金属区中存在表面负电荷。 影响肖特基势垒高度的非理想因素:肖特基效应的影响,即势垒的镜像力降低效应。金属中的电子镜像到半导体中的空穴使得半导体的费米能级程下降曲线。附图: 电流——电压关系:金属半导体结中的电流运输机制不同于pn结的少数载流子的扩散运动决定电流,而是取决于多数载流子通过热电子发射跃迁过内建电势差形成。附肖特基势垒二极管加反偏电压时的I-V曲线:反向电流随反偏电压增大而增大是由于势垒降低的影响。 肖特基势垒二极管与Pn结二极管的比较:1.反向饱和电流密度(同上),有效开启电压低于Pn结二极管的有效开启电压。2.开关特性肖特基二极管更好。应为肖特基二极管是一个多子导电器件,加正向偏压时不会产生扩散电容。从正偏到反偏时也不存在像Pn结器件的少数载流子存储效应。 二、金属-半导体的欧姆接触 附金属分别与N型p型半导体接触的能带示意图 三、异质结:两种不同的半导体形成一个结 小结:1.当在金属与半导体之间加一个正向电压时,半导体与金属之间的势垒高度降低,电子很容易从半导体流向金属,称为热电子发射。 2.肖特基二极管的反向饱和电流比pn结的大,因此达到相同电流时,肖特基二极管所需的反偏电压要低。 10双极型晶体管 双极型晶体管有三个掺杂不同的扩散区和两个Pn结,两个结很近所以之间可以互相作用。之所以成为双极型晶体管,是应为这种器件中包含电子和空穴两种极性不同的载流子运动。 一、工作原理 附npn型和pnp型的结构图 发射区掺杂浓度最高,集电区掺杂浓度最低 附常规npn截面图 造成实际结构复杂的原因是:1.各端点引线要做在表面上,为了降低半导体的电阻,必须要有重掺杂的N+型掩埋层。2.一片半导体材料上要做很多的双极型晶体管,各自必须隔离,应为不是所有的集电极都是同一个电位。 通常情况下,BE结是正偏的,BC结是反偏的。称为正向有源。附图: 由于发射结正偏,电子就从发射区越过发射结注入到基区。BC结反偏,所以在BC结边界,理想情况下少子电子浓度为零。 附基区中电子浓度示意图: 电子浓度梯度表明,从发射区注入的电子会越过基区扩散到BC结的空间电荷区,

《半导体物理与器件》教学大纲

《半导体物理与器件》教学大纲 课程名称:半导体物理与器件 英文名称:Physics and devices of semiconductor 课程编号:专业任选课30 教科书:《半导体物理》(刘恩科主编国防工业出版社) 面对专业:材料专业四年制本科 主笔人:刘翔 一、学时及学分 总学时:32学时总学分:2学分 二、教学目的及基本要求 了解和掌握半导体材料的一些基本物理性质,重点掌握半导体材料的掺杂行为、导电性、p-n结理论;对于一些常见半导体材料(如Si、Ge、GaAs)的制备及器件制作,可作初步的认识和实践。 三、教学内容及各章节学时分配 第一章半导体中的电子状态4学时 §1.1 半导体的晶格结构和结合性质 §1.2 半导体中的电子状态和能带 §1.3 半导体中电子的运动有效质量 §1.4 本征半导体的导电机构空穴 §1.6 硅和锗的能带结构 §1.7 III-V族化合物半导体的能带结构 第二章半导体中杂质和缺陷能级4学时 §2.1 硅、锗晶体中的杂质能级 §2.2 III-V族化合物中的杂质能级 §2.3 缺陷、位错能级 第三章半导体中载流子的统计分布6学时 §3.1 状态密度 §3.2 费米能级和载流子的统计分布 §3.3 本征半导体的载流子浓度 §3.4 杂质半导体的载流子浓度 §3.5 一般情况下的载流子统计分布 §3.6 简并半导体 第四章半导体的导电性6学时 §4.1 载流子的漂移运动迁移率 §4.2 载流子的散射 §4.3 迁移率与杂质浓度和温度的关系 §4.4 电阻率及其与杂质浓度和温度的关系 §4.5 玻耳兹曼方程电导率的统计理论 第五章非平衡载流子6学时 §5.1 非平衡载流子的注入与复合

相关主题
文本预览
相关文档 最新文档