当前位置:文档之家› 0北京-装用点燃式发动机汽车排气污染物限值及检测方法(遥测法)

0北京-装用点燃式发动机汽车排气污染物限值及检测方法(遥测法)

0北京-装用点燃式发动机汽车排气污染物限值及检测方法(遥测法)
0北京-装用点燃式发动机汽车排气污染物限值及检测方法(遥测法)

点燃式发动机汽车排气污染物排放限值及测量方法

点燃式发动机汽车排气污染物排放限值及测量方法 GB18285-2005 前言 为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,控制汽车污染物排放,改善环境空气质量,制定本标准。 本标准是对GBl4761.5-93《汽油车怠速污染物排放标准》和GB/T3845-93《汽油车排气污染物的测量怠速法》的修订与合并。本标准规定了点燃式发动机汽车怠速和高怠速工况排气污染物排放限值及测量方法,同时规定了稳态工况法、瞬态工况法和简易瞬态工况法等三种简易工况测量方法。本次修订增加了高怠速工况排放限值和对过量空气系数(λ)的要求。 按照有关法律规定,本标准具有强制执行的效力。 本标准由国家环境保护总局科技标准司提出。 本标准起草单位:中国环境科学研究院、交通部公路科学研究所 本标准国家环境保护总局2005年5月30日批准。 本标准自2005年7月1日起实施,《汽油车怠速污染物排放标准》(GBl4761.5-93)、《汽油车排气污染物的测量怠速法》(GB/T3845-93)和《在用汽车排气污染物排放限值及测量方法》(GB18285-2000)同时废止。 本标准由国家环境保护总局解释。 1 范围 本标准规定了点燃式发动机汽车怠速和高怠速工况下排气污染物排放限值及测量方法。本标准也规定了点燃式发动机轻型汽车稳态工况法、瞬态工况法和简易瞬态工况法三种简易工况测量方法。 本标准适用于装用点燃式发动机的新生产和在用汽车。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是不注日期的引用文件,其最新版本适用于本标准。 GB l4762-2002 车用点燃式发动机及装用点燃式发动机汽车排气污染物排放限值及测 量方法 GB 18352.1-2001 轻型汽车污染物排放限值及测量方法(Ⅰ) GB l8352.2-2001 轻型汽车污染物排放限值及测量方法(Ⅱ) GB 17930-1999 车用无铅汽油 GB/T15089-2001 机动车辆及挂车分类 GB 5181-2001 汽车排放术语和定义 GB l8047 车用压缩天然气 GB l9159 车用液化石油气 HJ/T3-1993 汽油机动车怠速排气监测仪技术条件 3 术语和定义

发动机排放污染物的影响因素

发动机排放污染物的影响因素 要紧内容:介绍了汽车尾气中的要紧污染物CO、HC、NO X和微粒的生成机理及其阻碍因素。 1 一氧化碳 1.1 汽车尾气中CO的产生是由于燃油在气缸中燃烧不充分所致,是氧气不足而生成的 中间产物。 阻碍一氧化碳生成的因素 理论上当α在14.7以上时,排气中不存在CO,而只生成CO2。实际上由于燃油和空气混合不平均,在排气中还含有少量CO。即使混合气混合的专门平均,由于燃烧后的温度专门高,差不多生成的CO2也会由于一小部分分解成CO和O2,H2O也会部分分解成O2和H2,生成的H2也会使CO2还原成CO,因此,排气中总会有少量CO存在。可见,凡是阻碍空燃比的因素,即为阻碍CO生成的因素。 1. 进气温度的阻碍 一样情形下,冬天气温可达零下20℃以下,夏天在30℃以上,爬坡时发动机罩内进气温度超过80℃。随着环境温度的上升,空气密度变小,而汽油的密度几乎不变,化油器供给的混合气的空燃比α随吸入空气温度的上升而变浓,排出的CO将增加。因此,冬天和夏天发动机排放情形有专门大的不同。图2-3为一定运转条件下,进气温度与空燃比的关系,大致和绝对温度的方根成反比的理论相一致。 进气温度/℃海拔高度/m 怠速 转速/(r/min) 图2-3 进气温度与空燃比的关系图2-4 海拔高度与大气压力的关系图2-5 怠速转速对CO和HC排放的阻碍

V/(km/h) 图2-6 某汽油机等速工况排气成分实测结果 2. 大气压力的阻碍 大气压力P 随海拔高度而变化,由体会公式 () 5.256010.02257 kPa P P h =- (2-4) 式中:h 一海拔高度,km 。 当海平面0P =100kPa 时,可作出海拔高度和大气压力变化关系的曲线,如图2-4所示。 当忽略空气中饱和水蒸气压时,空气密度ρ可用下式表示: ()32731.293 kg/m 273760 P T ρ=+ (2-5) 式中:T -温度,℃。 能够认为空气密度ρ和大气压力P 成正比,从简单化油器理论可知,空燃比和空气密 度的平方根成正比,因此进气管压力降低时,空气密度下降,则空燃比下降,CO 排放量将增大。 3. 进气管真空度的阻碍 当汽车急剧减速时,发动机真空度在68kPa 以上时,停留在进气系统中的燃料,在高真 空度下急剧蒸发而进入燃烧室,造成混和气瞬时过浓,致使燃烧状况恶化。CO 浓度将显著增加到怠速时的浓度。 4. 怠速转速的阻碍 图2-5表示了怠速转速和排气中CO 、HC 浓度的关系。怠速转速为600r/min 时,CO 浓 度为1.4%,700r/min 时,降为1%左右,这说明提高怠速转速,可有效地降低排气中CO 浓度,然而,怠速过高会加大挺杆响声,对液力变扭汽车,还可能发生溜车的危险。假如这些问题得到解决,一样从净化的观点,期望怠速转速规定高一点较好。 5. 发动机工况的阻碍 发动机负荷一定时,CO 的排放量随转速增加而降低,到一定的车速后,变化不大。图 2-6为某汽油机负荷一定、匀速工况下的CO 浓度的变化。当车速增加时,CO 专门快降低,至中速后变化不大,这是由于化油器供给发动机的空燃比,随流量增加接近于理论空燃比的结果。

车辆排气系统设计规范

车辆排气系统设计规范

车辆排气系统设计规范 1、目的 随着环保法规对车辆排放的要求越来越高,排气系统在车辆的系统组成和系统设计中,越来越占有重要的地位。为使排气系统满足各阶段国家及地方法规的要求,提高对排气系统的设计和制造质量水平,需对车辆的排气系统的设计提出较规范的要求,以便在设计和制造过程中,参照执行。 2、设计规范 2.1 排气系统及消声器的设计输入 2.1.1 车辆产品的排气系统的配置和走向,依所配车辆的总体结构布置的需要来设计。而消声器的性能开发则需要依所配发动机及其对排气系统的具体要求。在初步设计选型时,应将发动机的有关性能参数及其上的关键件的基准要素等(如曲轴箱后端面与曲轴主轴线的交点坐标、动力线偏移量及倾角等),作为设计条件输入设计,作为消声器选型及性能开发的依据之一。并根据国家、地方及企业有关法规和标准的要求,对系统和消声器的性能设计目标提出要求,见附录1。 2.1.2 排气系统及其消声器在进行初步选型设计时,必须对系统进行结构方案分析和匹配计算分析,并提供选型设计分析报告,见附录2。 2.2 设计原则 2.2.1 排气系统及其消声器的设计,应使排气阻力尽可能的小,以使其对发动机的功率损失尽可能小。 2.2.2 排气系统及其消声器要有较好的音质和较低的音强,即应有较大的插入损失。 2.2.3 排气系统及其消声器要有较好的外观和内在质量及较长的使用寿命。 2.3 排气系统的设计要求和布置 2.3.1 排气管内径的确定在结构布置允许的情况下,排气管内径应尽可能大些,以降低管道内得气流速度,减少气流阻力产生的功率损失和再生噪声。一般应≥发动机排气歧管出口内径。或根据发动机排量等参数,按公式(1) 计算初步确定排气管内径。 D=2 √Q/(πV) (1) 式中:Q—发动机排量;V—气流速度,一般取50~60 m/s 。 2.3.2 排气管的布置和转弯,应使排气尽可能顺畅。管的中心转弯半径一般应≥(1.5~2)D,其折弯成型角应大于90o,以大于120o为宜。整个系统的管道转弯数应尽可能少,一 1

第六章-汽车排气污染物的检测

第六章汽车排气污染物的检测 目前,大气污染已不仅仅是在几个工业化国家中,它已逐渐发展成为世界性的公害。尤其是在一些大中城市,随着汽车保有量的增加,汽车排气污染物造成的环境污染情况将日趋严重。所以对汽车排气污染物的监控与防治,已处于刻不容缓的地步。要搞好汽车排气污染物的监控与防治,首先必须做好防治工作。用废气分析仪和烟度计测定排气污染物浓度,目的是控制排气污染物的扩散,使其限定在被允许的范围内,以达到保护生态环境和自然界生态平衡的目的。 在汽车排气分析的发展过程中,单测定汽油车就有非分散型红外线分析仪、氢火焰离子型分析仪、化学发光分析仪等。而对柴油车而言有滤纸式烟度计、消光式烟度计(不透光度计)。汽车综合性能检测站多采用非分散型红外线分析仪和滤纸式烟度计、不透光度计来测量汽车排气污染物的排放状况。 对装配点燃式发动机的汽车,我国现行的在用车排放检测方法主要是怠速法、双怠速法,由于只规定测量HC、CO的排放浓度,所以无法适应新车发展的需要。部分城市为满足实施更高排放检测要求,将逐步实施工况法检测,检测方法主要有稳态工况法(ASM)、瞬态工况法(IM)和简易瞬态工况法(IG)三种。 对装配压燃式发动机的汽车,我国现行的在用车排放检测方法主要是自由加速试验排气可见污染物测量(用不透光度计)或自由加速试验烟度测量(用滤纸式烟度计)。这两种方法对于车辆有负载时的排放情况难于反映出来,尤其是对于近年为减少柴油车颗粒物排放而较多采用的涡轮增压技术的柴油车,由于其比自然吸气式的柴油车需要更长的起效时间,因而在使用自由加速法测量时反而较自然吸气式的柴油车的排放更高,这显然是不合理的。为了使检测更合理化,一些有条件的地区开施实施加载减速法(Lug-down),它是一种在模拟车辆负载运行时测量压燃式汽车排气可见污染物的方法。 第一节汽车排气污染物检测仪结构与工作原理 一、废气体分析仪的结构与原理 1.两气体分析仪的结构与原理 分析仪器是从汽车排气管内收集汽车的尾气,并对气体中所含有的CO和HC的浓度进行连续测定。它主要由尾气采集部分和尾气分析部分构成。 (1)尾气采集部分

汽车排放主要的污染物

汽车排放治理技术指导>>培训班教学课件 北京市交通局汽车维修管理处 北京市交通学校

汽车排放污染物的生成机理 北京理工大学 车辆工程学院 郝利君

第二章汽车排放污染物的生成机理 第1节汽车排气污染物的主要成分与危害 第2节汽油车排放污染物的生成机理 第3节柴油车排放污染物的生成机理 第4节汽车排气污染物净化措施

第1节汽车排气污染物的主要成分与危害 1. 排气污染物主要来源 2. 污染物的主要成分 3. 排气污染物的危害

第1节汽车排气污染物的主要成分与危害 1. 排气污染物的主要来源 2. 污染物的主要成分 3. 排气污染物的危害(1)一氧化碳(CO):不完全燃烧产物。汽油机排放量为1;则LPG发动机为1/2;而柴油机为1/100。 (2)碳氢化合物(HC):未燃和未完全燃烧的燃油、润滑油及其裂解产物。 (3)氮氧化合物(NOx):在燃烧过程中和排入大气后造成的氮的各种氧化物(NO、NO2为主)的总称。 (4)颗粒排放物(PM):主要是碳烟、未燃燃油和润滑油液态颗粒,以及其他碳氢化合物、硫化物、含金属的灰分等。 (5)二氧化碳(CO2):完全燃烧产物。

第1节汽车排气污染物的主要成分与危害 1.排气污染物的主要来源 2.污染物的主要成分 CO、HC、NOx、PM、CO2 3. 排气污染物的危害 一氧化碳(CO) 是一种无色、无味的有毒气体,吸入人体后,能以比氧强300倍的亲和力同血液中的血红蛋白结合,形成碳氧血红蛋白,阻碍血液向心脏、脑等器官输送氧气,从而引起头痛、头晕等各种中毒症状,直至使人窒息死亡。 碳氢化合物(HC) 对眼和呼吸道粘膜有刺激作用,可引起结膜炎、鼻炎、支气管 炎等症状。 还是光化学烟雾形成的重要物质。

发动机排气系统设计规范

发动机排气系统设计规范 1 范围 本规范规定了柴油车发动机排气系统的设计。 本标准适用于所有新开发的带发动机的车型。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 13094-2017 《客车结构安全要求》 GB 7258-2017 《机动车运行安全技术条件》 JB/T 1094 《营运客车安全技术条件》 3 定义 本文件所指排气系统,其定义为搭载传统汽、柴油或者天然气发动机的发动机排气系统,包括混合动力车型的发动机排气系统。 发动机排气系统由排气管路、催化消声器、后处理系统(包含尿素泵、填蓝罐、填蓝加热电磁阀、氮氧化物传感器等部件)、消声器悬置系统等组成。随着环保法规对车辆排放的要求越来越高,排气系统在车辆的系统组成和系统设计中,越来越占有重要的地位。为使排气系统满足各阶段国家及地方法规的要求,提高对排气系统的设计和制造质量水平,需对车辆的排气系统的设计提出较规范的要求,以便在设计和制造过程中,参照执行。 3.1 催化消声器 用于汽车尾气处理,是集气体净化、气体减噪等多功能于一体的设备。一般情况下,设备前部设置曲面造型多孔盘片将会有利于降低气动噪音;而尾气净化(即NOx脱除),则依赖于尿素溶液喷雾蒸发和后部催化剂层的共同作用下的SCR反应工艺。 3.2 插入损失 对于消音器来说,插入损失是指空间某固定点所测得的安装消声器前后的声压级或者声功率级之差。 3.3 排气背压 指发动机排气的阻力压力。一般在增压器废气口至消声器入口的管段处测得。 4 要求

发动机管理系统

发动机管理系统 Company Name 公司名 排名 研发中心 工厂 Bosch 博世 1 苏州 联合电子(上海、西安和无锡)、无锡博世威孚(柴油) Delphi 德尔福 2 上海 北京德尔福发动机、北京德尔福万源 Continental 大陆汽车 3 上海 原SiemensVDO 的芜湖、长春工厂;原Freescale 的天津工厂Magnetti Marelli 马瑞利 4 芜湖工厂、上海工厂 Visteon 伟世通 5 上海 重庆工厂 Hitachi 日立 6 Denso 电装 7 仅供Toyota Valeo 法雷奥 8 Eontronic 意昂神州 美国 北京总部、上海分部 TroiTec 锐意泰克 Vagon 华夏龙晖 阳光泰克 Woodward 伍得沃德 成都汪氏威特电喷 成都易控高科 中联汽车电子 无锡油泵油嘴研究所 美国MotoTron 公司是Woodward 公司的子公司,主要从事发动机电控 系统的开发与生产。该公司针对汽油发动机设计了一套完整的控制策略 快速开发平台,此平台从设计开发到生产贯穿一体,可有效地缩短开发 时间,加速产品化进程,降低开发费用。 美国精确技术公司(Accurate Technologies Inc)是车载嵌入式电控系统 ECU 开发、标定与测试工具技术的知名提供商。该公司的ECU 标定系统 (VISION)功能强大,好学易用,而且和Matlab/Simulink 开发平台无缝连接, 多年来被福特(Ford)汽车公司、德尔福公司(Delphi)、沃尔沃卡车公司等指 定为标准匹配标定系统。该公司的No-Hooks 软件是ECU 控制策略快速开 发领域的重大突破。用户只用标定文件(*.a2l 与*.hex 文件),而不需要控制 策略源代码即可对控制逻辑进行修改。修改过的代码自动灌装进原来的 ECU 内进行测试运行。该技术已在美国、欧洲与日本得到了广泛的应用。 美国RMS(Rinehart Motion System)是一家专门从事功率驱动产品与方案 的公司。该公司提供或定制5-500KW 级应用于混动或纯电动控制系统、能 源贮藏系统和大功率设备的电机驱动器、静变流器、DC/DC, DC/AC, AC/DC 等产品。现有客户主要为军工、汽车或跑车、农业机械、工业控制 等行业的世界知名制造公司或主机厂。RMS 与意昂科技将为国内客户提供 产品技术、项目咨询、定制开发等服务。 美国Drivven, Inc, 公司自2003年起提供汽车控制和数据采集解决方案, 已经成为发动机和车辆电子系统开发新标准的领导者之一。基于FPGA 汽

(环境管理)发动机排放污染物的影响因素

发动机排放污染物的生成机理和影响因素 主要内容:介绍了汽车尾气中的主要污染物CO、HC、NO X和微粒的生成机理及其影响因素。 1 一氧化碳 1.1 汽车尾气中CO的产生是由于燃油在气缸中燃烧不充分所致,是氧气不足而生成的 中间产物。 影响一氧化碳生成的因素 理论上当α在14.7以上时,排气中不存在CO,而只生成CO2。实际上由于燃油和空气混合不均匀,在排气中还含有少量CO。即使混合气混合的很均匀,由于燃烧后的温度很高,已经生成的CO2也会由于一小部分分解成CO和O2,H2O也会部分分解成O2和H2,生成的H2也会使CO2还原成CO,所以,排气中总会有少量CO存在。可见,凡是影响空燃比的因素,即为影响CO生成的因素。 1. 进气温度的影响 一般情况下,冬天气温可达零下20℃以下,夏天在30℃以上,爬坡时发动机罩内进气温度超过80℃。随着环境温度的上升,空气密度变小,而汽油的密度几乎不变,化油器供给的混合气的空燃比α随吸入空气温度的上升而变浓,排出的CO将增加。因此,冬天和夏天发动机排放情况有很大的不同。图2-3为一定运转条件下,进气温度与空燃比的关系,大致和绝对温度的方根成反比的理论相一致。 进气温度/℃海拔高度/m 怠速 转速/(r/min) 图2-3 进气温度与空燃比的关系图2-4 海拔高度与大气压力的关系图2-5 怠速转速对CO和HC排放的影响

V/(km/h) 图2-6 某汽油机等速工况排气成分实测结果 2. 大气压力的影响 大气压力P 随海拔高度而变化,由经验公式 () 5.256010.02257 kPa P P h =- (2-4) 式中:h 一海拔高度,km 。 当海平面0P =100kPa 时,可作出海拔高度和大气压力变化关系的曲线,如图2-4所示。 当忽略空气中饱和水蒸气压时,空气密度ρ可用下式表示: ()32731.293 kg/m 273760 P T ρ=+ (2-5) 式中:T -温度,℃。 可以认为空气密度ρ和大气压力P 成正比,从简单化油器理论可知,空燃比和空气密 度的平方根成正比,所以进气管压力降低时,空气密度下降,则空燃比下降,CO 排放量将增大。 3. 进气管真空度的影响 当汽车急剧减速时,发动机真空度在68kPa 以上时,停留在进气系统中的燃料,在高真 空度下急剧蒸发而进入燃烧室,造成混和气瞬时过浓,致使燃烧状况恶化。CO 浓度将显著增加到怠速时的浓度。 4. 怠速转速的影响 图2-5表示了怠速转速和排气中CO 、HC 浓度的关系。怠速转速为600r/min 时,CO 浓 度为1.4%,700r/min 时,降为1%左右,这说明提高怠速转速,可有效地降低排气中CO 浓度,但是,怠速过高会加大挺杆响声,对液力变扭汽车,还可能发生溜车的危险。如果这些问题得到解决,一般从净化的观点,希望怠速转速规定高一点较好。 5. 发动机工况的影响 发动机负荷一定时,CO 的排放量随转速增加而降低,到一定的车速后,变化不大。图 2-6为某汽油机负荷一定、匀速工况下的CO 浓度的变化。当车速增加时,CO 很快降低,至中速后变化不大,这是由于化油器供给发动机的空燃比,随流量增加接近于理论空燃比的结果。

排气系统设计开发指南

汽车有限公司 . 01 页次:1/7 版次:

1. 主题与适用范围 1.1 主题 本指南制订了与汽车发动机相匹配的消声排气系统的开发流程及设计指南; 1.2 适用范围 本指南适用于汽车消声排气系统的设计开发 2. 参考标准和相关文件 QC/T 631—1999 汽车排气消声器技术条件 QC/T 630—1999 汽车排气消声器性能试验方法 QC/T 58—1993 汽车加速行驶车外噪声测量方法 QC/T 10125—1997人造气氛腐蚀试验盐雾试验 3.定义 3.1 排气消声器 排气消声器是具有吸声衬里或特殊形式的气流管道,可有效的降低气流噪声的装置。 3.2 插入损失 消声器的插入损失为装消声器前后,通过排气口辐射的声功率级之差。 3.3 排气背压 按QC/T524设置排气背压测量点,当分别带消声器和带空管时,测点处的相对压力值之差。 3.4 功率损失比 消声器的功率损失比是指发动机在标定的工况下,使用消声器前后的功率差值和没有使用消声器时功率的百分比。 4.开发流程及设计指南 4.1 接受产品开发任务并做好开发前的准备工作 开发之初,需要了解如下信息,作为设计输入: 1、发动机的排量、额定功率、额定扭矩等相关参数; 2、整车底盘走向,空间布局; 3、发动机对排气背压、功率损失比的要求; 4、噪声标准的制定; (1)、插入损失大于35dB; (2)、整车车外加速噪声小于74 dB;

4.2 方案设计 1、消声器的容量设计计算 消声器的容量关系到发动机的功率和扭矩,因此容量的设计将决定整车的动力性。一般地,消声器的容量有如下的计算公式: Vm=k×P Vm=消声器的容量(L) K=0.14 P=输出功率(Ps) 2、消声器的位置确定

汽车发动机管理系统检修

第8 次课模块一发动机管理系统的检修 项目1.8 发动机管理系统的仪器诊断? 目的要求掌握使用故障检测仪对发动机管理系统进行检测与诊断。 ? 教学重点使用故障检测仪对发动机管理系统进行检测与诊断。 ? 学习难点 使用故障检测仪对发动机管理系统进行检测与诊断。 ? 教具及工具 桑塔纳轿车 2辆,各种传感器若干,通用工具 2 套,万用表 2 块,汽车诊断仪 2 台。 ? 教学内容及时间安排( 180分钟) 1. 问题的引入约 10 分钟 2.汽车电控系统诊断方法约 40 分钟 3.使用 1552 对上海大众桑塔纳 2000 型轿车进行检测与诊断 约 130 分钟

教学内容组织与过程设计备注

课程引入(约10分钟) 汽车电控系统诊断方法(约40分钟) 一、汽车故障诊断新技术 2.3.1案例法 传统的故障诊断中大部分是(,基于规则推理)、(,模式推理)的专家系统技术的研究。由于这些传统的专家系统是基于模型化驱动的(基于模型的诊断方法使用诊断对象的结构、行为和功能模型等深知识进行诊断推理),在模型的构建、信息的获取、信息的处理方面存在严重不足,有一些难以克服的缺点,如系统领域知识的规则提取困难;规则库、模式库的创建和管理复杂艰巨;推理过程中规则与模式难以准确选取等。 整个汽车故障诊断系统主要由知识库、故障案例库、征兆数据库和推理系统构成。其中主要部分的内容和功能描述如下: a)知识库。问题求解的知识、经验的集合,主要由专家提供,包括

汽车故障的分类信息及不同种类故障需要的各种关键特征属性及其权值,并以此构建故障案例库和征兆数据库。 b)故障案例库。由用户根据汽车故障日志和维修日志等历史数据填写的关于汽车故障的各种信息 ,是存储案例和产生新案例的仓库,为新问题的解决提供参考依据。 c)征兆数据库。汽车发生故障时经过数据采集的故障征兆数据 信息 ,是指故障发生的潜在特征 ,即故障发生时汽车运行状态发生的变 化,通常是故障发生时以汽车运行状态参数表示的特征属性。 d)推理系统。整个系统的核心,由案例检索、匹配,案例调整、 学习组成。它决定了诊断效率的高低以及对知识处理的高低 ,实现从已 有的案例集中找到与当前故障问题最为相似的案例 ,并提供相应的解决 方案(即故障维修方案)。同时不断获取新知识和改进旧知识 , 生成 新的维修方案 ,并按一定的存储策略添加到案例库中。这样 ,通过不断 地学习新案例和修改案例库中的旧案例 ,使案例库得到扩充和完善。 2.3.2 故障树分析法 故障树分析法—()是一种将系统故障形成原因按树枝状逐级细化的图形演绎方法,是 60 年代发展起来的用于大系统可靠性、安全性分析和风险评价的一种方法。它通过对可能造成系统故障的各种因素(包括硬件、软件、环境、人为因素等)进行分析,画出逻辑框图(即故障树),再对系统中发生的故障事件,作由总体至部分按树枝状逐级细化的分析,并对系统在方案与初步设计阶段进行可靠性、安全性分析,常用于系统的故障分析、预测和诊断,找出系统的薄弱环节,以便在设计、制造和使用中采取相应的改进措施。 基于故障树的诊断 ,采用面向对象的基于故障树的框架和广义规则的混合知识表示 ,把整个故障树当作一个对象 ,把故障树上所有子、父结点间形成的广义规则封装在一个独立的框架内 ,如某故障树上有结点异常 ,则启动与该故障树对应的框架 ,诊断时只把该框架内的广义规则调入内存 ,提高了诊断速度 .此外 ,该方法还可诊断多故障,因为在推理过程中采用反向遍历搜索 ,可找出所有故障及可能故障的部件 .对可能故障的部件 ,按照其与顶事件形成的通路的权值的大小进行排序 ,权值最大的元素其优先级最高 ,有利于诊断信息不足条件下的对故障源的最优搜索 ,为故障预测和快速维修指明方向 . 2.3.3 专家系统 专家系统是一种基于特定领域内大量知识与经验的智能程序系统,应用人工智能技术模拟人类专家求解问题的思维过程解决领域内的各种问题,是人工智能的一个重要分支。

在用汽车排气污染物限值及测试方法

在用汽车排气污染物限值及测试方法 GB 18285-2000 批准日期2000-12-28 实施日期2001-07-01 ---------------------------------------------------------------------------------- 在用汽车排气污染物限值及测试方法 Limits and measurement methodsfor exhausts of pollutants from in-use vehicles GB 18285-2000 1 范围 本标准规定了在用汽车排气污染物的限值和测试方法。 本标准适用于装配点燃式四冲程发动机及压燃式发动机,最大总质量大于或等于400kg,最大设计车速大于或等于50km/l的在用汽车。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方面应探讨使用下列标准最新版本的可能性。 GB252-1994 轻柴油 GB/T 3845-1993 汽油车排气污染物的测量怠速法 GB/T 3846-1993 柴油车自由加速烟度的测量滤纸烟度法 GB/T 3847-1999 压燃式发动机和装用压燃式发动机的车辆排气可见污染物限值及测试方法 GB/T 17461-1999 汽车排放污染物限值及测试方法 GB/T 15089-1994 机动车辆分类 GB/T 17930-1999 车用无铅汽油 SY/T 7546-1996 汽车用压缩天然气 SY/T 7548-1998 汽车用液化石油气 3 定义 本标准采用下列定义。 3.1 在用汽车 in-use vehicles 上牌照以后的汽车。 3.2 轻型汽车 light duty vehicles 最大总质量不超过3500kg的M类和N1类车辆。 3.3 重型汽车 heavy duty vehicles 最大总质量大于3500 kg的车辆。 3.4 M、N、M1和N1类车辆 vehicle type of M、N、M1 and N1 GB/T 15089中规定的车辆。

发动机排放污染物地生成机理

发动机排放污染物的生成机理 主要内容:介绍了汽车尾气中的主要污染物CO 、HC 、NO X 和微粒的生成机理。 1、 一氧化碳 1.1 一氧化碳的生成机理 汽车尾气中CO 的产生是由于燃油在气缸中燃烧不充分所致,是氧气不足而生成的中间产物。 一般烃燃料的燃烧反应可经以下过程: 22n m H 2 n mCO O 2m H C +→+ (2-1) 燃气中的氧足够时有 O 2H O 2H 222→+ (2-2) 222CO O 2CO →+ (2-3) 同时CO 还与生成的水蒸气作用,生成氢和二氧化碳。 可见,如果燃气中的氧气量充足时,理论上燃料燃烧后不会存在CO 。但当氧气量不足时,就会有部分燃料不能完全燃烧,而生成CO 。 在非分层燃烧的汽油机中,可燃混合气基本上是均匀的,其CO 排放量几乎完全取决于可燃混合气的空燃比α或过量空气系数a φ。图2-1所示为11种H/C 比值不同的燃料在汽油机中燃烧后,排气中CO 的摩尔分数x CO 与α或a φ的关系。 空燃比α 过量空气系数a φ a ) b)

图2-1汽油机CO 排放量x CO 与空燃比α及过量空气系数a φ的关系 由图2-1可以看出,在浓混合气中(a φ<1),CO 的排放量随a φ的减小而增加,这是因缺氧引起不完全燃烧所致。在稀混合气中(a φ>1),CO 的排放量都很小,只有在a φ=1.0~ 1.1时,CO 的排放量才随a φ有较复杂的变化。 在膨胀和排气过程中,气缸内压力和温度下降,CO 氧化成CO 2的过程不能用相应的平衡方程精确计算。受化学反应动力学影响,大约在1100K 时,CO 浓度冻结。汽油机起动暖机和急加速、急减速时,CO 排放比较严重。 在柴油机的大部分运转工况下,其过量空气系数a φ都在1.5~3之间,故其CO 排放量要比汽油机低得多,只有在大负荷接近冒烟界限(a φ=1.2~1.3)时,CO 的排放量才大量增加。由于柴油机燃料与空气混合不均匀,其燃烧空间总有局部缺氧和低温的地方,以及反应物在燃烧区停留时间较短,不足以彻底完成燃烧过程而生成CO 排放,这就可以解释图2-2在小负荷时尽管a φ很大,CO 排放量反而上升。类似的情况也发生在柴油机起动后的暖机阶段和怠速工况中。 过量空气系数a φ 图2-2典型的车用直喷式柴油机排放污染物量与过量空气系数a φ的关系 2、 碳氢化合物 车用柴油机中的未燃HC 都是在缸内的燃烧过程中产生并随排气排放。汽油发动机中未燃HC 的生成与排放主要有以下三种途径。 (1)在气缸内的燃烧过程中产生并随废气排出,此部分HC 主要是燃烧过程中未燃烧或燃烧不完全的碳氢燃料。 (2)从燃烧室通过活塞组与气缸之间的间隙漏入曲轴箱的窜气中含有大量未燃燃料,如果排入大气中也构成HC 排放物。 (3)从汽油机的燃油系统蒸发的燃油蒸汽。 2.1 碳氢化合物的生成机理 1. 车用汽油机未燃HC 的生成机理 车用发动机的碳氢排放物中有完全未燃烧的燃料,但更多的是燃料的不完全燃烧产物,还有小部分由润滑油不完全燃烧而生成。排气中未燃碳氢物的成份十分复杂,其中有些是原来燃料中不含有的成份,这是部分氧化反应所致。表2-1列出了车用汽油机中未燃碳氢化合

排气系统设计开发指南

1.1 主题 本指南制订了与汽车发动机相匹配的消声排气系统的开发流程及设计指南; 1.2 适用范围 本指南适用于汽车消声排气系统的设计开发

2. 参考标准和相关文件 QC/T 631—1999 汽车排气消声器技术条件 QC/T 630—1999 汽车排气消声器性能试验方法 QC/T 58—1993 汽车加速行驶车外噪声测量方法 QC/T 10125—1997 人造气氛腐蚀试验盐雾试验 3.定义 3.1 排气消声器 排气消声器是具有吸声衬里或特殊形式的气流管道,可有效的降低气流噪声的装置。 3.2 插入损失 消声器的插入损失为装消声器前后,通过排气口辐射的声功率级之差。 3.3 排气背压 按QC/T524设置排气背压测量点,当分别带消声器和带空管时,测点处的相对压力值之差。 3.4 功率损失比 消声器的功率损失比是指发动机在标定的工况下,使用消声器前后的功率差值和没有使用消声器时功率的百分比。 4.开发流程及设计指南 4.1 接受产品开发任务并做好开发前的准备工作 开发之初,需要了解如下信息,作为设计输入: 1、发动机的排量、额定功率、额定扭矩等相关参数; 2、整车底盘走向,空间布局; 3、发动机对排气背压、功率损失比的要求; 4、噪声标准的制定; (1)、插入损失大于35dB; (2)、整车车外加速噪声小于74 dB; 4.2 方案设计 1、消声器的容量设计计算 消声器的容量关系到发动机的功率和扭矩,因此容量的设计将决定整车的动力性。一般地,消声器的容量有如下的计算公式: Vm=k×P Vm=消声器的容量(L) K=0.14 P=输出功率(Ps) 2、消声器的位置确定

《汽车发动机管理系统》A卷

2019—2020学年 第二学期期末考试试题 《发动机管理系统故障诊断与维修》试卷 A 卷 一、填空题(共10题,每空1分,共20分) 1、汽车故障按丧失工作能力程度进行分类,要分为___________ 和____________。 2、汽车故障的变化规律可分为3个阶段,早期故障期、_________________ 和___________。 3、凸轮轴位置传感器可分为____________、 ____________和光电式三种类型。 4.无分电器点火线圈与一般点火线圈不同,其___________ 与___________没有连接,为互感作用。 5、汽车每行驶___________公里或1至2年,应更换___________滤清器。 6、电控燃油喷射系统按进气量的计算方式不同可分为___________和________型两种。 7、排气再循环控制系统的作用是 。 8、电控燃油喷射系统由 、 、 三个子系统组成。 9、电控燃油喷射系统的类型按喷射时序分类可分为_________________ 、______________ 和______________________三种。 10、电控共轨喷射系统中有一条公共油管,用___________向共轨中泵油,用电磁阀进行压力调节并由压力传感器反馈控制。 二、选择题(共10题,每题2分,共20分) 1、下列哪项不是电控发动机的优点( )。 A 、良好的起动性能 B 、加速性能好 C 、功率大 D 、减速减油或断油 2、火花塞属于点火系统当中的( )。 A 、执行器 B 、传感器 C 、既是执行器又是传感器 D 、控制开关 3、以下哪项是汽车起动困难的机械方面的原因( )。 A 、气缸压缩压力不足 B 、高压火不足 C 、个别重要传感器有故障 D 、起动机故障 4、当汽车处于早期故障期也就是汽车的磨合期时,此时的汽车诊断一般是( )。 A 、总成损坏 B 、材料老化 C 、机械磨损 D 、电子元件损坏 5、标准OBD —II 诊断插座上有( )个插孔。 A 、16 B 、14 C 、12 D 、15 6、气缸内最高压缩压力点的出现在上止点后( )曲轴转角内为最佳。 A 、20°~25° B 、30°~35° C 、10°~15° D 、15°~25° 7 、影响初级线圈通过电流的时间长短的主要因素有( )。 A 、发动机转速和温度 B 、发动机转速和蓄电池电压 C 、发动机转速和负荷 D 、发动机转速和温度 8.电子控制柴油机系统在加注燃油时不小心误加汽油,会造成( )损坏。 A 、喷油器 B 、高压泵 C 、低压泵 D 、燃油泵 9.发动机不能起动,无着车迹象时,应首先进行( )。 A 、检查喷油器及电路 B 、检查高压火花 C 、解码仪读取故障码 D 、传感器 10.锥体形涡流发生器存在于以下( )空气流量传感器中。 A 、叶片式 B 、卡门旋涡式 C 、热线式 D 、热膜式 三、判断题(正确的在括号内画√,错的画×每题2分,共20分) 1.( )能较方便排除的故障,或不影响行驶的故障称为一般故障。 2.( )混合气的分配均匀性好是电控发动机的优点之一。

汽车排放污染物的测量方法

汽车排放污染物的测量方法

汽车排放污染物测试的发展方向——车载排放测试 由于底盘测功机应用的局限性,使得人们开始考虑使用更为先进的汽车排放污染物测试途径——便携式排放测量系统(PEMS, PortableEmission Measure System)。虽然目前世界上通过政府认证的PEMS还不多,而且很多国家都没有颁布对PEMS的认证制度。但是从全球范围内广泛使用通过美国和欧洲认证的PEMS的效果来看,这些便携式排放测量系统还是能够真实反映车辆排放情况,设备的精确性和可靠性还是能够满足我们进行道路排放测试的需要的。由于这些便携式排放测量系统主要是通过直接在车辆上进行安装、测试,所以也被称为车载排放测量系统。 一、车载排放测试技术简介 车载排放测试技术是近些年才日益快速发展的新技术。对于其研究是始于20世纪80年代。车载排放测试技术的发展是伴随着科技和工业水平的进步,以涌现的更新,更全,更精确,更强大的测试设备的出现为标志的。 便携式排放测量系统通过将排气尾管直接连接到车载气体污染物和微粒测 量装置上,对车辆尾气进行直采,实时测量整车排放的体积浓度和质量流量排量,得到气体污染物的质量排放量和微粒排放量。虽然PEMS采用的是直接采样的取样方法,但是在取样过程中没有对取样气进行冷却,这样就排除

样的。作为一个整体,PEMS按照图1所示的PEMS结构图,将各测量仪器集中到一起,利用PITOT管直采的方法,对尾气进行直接取样,分析各污染物的瞬时排放浓度。车辆排放的气体,在PEMS的各个分析仪内经过分析之后,和环境参数、GPS参数一起进入数据整合系统,之后输入到记录和存储数据的PC中。 安装PEMS也是相当容易的。对于乘用车和卡车,可以将系统安装在被测车辆的副驾座位上,这样就使监视屏幕和控制器面向驾驶员,并且所有的连接器面向副驾一侧的车门。系统也能安装在小轿车的后座上,小型厢式车的地板上,掀背式轿车或者皮卡的货箱里,或者车上其他任何安全、方便的地方。将该系统放置在座位上时,最好在座位上铺上保护垫或者油布,这样是为了防止对座位的损坏。当测试重型车辆时,可以将设备放置在对车辆运行和用户使用来说认为安全的地方。 二、各污染物分析原理及分析仪 (一)CO与CO2测量仪器 非透视红外线分析仪(NDIR,Nondispersive Infrared Analyzer)是目前用来试验和评价内燃机排气中有害排放物的一种广泛使用的标准仪器,这种仪器主要用来测定CO和CO2浓度。对于在红外线领域中具有吸收带的非对称气体分子,如HC,原则上也能进行测量。 非扩散红外分析仪是通过测定试样中对象成分的红外光的吸收能,来测定它的成分浓度。它的基本构造如图2所示。它由两个相同的红外光源、试样室、

发动机排气管设计原理

发动机消音排气管设计 活塞式发动机排气系统主要由排气管、消音器、触媒转换器及其他附属元件构成。 工作原理和功能: 一般排气管材质大多为铁管,但在高温及湿度的反复作用下容易氧化生锈。而排气管属于外观部件,所以大都在表面喷上耐热的高温漆或者电镀。但是无行之中也增加了重量,因此现在许多改用不锈钢材质,甚至是竞技用钛合金排气管。 四冲程多缸发动机大多采用集合型式排气管,就是将各缸的排气管集结,再由一支尾管排出废气。 以四缸车举例,通常用4 in 1的型式,优点不仅是可以扩散消音更可以利用各缸的排气惯性提高排气效率来增加马力输出。 但这一效果只能在某个转速范围内有明显的发挥。因此必须从骑乘的需求目的来设置集合管实际发挥发动机马力的转速区域。 早期多缸摩托车的排气设计均采用各缸独立的排气系统。以此避免各缸的排气干涉,利用排气惯性与排气脉冲来提高效率。缺点是:在所设定的转速范围以外,扭力值下降比集合管更多。这是独立排气系统被集合管取代的最大之原因。 排气干涉 集合管在整体上表现优于独立管,但在设计上要有更高的技术含量来降低各缸的排气干涉。通常做法是先把点火相对缸(1~4;2~3)的两支排气管集中在一起,再集合两组点火相对缸的排气管。就是4 in 2 in 1型式,这是避免排气干涉的基本的设计方式。 理论上4 in 2 in 1比4 in 1要更有效率,外观上也不同。但实际上两者的排气效率区别很小,因为4 in 1的排气管里有导向隔离板,所以使用效果区别不大。不管是怎样设计都是为了使发动机有更大的马力输出和更宽广的动力范围。 4 in 2 in 1形式排气管 排气惯性 气体在流动过程中具有一定惯性,排气惯性比进气惯性来的大。因此可以利用排气惯性的能量来提高排气效率,在高性能发动机上排气惯性具有很大的作用。一般人认为废气是在排气行程时由活塞推挤出去的,当活

HJ 1137—2020甲醇燃料汽车非常规污染物排放测量方法

HJ 1137—2020甲醇燃料汽车非常规污染物排放测量方法Measurement Methods for Non-Regulated Emissions From Methanol Fuelled Vehicles (发布稿) 本电子版为发布稿。请以中国环境科学出版社出版的正式标准为准。

目次 前言.............................................................................. II 1适用范围.. (1) 2规范性引用文件 (1) 3术语和定义 (1) 4非常规污染物测量分析方法 (2) 5试验用燃料 (5) 6标准的实施 (6) 附录 A (规范性附录)汽车和发动机排气中甲醛和甲醇的采样方法 (7) 附录 B (规范性附录)汽车和发动机排气甲醛的测定高效液相色谱法 (9) 附录 C (规范性附录)汽车和发动机排气甲醇的测定固相吸附/顶空—气相色谱质谱联用法.. 13

前言 为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治机动车污染物排放,改善环境空气质量,制定本标准。 本标准规定了燃用甲醇燃料的轻型汽车、重型发动机和汽车(含柴油/甲醇双燃料发动机和汽车)排气中甲醛和甲醇的测量方法。 本标准附录A~附录C 为规范性附录。 本标准为首次发布。 本标准由生态环境部大气环境司、法规与标准司组织制定。 本标准起草单位:北京理工大学、中国环境科学研究院、厦门环境保护机动车污染控制技术中心、广州广电计量检测股份有限公司。 本标准生态环境部2020 年11 月10 日批准。 本标准自发布之日起实施。 本标准由生态环境部解释。

发动机排放污染物的影响因素

发动机排放 污染物的生成机理和影响因素 主要内容:介绍了汽车尾气中的主要污染物 CO 、HC 、NO x 和微粒的生成机理及其影 响因素。 1 一氧化碳 1.1汽车尾气中CO 的产生是由于燃油在气缸中燃烧不充分所致, 是氧气不足而生成的 中间产物。 影响一氧化碳生成的因素 理论上当a 在14.7以上时,排气中不存在 CO ,而只生成CO 2。实际上由于燃油和空气 混合不均匀,在排气中还含有少量 CO 。即使混合气混合的很均匀, 由于燃烧后的温度很高, 已经生成的CO 2也会由于一小部分分解成 CO 和O 2, H 2O 也会部分分解成 02和H 2,生成 的H 2也会使CO 2 还原成CO ,所以,排气中总会有少量 CO 存在。可见,凡是影响空燃比 的因素,即为影响 CO 生成的因素。 1. 进气温度的影响 一般情况下,冬天气温可达零下 20 C 以下,夏天在30 C 以上,爬坡时发动机罩内进气 温度超过80C 。随着环境温度的上升,空气密度变小,而汽油的密度几乎不变,化油器供 给的混合气的空燃比 a 随吸入空气温度的上升而变浓, 排出的CO 将增加。因此,冬天和夏 天发动机排放情况有很大的不同。图 2-3为一定运转条件下,进气温度与空燃比的关系,大 致和绝对温度的方根成反比的理论相一致。 怠速 图2-4海拔高度与大气压力的关系 进气温度 图2-3进气温度与空燃比的关系 图2-5怠速转速 对CO 和HC 排放的影响

当海平面P0 =100kPa 时,可作出海拔高度和大气压力变化关系的曲线, 当忽略空气中饱和水蒸气压时,空气密度 P 可用下式表示: P =1.293——273P —— kg/m 3 (273 +T )760 式中:T —温度,C 。 可以认为空气密度 P 和大气压力P 成正比,从简单化油器理论可知, 度的平方根成正比,所以进气管压力降低时,空气密度下降,则空燃比下降, 增大。 3. 进气管真空度的影响 当汽车急剧减速时,发动机真空度在68kPa 以上时,停留在进气系统中的燃料,在高真 空度下急剧蒸发而进入燃烧室,造成混和气瞬时过浓,致使燃烧状况恶化。 CO 浓度将显著 增加到怠速时的浓度。 4. 怠速转速的影响 图2-5表示了怠速转速和排气中 CO 、HC 浓度的关系。怠速转速为600r/min 时,CO 浓 度为1.4%, 700r/min 时,降为1%左右,这说明提高怠速转速,可有效地降低排气中 CO 浓 度,但是,怠速过高会加大挺杆响声,对液力变扭汽车,还可能发生溜车的危险。如果这些 问题得到 解决,一般从净化的观点,希望怠速转速规定高一点较好。 5. 发动机工况的影响 发动机负荷一定时,CO 的排放量随转速增加而降低,到一定的车速后,变化不大。图 2-6为某汽油机负荷一定、匀速工况下的 CO 浓度的变化。当车速增加时, CO 很快降低, 至中速后变化不大,这是由于化油器供给发动机的空燃比, 随流量增加接近于理论空燃比的 结果。 图2-6 2.大气压力的影响 大气压力P 随海拔高度而变化, 由经验公式 5.256 P = Po(1—0? kPa (2-4) 式中:h 一海拔高度, km 。 如图 2-4所示。 (2-5) 空燃比和空气密 CO 排放量将 0 g 2 V/(km/h) 某汽油机等速工况排气成分实测结果

相关主题
文本预览
相关文档 最新文档