当前位置:文档之家› 蛮力法、动态规划法、回溯法和分支限界法求解01背包问题

蛮力法、动态规划法、回溯法和分支限界法求解01背包问题

蛮力法、动态规划法、回溯法和分支限界法求解01背包问题
蛮力法、动态规划法、回溯法和分支限界法求解01背包问题

一、实验内容:

分别用蛮力法、动态规划法、回溯法和分支限界法求解0/1背包问题。

注:0/1背包问题:给定n 种物品和一个容量为C 的背包,物品i 的重量

是i w ,其价值为i v ,背包问题是如何使选择装入背包内的物品,使得装入背

包中的物品的总价值最大。其中,每种物品只有全部装入背包或不装入背包

两种选择。

二、所用算法的基本思想及复杂度分析:

1.蛮力法求解0/1背包问题:

1)基本思想:

对于有n 种可选物品的0/1背包问题,其解空间由长度为n 的0-1

向量组成,可用子集数表示。在搜索解空间树时,深度优先遍历,搜索每

一个结点,无论是否可能产生最优解,都遍历至叶子结点,记录每次得

到的装入总价值,然后记录遍历过的最大价值。

2)代码:

#include

#include

using namespace std;

#define N 100 //最多可能物体数

struct goods //物品结构体

{

int sign; //物品序号

int w; //物品重量

int p; //物品价值

}a[N];

bool m(goods a,goods b)

{

return (a.p/a.w)>(b.p/b.w);

}

int max(int a,int b)

{

return a

}

int n,C,bestP=0,cp=0,cw=0;

int X[N],cx[N];

/*蛮力法求解0/1背包问题*/

int Force(int i)

{

if(i>n-1){

if(bestP

for (int k=0;k

bestP=cp;

}

return bestP;

}

cw=cw+a[i].w;

cp=cp+a[i].p;

cx[i]=1; //装入背包

Force(i+1);

cw=cw-a[i].w;

cp=cp-a[i].p;

cx[i]=0; //不装入背包

Force(i+1);

return bestP;

}

int KnapSack1(int n,goods a[],int C,int x[])

{

Force(0);

return bestP;

}

int main()

{

goods b[N];

printf("物品种数n: ");

scanf("%d",&n); //输入物品种数

printf("背包容量C: ");

scanf("%d",&C); //输入背包容量

for (int i=0;i

{

printf("物品%d的重量w[%d]及其价值v[%d]: ",i+1,i+1,i+1);

scanf("%d%d",&a[i].w,&a[i].p);

b[i]=a[i];

}

int sum1=KnapSack1(n,a,C,X);//调用蛮力法求0/1背包问题

printf("蛮力法求解0/1背包问题:\nX=[ ");

for(i=0;i

cout<

printf("] 装入总价值%d\n",sum1);

bestP=0,cp=0,cw=0;//恢复初始化

}

3)复杂度分析:

蛮力法求解0/1背包问题的时间复杂度为:)

n

O

T 。

)

(n

2(

2.动态规划法求解0/1背包问题:

1)基本思想:

令),(j i V 表示在前)1(n i i ≤≤个物品中能够装入容量为)1(C j j ≤≤的

背包中的物品的最大值,则可以得到如下动态函数:

0),0()0,(==j V i V

{}?

??≥+---<-=)(),1(),,1(max ))(,1(),(i i i i w j v w j i V j i V w j j i V j i V 按照下述方法来划分阶段:第一阶段,只装入前1个物品,确定在

各种情况下的背包能够得到的最大价值;第二阶段,只装入前2个物品,

确定在各种情况下的背包能够得到的最大价值;以此类推,直到第n 个

阶段。最后,),(C n V 便是在容量为C 的背包中装入n 个物品时取得的最

大价值。

2)代码:

#include

#include

using namespace std;

#define N 100 //最多可能物体数

struct goods //物品结构体

{

int sign; //物品序号

int w; //物品重量

int p; //物品价值

}a[N];

bool m(goods a,goods b)

{

return (a.p/a.w)>(b.p/b.w);

}

int max(int a,int b)

{

return a

}

int n,C,bestP=0,cp=0,cw=0;

int X[N],cx[N];

int KnapSack2(int n,goods a[],int C,int x[])

{

int V[N][10*N];

for(int i=0;i<=n;i++) //初始化第0列

V[i][0]=0;

for(int j=0;j<=C;j++) //初始化第0行

V[0][j]=0;

for(i=1;i<=n;i++) //计算第i 行,进行第i 次迭代

for(j=1;j<=C;j++)

if(j

V[i][j]=V[i-1][j];

else

V[i][j]=max(V[i-1][j],V[i-1][j-a[i-1].w]+a[i-1].p);

j=C; //求装入背包的物品

for (i=n;i>0;i--)

{

if (V[i][j]>V[i-1][j]){

x[i-1]=1;

j=j-a[i-1].w;

}

else x[i-1]=0;

}

return V[n][C]; //返回背包取得的最大价值

}

int main()

{

goods b[N];

printf("物品种数n: ");

scanf("%d",&n); //输入物品种数

printf("背包容量C: ");

scanf("%d",&C); //输入背包容量

for (int i=0;i

{

printf("物品%d的重量w[%d]及其价值v[%d]: ",i+1,i+1,i+1);

scanf("%d%d",&a[i].w,&a[i].p);

b[i]=a[i];

}

int sum2=KnapSack2(n,a,C,X);//调用动态规划法求0/1背包问题 printf("动态规划法求解0/1背包问题:\nX=[ ");

for(i=0;i

cout<

printf("] 装入总价值%d\n",sum2);

for (i=0;i

{

a[i]=b[i];

}//恢复a[N]顺序

}

3)复杂度分析:

动态规划法求解0/1背包问题的时间复杂度为:)

n

=。

T?

O

n

)

(

(C

3.回溯法求解0/1背包问题:

1)基本思想:

回溯法:为了避免生成那些不可能产生最佳解的问题状态,要不断

地利用限界函数(bounding function)来处死那些实际上不可能产生所

需解的活结点,以减少问题的计算量。这种具有限界函数的深度优先生

成法称为回溯法。

对于有n种可选物品的0/1背包问题,其解空间由长度为n的0-1向量组成,可用子集数表示。在搜索解空间树时,只要其左儿子结点是一

个可行结点,搜索就进入左子树。当右子树中有可能包含最优解时就进

入右子树搜索。

2)代码:

#include

#include

using namespace std;

#define N 100 //最多可能物体数

struct goods //物品结构体

{

int sign; //物品序号

int w; //物品重量

int p; //物品价值

}a[N];

bool m(goods a,goods b)

{

return (a.p/a.w)>(b.p/b.w);

}

int max(int a,int b)

{

return a

}

int n,C,bestP=0,cp=0,cw=0;

int X[N],cx[N];

int BackTrack(int i)

{

if(i>n-1){

if(bestP

for (int k=0;k

bestP=cp;

}

return bestP;

}

if(cw+a[i].w<=C){ //进入左子树

cw=cw+a[i].w;

cp=cp+a[i].p;

cx[a[i].sign]=1; //装入背包

BackTrack(i+1);

cw=cw-a[i].w;

cp=cp-a[i].p; //回溯,进入右子树

}

cx[a[i].sign]=0; //不装入背包

BackTrack(i+1);

return bestP;

}

int KnapSack3(int n,goods a[],int C,int x[])

{

for(int i=0;i

{

x[i]=0;

a[i].sign=i;

}

sort(a,a+n,m);//将各物品按单位重量价值降序排列

BackTrack(0);

return bestP;

}

int main()

{

goods b[N];

printf("物品种数n: ");

scanf("%d",&n); //输入物品种数

printf("背包容量C: ");

scanf("%d",&C); //输入背包容量

for (int i=0;i

{

printf("物品%d的重量w[%d]及其价值v[%d]: ",i+1,i+1,i+1);

scanf("%d%d",&a[i].w,&a[i].p);

b[i]=a[i];

}

int sum3=KnapSack3(n,a,C,X);//调用回溯法求0/1背包问题

printf("回溯法求解0/1背包问题:\nX=[ ");

for(i=0;i

cout<

printf("] 装入总价值%d\n",sum3);

for (i=0;i

{

a[i]=b[i];

}//恢复a[N]顺序

3)复杂度分析:

最不理想的情况下,回溯法求解0/1背包问题的时间复杂度为:O

n

T 。由于其对蛮力法进行优化后的算法,其复杂度一般比蛮力)

(n

)

2(

法要小。

空间复杂度:有n个物品,即最多递归n层,存储物品信息就是一个

一维数组,即回溯法求解0/1背包问题的空间复杂度为)

O。

(n

4.分支限界法求解背包问题:

1)基本思想:

分支限界法类似于回溯法,也是在问题的解空间上搜索问题解的算法。一般情况下,分支限界法与回溯法的求解目标不同。回溯法的求解目标是找出解空间中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。

首先,要对输入数据进行预处理,将各物品依其单位重量价值从大到小进行排列。

在下面描述的优先队列分支限界法中,节点的优先级由已装袋的物品价值加上剩下的最大单位重量价值的物品装满剩余容量的价值和。

算法首先检查当前扩展结点的左儿子结点的可行性。如果该左儿子结点是可行结点,则将它加入到子集树和活结点优先队列中。当前扩展结点的右儿子结点一定是可行结点,仅当右儿子结点满足上界约束时才将它加入子集树和活结点优先队列。当扩展到叶节点时为问题的最优值。

2)代码:

#include

#include

using namespace std;

#define N 100 //最多可能物体数

struct goods //物品结构体

{

int sign; //物品序号

int w; //物品重量

int p; //物品价值

}a[N];

bool m(goods a,goods b)

{

return (a.p/a.w)>(b.p/b.w);

}

int max(int a,int b)

{

return a

}

int n,C,bestP=0,cp=0,cw=0;

int X[N],cx[N];

struct KNAPNODE //状态结构体

{

bool s1[N]; //当前放入物体

int k; //搜索深度

int b; //价值上界

int w; //物体重量

int p; //物体价值

};

struct HEAP //堆元素结构体

{

KNAPNODE *p;//结点数据

int b; //所指结点的上界

};

//交换两个堆元素

void swap(HEAP &a, HEAP &b)

{

HEAP temp = a;

a = b;

b = temp;

}

//堆中元素上移

void mov_up(HEAP H[], int i)

{

bool done = false;

if(i!=1){

while(!done && i!=1){

if(H[i].b>H[i/2].b){

swap(H[i], H[i/2]);

}else{

done = true;

}

i = i/2;

}

}

}

//堆中元素下移

void mov_down(HEAP H[], int n, int i)

{

bool done = false;

if((2*i)<=n){

while(!done && ((i = 2*i) <= n)){

if(i+1<=n && H[i+1].b > H[i].b){

i++;

}

if(H[i/2].b

swap(H[i/2], H[i]);

}else{

done = true;

}

}

}

}

//往堆中插入结点

void insert(HEAP H[], HEAP x, int &n)

{

n++;

H[n] = x;

mov_up(H,n);

}

//删除堆中结点

void del(HEAP H[], int &n, int i)

{

HEAP x, y;

x = H[i]; y = H[n];

n --;

if(i<=n){

H[i] = y;

if(y.b>=x.b){

mov_up(H,i);

}else{

mov_down(H, n, i);

}

}

}

//获得堆顶元素并删除

HEAP del_top(HEAP H[], int &n)

{

HEAP x = H[1];

del(H, n, 1);

return x;

}

//计算分支节点的上界

void bound( KNAPNODE* node, int M, goods a[], int n) {

int i = node->k;

float w = node->w;

float p = node->p;

if(node->w>M){ // 物体重量超过背包载重量node->b = 0; // 上界置为0

}else{

while((w+a[i].w<=M)&&(i

w += a[i].w; // 计算背包已装入载重

p += a[i++].p; // 计算背包已装入价值}

if(i

node->b = p + (M - w)*a[i].p/a[i].w;

}else{

node -> b = p;

}

}

}

//用分支限界法实现0/1背包问题

int KnapSack4(int n,goods a[],int C, int X[])

{

int i, k = 0; // 堆中元素个数的计数器初始化为0

int v;

KNAPNODE *xnode, *ynode, *znode;

HEAP x, y, z, *heap;

heap = new HEAP[n*n]; // 分配堆的存储空间

for( i=0; i

a[i].sign=i; //记录物体的初始编号

}

sort(a,a+n,m); // 对物体按照价值重量比排序

xnode = new KNAPNODE; // 建立父亲结点

for( i=0; i

xnode->s1[i] = false;

}

xnode->k = xnode->w = xnode->p = 0;

while(xnode->k

ynode = new KNAPNODE; // 建立结点y

*ynode = *xnode; //结点x的数据复制到结点y

ynode->s1[ynode->k] = true; // 装入第k个物体

ynode->w += a[ynode->k].w; // 背包中物体重量累计

ynode->p += a[ynode->k].p; // 背包中物体价值累计

ynode->k ++; // 搜索深度++

bound(ynode, C, a, n); // 计算结点y的上界

y.b = ynode->b;

y.p = ynode;

insert(heap, y, k); //结点y按上界的值插入堆中

znode = new KNAPNODE; // 建立结点z

*znode = *xnode; //结点x的数据复制到结点z

znode->k++; // 搜索深度++

bound(znode, C, a, n); //计算节点z的上界

z.b = znode->b;

z.p = znode;

insert(heap, z, k); //结点z按上界的值插入堆中

delete xnode;

x = del_top(heap, k); //获得堆顶元素作为新的父亲结点

xnode = x.p;

}

v = xnode->p;

for( i=0; is1[i]){

X[a[i].sign] =1 ;

}else{

X[a[i].sign] = 0;

}

}

delete xnode;

delete heap;

return v; //返回背包中物体的价值

}

/*测试以上算法的主函数*/

int main()

{

goods b[N];

printf("物品种数n: ");

scanf("%d",&n); //输入物品种数

printf("背包容量C: ");

scanf("%d",&C); //输入背包容量

for (int i=0;i

{

printf("物品%d的重量w[%d]及其价值v[%d]: ",i+1,i+1,i+1);

scanf("%d%d",&a[i].w,&a[i].p);

b[i]=a[i];

}

int sum4=KnapSack4(n,a,C,X);//调用分支限界法求0/1背包问题printf("分支限界法求解0/1背包问题:\nX=[ ");

for(i=0;i

cout<

printf("] 装入总价值%d\n",sum4);

return 0;

}

3)复杂度分析:

分支限界法求解0/1背包问题的时间复杂度为:)

T 。

O

n

2(

)

(n 相同的数据,求相同同的问题,用不同的方法,得到的结果,所得结果

正式所求问题的最优解,所编程序是正确的。

五、调试和运行程序过程中产生的问题、采取的措施及获得的相关经验教训:

1.本实验中4种算法要用同一个主函数调用,由于背包容量、物品、解向量等变量都是以全局变量定义的,每次调用一种算法之前,必须要看这些重要的变

量值是否因上一个算法的调用而发生了改变,如发生改变,则需将其改回原值,使得各种算法之间互不影响。

2.在本实验中,各种算法因申请存储空间等原因,运行时间的排序不可能与其时间复杂度的一致,甚至可能会有很大差别,又不可能输入大量数据进行各种算法的测试,所以没有求各算法的运行时间并进行比较。即各算法的运行时间受较多因素影响,较小数据量时与算法时间复杂度无相关性,比较是没有意义的

动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题 一、问题描述: 有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和? 二、总体思路: 根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。 原理: 动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。 过程: a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i个物品选或不选),V i表示第i个物品的价值,W i表示第i个物品的体积(重量); b) 建立模型,即求max(V1X1+V2X2+…+VnXn); c) 约束条件,W1X1+W2X2+…+WnXn (V2X2+V3X3+…+VnXn)+V1X1;

(完整版)分支限界算法作业分配问题

分支限界法的研究与应用 摘要: 分支限界法与回溯法的不同:首先,回溯法的求解目标是找出解空间树中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。其次,回溯法以深度优先的方式搜索解空间树,而分支限界法则一般以广度优先或以最小耗费优先的方式搜索解空间树。再者,回溯法空间效率高;分支限界法往往更“快”。 分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。 常见的分支限界法有:队列式分支限界法,按照队列先进先出原则选取下一个结点为扩展结点。栈式分支限界法,按照栈后进先出原则选取下一个结点为扩展结点。优先队列式分支限界法,按照规定的结点费用最小原则选取下一个结点为扩展结点(最采用优先队列实现)。 分支搜索法是一种在问题解空间上进行搜索尝试的算法。所谓分支是采用广度优先的策略国,依次搜索E-结点的所有分支,也就是所有的相邻结点。和回溯法一样,在生成的结点中,抛弃那些不满足约束条件的结点,其余结点加入活结点表。然后从表中选择一个结点作为下一个E-结点,断续搜索。 关键词: 分支限界法回溯法广度优先分支搜索法

目录 第1章绪论 (3) 1.1 分支限界法的背景知识 (3) 1.2 分支限界法的前景意义 (3) 第2章分支限界法的理论知识.................. 错误!未定义书签。 2.1 问题的解空间树 ............................................... 错误!未定义书签。 2.2 分支限界法的一般性描述 (6) 第3章作业分配问题 (7) 3.1 问题描述 (7) 3.2 问题分析 (7) 3.3 算法设计 (8) 3.4 算法实现 (10) 3.5 测试结果与分析 (12) 第4章结论 (13) 参考文献 (14)

算法分析与程序设计动态规划及回溯法解背包问题

动态规划法、回溯法解0-1背包问题 2012级计科庞佳奇 一、问题描述与分析 1.动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会 有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。 不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。 多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化问题的方法为动态规划方法。任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适用动态规划的问题必须满足最优化原理和无后效性。1.最优化原理(最优子结构性质)最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。2.无后效性将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性。3.子问题的重叠性动态规划将原来具有指数级时间复杂度的搜索算法改进成了具有多项式时间复杂度的算法。其中的关键在于解决冗余,这是动态规划算法的根本目的。动态规划实质上是一种以空间换时间的技术,它在实现的过程中,不得不存储产生过程中的各种状态,所以它的空间复杂度要大于其它的算法。 01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的体积为W1,W2……Wn,与之相对应的价值为P1,P2……Pn。求出获得最大价值的方案。 2.回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目 标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。 在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

回溯法与分支限界法的分析与比较

回溯法与分支限界法的分析与比较 摘要:通过对回溯法与分支限界法的简要介绍,进一步分析和比较这两种算法在求解问题时的差异,并通过具体的应用来说明两种算法的应用场景及侧重点。 关键词:回溯法分支限界法n后问题布线问题 1、引言 1.1回溯法 回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解。如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。这种以深度优先方式系统搜索问题解的算法称为回溯法。 1.2分支限界法 分支限界法是以广度优先或以最小耗费优先的方式搜索解空间树,在每一个活结点处,计算一个函数值,并根据函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间上有最优解的分支推进,以便尽快地找出一个最优解,这种方法称为分支限界法。 2、回溯法的基本思想 用回溯法解问题时,应明确定义问题的解空间。问题的解空间至少应包含问题的一个解。之后还应将解空间很好的组织起来,使得能用回溯法方便的搜索整个解空间。在组织解空间时常用到两种典型的解空间树,即子集树和排列树。确定了解空间的组织结构后,回溯法从开始结点出发,以深度优先方式搜索整个解空间。这个开始结点成为活结点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。这个新结点就成为新的活结点,并成为当前扩展结点。如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。此时,应往回移动至最近的一个活结点处,并使这个活结点成为当前的扩展结点。回溯法以这种工作方式递归的在解空间中搜索,直至找到所要求的解或解空间中已无活结点时为止。 3、分支限界法的基本思想 用分支限界法解问题时,同样也应明确定义问题的解空间。之后还应将解空间很好的组织起来。分支限界法也有两种组织解空间的方法,即队列式分支限界法和优先队列式分支限界法。两者的区别在于:队列式分支限界法按照队列先进先出的原则选取下一个节点为扩展节点,而优先队列式分支限界法按照优先队列

回溯法和分支限界法解决0-1背包题

0-1背包问题 计科1班朱润华 2012040732 方法1:回溯法 一、回溯法描述: 用回溯法解问题时,应明确定义问题的解空间。问题的解空间至少包含问题的一个(最优)解。对于0-1背包问题,解空间由长度为n的0-1向量组成。该解空间包含对变量的所有0-1赋值。例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。 二、回溯法步骤思想描述: 0-1背包问题是子集选取问题。0-1 背包问题的解空间可以用子集树表示。在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。当右子树中有可能含有最优解时,才进入右子树搜索。否则,将右子树剪去。设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。当cp+r<=bestp时,可剪去右子树。计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。 例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。这4个物品的单位重量价值分别为[3,2,3,5,4]。以物品单位重量价值的递减序装入物品。先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。由此得一个解为[1,0.2,1,1],其相应价值为22。尽管这不是一个可行解,但可以证明其价值是最优值的上界。因此,对于这个实例,最优值不超过22。 在实现时,由Bound计算当前节点处的上界。类Knap的数据成员记录解空间树中的节点信息,以减少参数传递调用所需要的栈空间。在解空间树的当前扩展节点处,仅要进入右子树时才计算上界Bound,以判断是否可将右子树剪去。进入左子树时不需要计算上界,因为上界预期父节点的上界相同。 三、回溯法实现代码: #include "stdafx.h" #include using namespace std; template class Knap { template friend Typep Knapsack(Typep [],Typew [],Typew,int); private: Typep Bound(int i);

回溯法和分支限界法解决背包题

0-1背包问题 计科1班朱润华 32 方法1:回溯法 一、回溯法描述: 用回溯法解问题时,应明确定义问题的解空间。问题的解空间至少包含问题的一个(最优)解。对于0-1背包问题,解空间由长度为n的0-1向量组成。该解空间包含对变量的所有0-1赋值。例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大 形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。 二、回溯法步骤思想描述: 0-1背包问题是子集选取问题。0-1 背包问题的解空间可以用子集树表示。在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。当右子树中有可能含有最优解时,才进入右子树搜索。否则,将右子树剪去。设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。当cp+r<=bestp时,可剪去右子树。计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至

装不下时,再装入物品一部分而装满背包。 例如:对于0-1背包问题的一个实例, n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。这4个物品的单位重量价值分别为[3,2,3,5,4]。以物品单位重量价值的递减序装入物品。先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装的物品2。由此得一个解为[1,,1,1],其相应价值为22。尽管这不是一个可行解,但可以证明其价值是最优值的上界。因此,对于这个实例,最优值不超过22。 在实现时,由Bound计算当前节点处的上界。类Knap的数据成员记录解空间树中的节点信息,以减少参数传递调用所需要的栈空间。在解空间树的当前扩展节点处,仅要进入右子树时才计算上界Bound,以判断是否可将右子树剪去。进入左子树时不需要计算上界,因为上界预期父节点的上界相同。 三、回溯法实现代码: #include "" #include using namespace std; template class Knap { template friend Typep Knapsack(Typep [],Typew [],Typew,int);

01背包问题动态规划详解

动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01背包问题。 因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4 4,5 5,6 c[i][j]数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为 4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是4.所以。 总的最佳方案是5+4为9.这样.一排一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.) 从以上最大价值的构造过程中可以看出。 f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗?

下面是实际程序: #include int c[10][100]; int knapsack(int m,int n) { int i,j,w[10],p[10]; for(i=1;ic[i-1][j]) c[i][j]=p[i]+c[i-1][j-w[i]]; else c[i][j]=c[i-1][j]; }

用回溯法解决0-1背包问题

#include int c; //背包容量 int n; //物品数 int weight[100]; //存放n个物品重量的数组 int price[100]; //存放n个物品价值的数组 int currentWeight=0; //当前重量 int currentPrice=0; //当前价值 int bestPrice=0; //当前最优值 int bestAnswer[100]; //当前最优解 int bp=0; int bA[100]; //当前最优解 int times=0; void Print(); void Backtracking(int i) { times+=1; if(i>n) { Print(); if(bestPrice>bp) { bp=bestPrice; for(int j=1;j<=n;j++) bA[j]=bestAnswer[j]; } return; } if(currentWeight+weight[i]<=c) { //将物品i放入背包,搜索左子树 bestAnswer[i] = 1; currentWeight += weight[i]; bestPrice += price[i]; Backtracking(i+1); //完成上面的递归,返回到上一结点,物品i不放入背包,准备递归右子树 currentWeight -= weight[i]; bestPrice -= price[i]; } bestAnswer[i] = 0; Backtracking(i+1); } void Print() {

回溯法和分支限界法解决0-1背包题

0-1背包问题 计科1班朱润华2012040732 方法1:回溯法 一、回溯法描述: 用回溯法解问题时, 应明确定义问题的解空间。 问题的解空间至少包含问题的一个 (最 优)解。对于0-1背包问题,解空间由长度为 n 的0-1向量组成。该解空间包含对变量的所 有 0-1 赋值。例如 n=3 时,解空间为: {(0, 0, 0), (0, 1, 0), (0, 0, 1) , (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1 , 1, 1) 然后可将解空间组织成树或图的形式, 0-1背包则可用完全二叉树表示其解空间给定 n 种物品和一背包。物品i 的重量是wi ,其价 值为vi ,背包的容量为 C 。问:应如何选择装入背包的物品,使得装入背包中物品的总价值 最大? 形式化描述:给定 c >0, wi >0, vi >0 , 1 w i < n.要求找一 n 元向量(x1,x2,…,xn,), xi € {0,1}, ? 刀wi xi w c,且刀vi xi 达最大.即一个特殊的整数规划问题。 二、回溯法步骤思想描述: 0-1背包问题是子集选取问题。0-1背包问题的解空间可以用子集树表示。在搜索解空 间树时,只要其 左儿子节点是一个可行节点, 搜索就进入左子树。当右子树中有可能含有最 优解时,才进入右子树搜索。否则,将右子树剪去。设 r 是当前剩余物品价值总和, cp 是 当前价值;bestp 是当前最优价值。当 cp+r<=bestp 时,可剪去右子树。计算右子树上界的 更好的方法是将剩余物品依次按其单位价值排序, 然后依次装入物品, 直至装不下时,再装 入物品一部分而装满背包。 例如:对于 0-1 背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1] 品的单位重量价值分别为[3,2,3,5,4]。以物品单位重量价值的递减序装入物品。 品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装 由此得一个解为[1,0.2,1,1],其相应价值为22。尽管这不是一个可行解,但可以证明其价 值是最优值的上界。因此,对于这个实例,最优值不超过 在实现时,由 Bound 计算当前节点处的上界。类 Knap 的数据成员记录解空间树中的节 点信息,以减少参数传递调用所需要的栈空间。 在解空间树的当前扩展节点处, 仅要进入右 子树时才计算上界 Bound,以判断是否可将右子树剪去。进入左子树时不需要计算上界,因 为上界预期父节点的上界相同。 三、回溯法实现代码: #i nclude "stdafx.h" #in clude using n ames pace std; temp late class Knap { temp latevciass Typ ew,class Typep> friend Typep Knap sack(T ypep [],T ypew [],T yp ew,i nt); private: Typep Boun d(i nt i); 。这4个物 先装入物 0.2的物品2。 22。

动态规划之01背包问题(最易理解的讲解)

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。 01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] } f[i,j]表示在前i件物品中选择若干件放在承重为j 的背包中,可以取得的最大价值。 Pi表示第i件物品的价值。 决策:为了背包中物品总价值最大化,第i件物品应该放入背包中吗? 题目描述: 有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最 首先要明确这张表是从右到左,至底向上生成的。 为了叙述方便,用e10单元格表示e行10列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为10的背包,那么这个背包的最大价值是6,因为e物品的重量是4,背包装的了,把e装进去后价值为6。然后是e9单元格表示背包承重9,只有物品e, e装进去后,背包价值为6,接着是e8, e7单元格,一直到e3单元格表示背包承重3,但物品e承重4,装不了,所以e3=0, 对于d10单元格,表示只有物品e,d时,承重为10的背包,所能装入的最大价值,是10,因为物品e,d这个背包都能装进去。对于承重为9的背包,d9=10,是怎么得出的呢? 根据01背包的状态转换方程,需要考察两个值, 一个是f[i-1,j],对于这个例子来说就是e9的值6,另一个是f[i-1,j-Wi]+Pi; 在这里, f[i-1,j]表示我有一个承重为9的背包,当只有物品e可选时,这个背包能装入的最大价值 f[i-1,j-Wi]表示我有一个承重为4的背包(等于当前背包承重减去物品d的重量),当只有物品e可选时,这个背包能装入的最大价值 f[i-1,j-Wi]就是指单元格e4值为6,Pi指的是d物品的价值,即4 由于f[i-1,j-Wi]+Pi = 6 + 4 = 10 大于f[i-1,j] = 6,所以物品d应该放入承重为9的背包,所以d9=10.

回溯算法之0-1背包问题

1、实验目的 (1)掌握回溯法设计策略。 (2)通过0-1背包问学习回溯法法设计技巧2.实验内容 源程序: #include using namespace std; double c;//背包容量 int n; //物品数 double w[100];//物品重量数组 double p[100];//物品价值数组 double cw=0;//当前重量 double cp=0;//当前价值 double bestp=0;//当前最优值 double bound(int i) { double cleft,b; //计算上界 cleft=c-cw;//剩余容量 b=cp; //以物品单位重量价值递减序装入物品 while(i<=n&&w[i]<=cleft) { cleft-=w[i]; b+=p[i]; i++; } //装满背包 if(i<=n) b+=p[i]*cleft/w[i]; return b; } void Backtrack(int i) { if(i>n) { if(cp>bestp) bestp=cp; return;

} if(cw+w[i]<=c) //搜索左子树 { cw+=w[i]; cp+=p[i]; Backtrack(i+1); cp-=p[i]; cw-=w[i]; } if(bound(i+1)>bestp)//搜索右子树 Backtrack(i+1); } double Knapsack (double pp[],double ww[],double d) { int i; double TP=0,TW=0; cw=0.0;cp=0.0;bestp=0.0;//计算所有物品的重量及价值 for(i=1;i<=n;i++) { TP=TP+pp[i]; TW=TW+ww[i]; } if(TW<=d)//所有物品装入背包 bestp=TP; else { Backtrack(1); } return bestp; }; int main() {

用回溯法和队列式分支限界算法求解0-1背包问题

华北水利水电学院数据结构与算法分析实验报告2009 ~2010 学年第 1 学期2009 级计算机专业 班级:200915326 学号:200915326 姓名:郜莉洁 一、实验题目: 分别用回溯法和分支限界法求解0-1背包问题 二、实验内容: 0-1背包问题:给定n种物品和一个背包。物品i的重量是Wi,其价值为Vi,背包的容量为C。应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分的物品i。 三、程序源代码: A:回溯法: // bag1.cpp : Defines the entry point for the console application. // #include "stdafx.h" #include #define MaxSize 100 //最多物品数 int limitw; //限制的总重量 int maxwv=0; //存放最优解的总价值 int maxw; int n; //实际物品数 int option[MaxSize]; // 存放最终解 int op[MaxSize]; //存放临时解 struct { int weight; int value; }a[MaxSize]; //存放物品数组 void Knap( int i, int tw, int tv) //考虑第i个物品 { int j; if(i>=n) //找到一个叶子结点 { if (tw<=limitw && tv>maxwv) //找到一个满足条件地更优解,保存它 { maxwv=tv; maxw=tw; for(j=0;j

回溯法解0 1背包问题实验报告

实验4 回溯法解0-1背包问题 一、实验要求 1.要求用回溯法求解0-1背包问题; 要求交互输入背包容量,物品重量数组,物品价值数组;2.要求显示结果。3. 二、实验仪器和软件平台 仪器:带usb接口微机 软件平台:WIN-XP + VC++ 三、实验源码 #include \ #include #include #include<> #include using namespace std; template class Knap { public: friend void Init(); friend void Knapsack(); friend void Backtrack(int i); friend float Bound(int i); bool operator<(Knap a)const { if(fl< return true; else return false; } private: ty w; ; cout<>bag[i].v; for(i=0;i

{ bag[i].flag=0; bag[i].kk=i; bag[i].fl=*bag[i].v/bag[i].w; } }void Backtrack(int i){cw+=bag[i].w;if(i>=n) <=c) lag=1; cp+=bag[i].v; Backtrack(i+1); cw-=bag[i].w; cp-=bag[i].v; } if(Bound(i+1)>bestp)lag=0; Backtrack(i+1); }}<=cleft){; b+=bag[i].v; i++; } /bag[i].w * cleft; return b; } void Knapsack() k]=bag[k].flag; lag*bag[k].v; //价值累加 } cout<

算法设计与分析第6章回溯与分支限界

算法设计与分析

目录 算法设计与分析 (1) 第6章回溯与分支限界 (3) 6.1回溯法的设计技术 (3) 6.2用回溯法求解装载问题 (7) 6.3用回溯法求解n皇后问题 (9) 6.4用回溯法求解0-1背包问题 (11) 6.5用回溯法求解旅行商问题 (13) 6.6 分支限界法的设计技术 (15) 6.7 用分支限界法求问题的解 (15) 本章小结 (15) 参考文献 (16)

第6章回溯与分支限界 内容导读 回溯法(Back Tracking Algorithm)与分支限界法(Branch and Bound Algorithm)都是基本的算法设计策略,属于树的搜索技术的范畴。在使用这两种算法求解问题前,均需要把解空间规划成一棵解空间树,并且在求解过程中使用剪枝策略来提高搜索效率。 回溯法也称试探法,可以把它看成是一个在约束条件下对解空间树进行深度优先搜索的过程,并在搜索过程中剪去那些不满足条件的分支。当用回溯法搜索到解空间树的某个结点时,如果发现当前路径不满足约束条件或不是历史最优时,则放弃对该结点的子树的搜索,并逐层向其祖先结点返回。否则,进入该结点的子树,继续进行深度优先搜索。实质上,这是一个先根遍历解空间树的过程,只是这个棵树不是遍历前预先建立的,而是隐含在遍历过程当中的。 分支限界法则是以最小代价优先的方式在解空间树上进行搜索,它可以找出满足问题约束的一个可行解,或者是从满足约束条件的可行解中找出一个使得目标函数达到极值的最优解。这里的可行解在搜索树中表现为一条由根到叶子结点的路径,这条路径上权值的和为可行解的值。其中,最优解就是使可行解的值达到最优的那条路径。分支限界算法的核心思想就是增加更多的约束条件,剪掉更多的分支,当对当前的树结点进行扩展时,一次性产生其所有儿子结点,并抛弃那些不可能产生可行解或最优解的结点,即剪枝;对于留下的儿子结点,计算一个函数值(限界),然后选取一个最有利的结点继续进行扩展,使得搜索朝着最优解的分支推进。重复这个过程直到找到最优解或没有可扩展的结点。

回溯法解决01背包问题

回溯法是一个既带有系统性又带有跳跃性的搜索算法。它在包含问题的所有解的解空间树中按照深度优先的策略,从根节点出发搜索解空间树。算法搜索至解空间树的任一节点时,总是先判断该节点是否肯定不包含问题的解。如果肯定不包含,则跳过对以该节点为根的子树的系统搜索,逐层向其原先节点回溯。否则,进入该子树,继续按深度优先的策略进行搜索。 运用回溯法解题通常包含以下三个步骤: ?针对所给问题,定义问题的解空间; ?确定易于搜索的解空间结构; ?以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索; 在0/1背包问题中,容量为M的背包装载。从n个物品中选取装入背包的物品,物品i的重量为Wi,价值为Pi。最佳装载指装入的物品价值最高,即∑PiXi(i=1..n)取最大值。约束条件为∑WiXi ≤M且Xi∈[0,1](1≤i≤n)。 在这个表达式中,需求出Xi的值。Xi=1表示物品i装入背包,Xi=0表示物品i不装入背包。 ?即判断可行解的约束条件是:∑WiXi≤M(i=0..n),Wi>0,Xi∈[0,1](1≤i≤n) ?目标最大值:max∑PiXi(i=0..n-1),Pi>0,Xi=0或1(0≤iS则前置条件错误,即背包体积输入错误,否则顺序将物品放入背包。假设放入前i件物品,背包没有装满,继续选取第i+1件物品,若该物品“太大”不能装入,则弃之继而选取下一件直到背包装满为止;如果剩余物品中找不到合适物品以填满背包,则说明“刚刚”装入的第i件

01背包问题动态规划详解及C++代码

0/1背包问题动态规划详解及C++代码 1. 问题描述 给定一个载重量为C的背包 有n个物品 其重量为wi 价值为vi 1<=i<=n 要求:把物品装入背包 并使包内物品价值最大2. 问题分析 在0/1背包问题中 物体或者被装入背包 或者不被装入背包 只有两种选择。循环变量i j意义 前i个物品能够装入载重量为j的背包中 数组c意义 c[i][j]表示前i个物品能装入载重量为j的背包中物品的最大价值 若w[i]>j 第i个物品不装入背包 否则 若w[i]<=j且第i个物品装入背包后的价值>c[i-1][j] 则记录当前最大价值 替换为第i个物品装入背包后的价值 其c++代码如下 #include using namespace std; void KANPSACK_DP(int c[50][50], int w[50], int v[50], int n, int C) { for(int i = 0; i <= C; i ++) { c[0][i] = 0; } for(int i = 1; i <= n; i ++) { c[i][0] = 0; for(int j = 1; j <= C; j ++) { if(w[i] <= j) { if(v[i] + c[i - 1][j - w[i]] > c[i - 1][j]) c[i][j] = v[i] + c[i - 1][j - w[i]]; else c[i][j] = c[i - 1][j]; } else c[i][j] = c[i - 1][j]; } } } void OUTPUT_SACK(int c[50][50], int x[50], int w[50], int n, int C) { for(int k = n; k >= 2; k --) { if(c[k][C] == c[k-1][C]) x[k] = 0; else { x[k] = 1; C = C - w[k];

(原创精品)n=3时的0-1背包问题(回溯法)

用回溯法解决3种可选择物品的0-1背包问题当n=3时,其解空间是 {(0,0,0)(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}n=3时的0-1背包问题: w=[16,15,15]p=[45,25,25]c=30 开始时,Cr=C=30,V=0,A为唯一活结点,也是当前扩展结点 扩展A,先到达B结点 Cr=Cr-w1=14,V=V+v1=45 此时A、B为活结点,B成为当前扩展结点 扩展B,先到达D Cr

Cr=30,V=0,活结点为A、C,C为当前扩展结点 扩展C,先到达F Cr=Cr-w2=15,V=V+v2=25,此时活结点为A、C、F,F成为当前扩展结点扩展F,先到达L Cr=Cr-w3=0,V=V+v3=50 L是叶结点,且50>45,皆得到一个可行解x=(0,1,1),V=50 L不可扩展,成为死结点,返回到F 再扩展F到达M M是叶结点,且25<50,不是最优解 M不可扩展,成为死结点,返回到F F没有可扩展结点,成为死结点,返回到C 再扩展C到达G Cr=30,V=0,活结点为A、C、G,G为当前扩展结点 扩展G,先到达N,N是叶结点,且25<50,不是最优解,又N不可扩展,返回到G 再扩展G到达O,O是叶结点,且0<50,不是最优解,又O不可扩展,返回到G G没有可扩展结点,成为死结点,返回到C C没有可扩展结点,成为死结点,返回到A A没有可扩展结点,成为死结点,算法结束,最优解X=(0,1,1),最优值 V=50

0-1背包问题动态规划详解及代码

0/1 背包问题动态规划详解及C代码 动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 问题描述: 给定N中物品和一个背包。物品i的重量是W i,其价值位V i,背包的容量为C。问应该如何选择装入背包的物品,使得转入背包的物品的总价值为最大?? 在选择物品的时候,对每种物品i只有两种选择,即装入背包或不装入背包。不能讲物品i 装入多次,也不能只装入物品的一部分。因此,该问题被称为0-1背包问题。 问题分析:令V(i,j)表示在前i(1<=i<=n)个物品中能够装入容量为就j(1<=j<=C)的背包中的物品的最大价值,则可以得到如下的动态规划函数: (1) V(i,0)=V(0,j)=0 (2) V(i,j)=V(i-1,j) jw i (1)式表明:如果第i个物品的重量大于背包的容量,则装人前i个物品得到的最大价值和装入前i-1个物品得到的最大价是相同的,即物品i不能装入背包;第(2)个式子表明:如果第i个物品的重量小于背包的容量,则会有一下两种情况:(a)如果把第i个物品装入背包,则背包物品的价值等于第i-1个物品装入容量位j-w i的背包中的价值加上第i个物品的价值v i; (b)如果第i个物品没有装入背包,则背包中物品价值就等于把前i-1个物品装入容量为j的背包中所取得的价值。显然,取二者中价值最大的作为把前i个物品装入容量为j的背包中的最优解。 比如01背包问题。 因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。测试数据: 10,3 3,4 4,5 5,6

回溯算法——0-1背包问题

实验目的是使学生消化理论知识,加深对讲授内容的理解,尤其是一些算法的实现及其应用,培养学生独立编程和调试程序的能力,使学生对算法的分析与设计有更深刻的认识。 上机实验一般应包括以下几个步骤: (1)、准备好上机所需的程序。手编程序应书写整齐,并经人工检查无误后才能上机。 (2)、上机输入和调试自己所编的程序。一人一组,独立上机调试,上机时出现的问题,最好独立解决。 (3)、上机结束后,整理出实验报告。实验报告应包括:题目、程序清单、运行结果、对运行情况所作的分析。 实验八 回溯算法——0-1背包问题 一、实验目的与要求 1. 熟悉0-1背包问题的回溯算法。 2. 掌握回溯算法。 二、实验内容 用回溯算法求解下列“0-1背包”问题: 给定n 种物品和一个背包。物品i 的重量是w i ,其价值为v i ,背包的容量为C 。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 三、实验步骤 1. 理解算法思想和问题要求; 2. 编程实现题目要求; 3. 上机输入和调试自己所编的程序; 4. 验证分析实验结果; 5. 整理出实验报告。 实验提示: (1)回溯算法求解0-1背包问题分析 回溯法通过系统地搜索一个问题的解空间来得到问题的解。为了实现回溯,首先需要针对所给问题,定义其解空间。这个解空间必须至少包含问题的一个解(可能是最优的)。 然后组织解空间。确定易于搜索的解空间结构。典型的组织方法是图或树。一旦定义了解空间的组织方法,即可按照深度优先策略从开始结点出发搜索解空间。并在搜索过程中利用约束函数在扩展结点处剪去不满足约束的子树,用目标函数剪去得不到最优解的子树,避免无效搜索。用回溯法解题的步骤: 1)针对所给问题定义问题的解空间; 2)确定易于搜索的解空间结构; 3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效的搜索。 0-1背包问题的数学描述为:n 个物品,物品i 的重量是w i 、其价值为v i ,其中0≤i ≤n-1,背包的容量为C 。用x i 表示物品i 被装入背包的情况,如果物品Pi 被选中,则x i =1;否则x i =0。求满足目标函数∑-=?=10max n i i i v x F 和约束方程C w x n i i i ≤?∑-=1 0的物品组合(x 0,x 1,x 2,…,x n-1) 与相应的总价值V 。

相关主题
文本预览
相关文档 最新文档