当前位置:文档之家› 焊接温度场和应力场的有限元模拟

焊接温度场和应力场的有限元模拟

焊接温度场和应力场的有限元模拟
焊接温度场和应力场的有限元模拟

维导热物体温度场的数值模拟

传热大作业 二维导热物体温度场的数值模拟(等温边界条件) 姓名: 班级: 学号:

墙角稳态导热数值模拟(等温条件) 一、物理问题 有一个用砖砌成的长方形截面的冷空气空道,其截面尺寸如下图所示,假设在垂直于纸面方向上冷空气及砖墙的温度变化很小,可以近似地予以忽略。在下列两种情况下试计算: (1)砖墙横截面上的温度分布; (2)垂直于纸面方向的每米长度上通过砖墙的导热量。外矩形长为,宽为;内矩形长为,宽为。 第一种情况:内外壁分别均匀地维持在0℃及30℃; 第二种情况:内外表面均为第三类边界条件,且已知: 外壁:30℃,h1=10W/m2·℃, 内壁:10℃,h2= 4 W/m2·℃ 砖墙的导热系数λ= W/m·℃ 由于对称性,仅研究1/4部分即可。 二、数学描写 对于二维稳态导热问题,描写物体温度分布的微分方程为拉普拉斯方程

02222=??+??y t x t 这是描写实验情景的控制方程。 三、方程离散 用一系列与坐标轴平行的网格线把求解区域划分成许多子区域,以网格线的交点作为确定温度值的空间位置,即节点。每一个节点都可以看成是以它为中心的一个小区域的代表。由于对称性,仅研究1/4部分即可。依照实验时得点划分网格: 建立节点物理量的代数方程 对于内部节点,由?x=?y ,有 )(411,1,,1,1,-+-++++=n m n m n m n m n m t t t t t 由于本实验为恒壁温,不涉及对流,故内角点,边界点代数方程与该式相同。

设立迭代初场,求解代数方程组。图中,除边界上各节点温度为已知且不变外,其余各节点均需建立类似3中的离散方程,构成一个封闭的代数方程组。以C t 000 为场的初始温度,代入方程组迭代,直至相邻两次内外传热值之差小于,认为已达到迭代收敛。 四、编程及结果 1) 源程序 #include <> #include <> int main() { int k=0,n=0; double t[16][12]={0},s[16][12]={0}; double epsilon=; double lambda=,error=0; double daore_in=0,daore_out=0,daore=0; FILE *fp; fp=fopen("data3","w"); for (int i=0;i<=15;i++) for (int j=0;j<=11;j++) { if ((i==0) || (j==0)) s[i][j]=30; if (i==5) if (j>=5 && j<=11) s[i][j]=0; if (j==5) if (i>=5 && i<=15) s[i][j]=0; } for (int i=0;i<=15;i++)

西安交通大学——温度场数值模拟(matlab)

温度场模拟matlab代码: clear,clc,clf L1=8;L2=8;N=9;M=9;% 边长为8cm的正方形划分为8*8的格子 T0=500;Tw=100; % 初始和稳态温度 a=0.05; % 导温系数 tmax=600;dt=0.2; % 时间限10min和时间步长0.2s dx=L1/(M-1);dy=L2/(N-1); M1=a*dt/(dx^2);M2=a*dt/(dy^2); T=T0*ones(M,N); T1=T0*ones(M,N); t=0;l=0;k=0; Tc=zeros(1,600);% 中心点温度,每一秒采集一个点 for i=1:9 for j=1:9 if(i==1|i==9|j==1|j==9) T(i,j)=Tw;% 边界点温度为100℃ else T(i,j)=T0; end end end if(2*M1+2*M2<=1) % 判断是否满足稳定性条件 while(t

end i=1:9;j=1:9; [x,y]=meshgrid(i); figure(1); subplot(1,2,1); mesh(x,y,T(i,j))% 画出10min 后的温度场 axis tight; xlabel('x','FontSize',14);ylabel('y','FontSize',14);zlabel('T/℃','FontSize',14) title('1min 后二维温度场模拟图','FontSize',18) subplot(1,2,2); [C,H]=contour(x,y,T(i,j)); clabel(C,H);axis square; xlabel('x','FontSize',14);ylabel('y','FontSize',14); title('1min 后模拟等温线图','FontSize',18) figure(2); xx=1:600; plot(xx,Tc,'k-','linewidth',2) xlabel('时间/s','FontSize',14);ylabel('温度/℃','FontSize',14);title('中心点的冷却曲线','FontSize',18) else disp('Error!') % 如果不满足稳定性条件,显示“Error !” end 实验结果: 时间/s 温度/℃ 中心点的冷却曲线

焊接温度场及残余应力测量方法总结

焊接温度场及残余应力测量方法总结 一、焊接温度场测量方法 多年来,基于物体的某些物理化学性质(例如,物体的几何尺寸、颜色、电导率、热电势和辐射强度等)与温度的关系,开发了形式多样的温度测量方法和装置,综合温度测量的现状,按测量方式可分为接触式和非接触式两大类。 1、接触式测温方法 接触式测温方法的感温原件直接置于被测温度场或介质中,不受到黑度、热物理性参数等性质的影响,具有测温精度高、使用方便等优点。但是对于瞬态脉动特性的对象,接触式测温方法难以作为真正的温度场测量手段。主要是由于接触法得到的是某个局部位置的信号,如果要得到整个温度场的信号,必须在温度空间内进行合理的布点,才可以根据相应的方法(如插值法等)获得对温度场的近似。 常用的接触式测温方法有,电偶测温法。热电偶是用两种不同的导体(或者半导体)组成的闭合回路,两端接点分别处于不同温度环境中,与当地达成热平衡时会产生热电势,标定后可用来测量温度。理想的热电偶测温方法,是将参比端 E,再查分度表反置于0℃的恒温槽中,通过测量2个不同导体A和B的热电动势ab 求出被测温度t。由于让参比端保持0℃有时比较困难,实际应用中常常需要参比端恒温处理或温度补偿。热电偶测温法有几个优点:精度比较高,因为热电偶直接与被测对象接触,不受中间介质的影响;测量范围大,通常可在-50~1600℃范围内连续测量;结构简单,使用方便。但是,热电偶测温法也有一定的缺点:每次测量的点数有限(最多几个点),难以反映整个焊接温度场的情况;此外,金属的电阻和熔池中液体的流动会阻碍热传导,从而给热电偶的测量带来一定的误差。 2、非接触式测温法 非接触测温法分为两大类:一类是通过测量介质的热力学性质参数,求解温度场(如声学法);另一类是通过高温介质的辐射特性,通过光学法来测量温度场。非接触式测温方法由于测温元件不与被测介质接触,不会破坏被测介质的温度场和流场;同时,感温元件传热惯性很小,因此可用于测量不稳定热力过程的温度。其测量上限不受材料性质的影响,可在焊接等高温场合应用。目前常用的测试方法主要有以下几种: 2.1、红外热像法 随着红外技术和计算技术的发展,红外热象法测定焊接温度场成为近代一种新技术。红外热成像测温技术为非接触式测温,响应快,不破坏被测物体的温度场,可以检测某些不能接触或禁止接触的目标,红外热像技术显示出其在测试物体温度场方面的优势。在实际的测量过程中,一般先采用热电偶标定被测物体的发射率,然后再用红外热像仪测定物体的温度场。

船舶钢结构焊接有限元模拟及应用

船舶钢结构焊接有限元模拟及应用 文章通过船体中典型的钢结构对接焊做有限元模拟分析,基于ANSYS有限元软件对焊接的全过程做数字模拟分析,对钢结构在焊接加热及冷却的过程中的温度、应力、应变的结果详细分析,通过数据的分析结果得到焊接后船舶钢结构的残余应力和焊接变形的规律,根据分析的成果对实际现场施工工艺进行指导。 标签:船舶钢结构;焊接应力应变;焊接后的残余应力和应变;有限元模拟分析 1 船舶钢结构焊接原理的概述 在船舶建造过程中,焊接广泛应用在船厂工区建造的各个环节中。从小组立到总段合拢的全过程都离不开钢结构的焊接,可以说焊接是船舶建造中最重要和最常用的工艺手段。对于船舶的钢结构而言,船体的底板、外板、肘板、舭龙骨等金属结构都是通过各种形式和方式的焊接组合到一起的。对于焊接而言,其是一个简单的物理现象,而焊接过程包括金属物体的加热、钢结构的受热融化熔、物体之间的传热传导、加热后和空气接触的热传递、冷却后的金属凝固凝固、由于焊接后在结构物内产生的残余应力和结构物受冷热不均影響产生的变形等。在焊接后的焊缝内及影响区域内部,有焊接的作用导致钢结构内部存在残余应力和焊接变形,对于焊接应力和变形如果处理不合理,将会影响船舶建造精度进而影响船舶的整体性能。为了避免和减少钢结构焊接的影响,在现代化计算机处理能力和有限元软件成熟发展的基础上,通过电子计算机借助有限元软件对焊接的全过程进行模拟。通过有限元软件,对需要焊接的钢结构、加热的热源、焊接热源移动的步骤,以及焊接后模拟大气环境下的结构物冷却,和最终的残余应力和焊接形变。从而找到不同焊接顺序及工况下的应力应变,实现的焊接应力应变的消减和控制。 2 焊机理论基础 利用有ANSYS软件对钢结构焊接进行模拟,即在模拟焊接的整个过程,以及在焊接时由于热的传导而产生应力和应变的过程。对于模拟计算需要的如下的基础理论: 2.1 焊接温度场 其中,ρ=结构物的材料密度; T=焊接产生温度场的分布函数; c=结构物的材料比热; Q=焊接内热源的强度;

第三讲 焊接温度场

第三讲焊接温度场 教学目的:理解温度场的概念及表达方式;等温线的概念及特征。了解温度梯度的概念。掌握影响温度场的因素。教学重点:温度场、等温线 教学难点:温度场、等温线 教学方法:讲述法 课时分配:4课时 教学内容: 热量的传递有传导、对流、辐射三种基本方式。在熔焊过程中,三种方式都存在。其中热量传递到焊件主要是通过对流与辐射;母材与焊丝获得热量后其内部的传导则以传导为主。 一、温度场的概念及表达方式 1、焊接温度场:指某一瞬时焊件上各点的温度分布。具体说就是焊件上各点温度分布情况。 焊接温度场是某一瞬时的温度场。因为焊件上的温度不仅不均匀,而且因热源的运动还将使各点的温度随时间而变化。 在焊接进行过程中,焊件上温度分布的规律:热源中心处温度最高,向焊件边缘温度逐渐下降。 2、等温线(面):温度场中相同温度的各点所连成的线(或面)。 性质:不同等温线(面)绝对不会相交。

等温线的意义和应用: (1)固定加热厚大工件等温线的情况(如图4-2) 工件上各点的温度仅仅与其到热源的距离有关。等温线的现状是以热源中心为圆心的半球面。 在xoy 平面的等温线则为同心圆, 温度越低,半径越大。 (2)热源运动时等温线的情况 焊接时,由于热源要沿着一定的 方向运动,热源前后温度分布不再对 称,等温线的形状将发生变化。 原因:热源前面是未经加热的冷金属,温度下降很快,而热源后面则是刚焊完的焊缝,温差较小。 结果:热源前面的等温线之间距离缩短,后面等温线之间的距离加长,而在热源的两侧分布仍然是对称的。 讲述图4-3 (教材107页) 3、温度梯度 等温线可以表示温度在空间的变化率, 这个变化率与温差成正比,与等温线之间 的距离成反比,其比值叫做温度梯度。 如图; G =T1-T2/Δs 当T1>T2,即温度上升时,温度梯度为正;反之为负。

平板对接温度场及应力-应变场模拟

-1- 平板对接温度场及应力-应变场模拟 王龙 北京工业大学机械工程专业,北京(100022) E-mail: xiaobei123@https://www.doczj.com/doc/3c9944590.html, 摘要:本文是通过使用计算机模拟技术,用ANSYS 软件模拟平板对接焊接工艺的温度场, 并用间接求解的方法计算出焊接残余应力场。作者对比了面部加载高斯热源和内部热生成这 两种方法,总结两种热源的优缺点,并将两者结合起来作为一种复合热源。复合热源的计算 结果与传统的分析结果和理论相吻合。 关键词:计算机模拟;温度场;残余应力场;复合热源 1 引言 焊接是一个涉及到电弧物理、传热、冶金和力学的复杂过程,由于高度集中的瞬时热输入,在焊接过程中和焊后将产生相当大的残余应力(焊接残余应力)和变形(焊接残余变形、焊接收缩、焊接翘曲),而这是影响焊接结构质量和生产率的主要问题之一,焊接变形的存在不仅影响焊接结构的制造过程,而且还影响焊接结构的使用性能。焊接应力和变形不但可能引起热裂纹、冷裂纹、脆性断裂等工艺缺陷,而且在一定条件下将影响结构的承载能力,如强度,刚度和受压稳定性。除此以外还将影响到结构的加工精度和尺寸稳定性。因此,在设计和施工时充分考虑焊接应力和变形这一特点是十分重要的[1][2]。随着大规模工业生产和高新技术的发展,焊接结构正朝着大型化、复杂化、高容量、高参数方向发展,其复杂程度越大,工作条件越苛刻,造成焊接事故也越频繁,危害性也越大,所以提高和保证焊接质量已经成为当前焊接中的关键问题。 焊接过程中局部集中的热输入,使焊件形成非常不均匀、不稳定温度场。温度场不仅直 接通过热应变,而且还间接通过显微组织变化引起相变应变决定焊接残余应力。因此,温度场的分析是焊接应力和变形分析前提[3]。本文就是利用大型通用的有限元软件ANSYS 对焊接温度场、应力场和变形进行了计算机的三维实时动态数值模拟,通过先计算焊接温度场,再把温度场结果作为应力和变形计算时的载荷,从而得到任何时刻、任何点的焊接应力、变形的具体计算数值,这无论是对焊接设计还是工艺都很有价值。 2 平板对接温度场模拟 2.1 材料物理性能参数以及单元类型的选择 由于是探讨性的模拟,所以模型假设为100mm×50mm×6mm,电弧中心沿Z 方向移动。 并用以下命令流依次定义导热系数,比热容以及密度用于进行温度场模拟。 mp,kxx,1,66.6 mp,c,1,460 mp,dens,1,7800 单元类型的选择原则为 1.必须具备单元生死功能 2.具有耦合功能,可以进行热-应力耦 合分析3.必须为三维单元4.焊缝处单元可以进行规则划分。根据以上原则,选用ANSYS 单元库中的热分析单元,二维模型用四节点四边形单元PLANE55,三维模型用八节点六面

焊接过程的数值模拟

《焊接过程的数值模拟》课程简介 课程编号:02044906 课程名称:焊接过程的数值模拟/ Numerical simulation of welding process 学分:2 学时:32 (课内实验(践):上机:16 课外实践:) 适用专业:焊接技术与工程专业 建议修读学期:7 开课单位:材料科学与工程学院材料加工工程系 课程负责人:卢云 先修课程:焊接冶金学、计算机基础、VB语言及程序设计 考核方式与成绩评定标准:采用平时成绩+上机考试成绩相结合的方式,平时成绩占课程考核成绩的50%,平时成绩考核采用作业、上机实验和报告相结合的方式;上机考试成绩占课程考核成绩的50%。 教材与主要参考书目: 主要参考书目:1、焊接数值模拟技术及其应用,汪建华,上海交通大学出版社,2003 2、计算材料学,D.罗伯编著,项金钟、吴兴惠译,化学工业出版社,2002 内容概述: 本课程初步介绍焊接过程中数值模拟技术的一些基本原理,基本方法,研究进展和研究内容。初步探讨使用有限元软件作为平台实现焊接的数值模拟过程。重点介绍焊接热传导在有限元程序中的使用及应用。通过本课程的学习,使学生了解焊接数值模拟的基本方法,学会综合运用其它方面的知识来实现简单焊接过程的数值模拟,并能够对模拟的结果进行有效的分析。初步具备分析和解决焊接工程问题的能力。 This course introduces some basic principles, methods, research progress and contents of the numerical simulation technology in the welding process. The realization of numerical Simulation of welding based on finite element software platform is also discussed briefly. The application of welding heat conduction in the finite element program is emphasized on. Through this course, the students should understand the basic methods of numerical simulation of welding, learn the integrated use of the knowledge of other aspects to achieve a simple welding numerical simulation, and can effectively analyze the simulation results. This course is to present the practical analysis and solve for welding engineering problems.

二维导热物体温度场的数值模拟

金属凝固过程计算机模拟题目:二维导热物体温度场的数值模拟 Solidworks十字接头的传热分析 作者:张杰 学号:S2******* 学院:北京有色金属研究总院 专业:材料科学与工程 成绩: 2015 年12 月

二维导热物体温度场的数值模拟 图1 二维均质物体的网格划分 用有限差分法模拟二维导热物体的温度场,首先将二维物体划分为如图1所示的网格,x ?与y ?可以是不变的常量,即等步长,也可以是变量(即在区域内的不同处是不同的),即变步长?如果区域内各点处的温度梯度相差很大,则在温度变化剧烈处,网格布得密些,在温度变化不剧烈处,网格布得疏些?至于网格多少,步长取多少为宜,要根据计算精度与计算工作量等因素而定? 在有限的区域内,将二维不稳定导热方程式应用于节点 ,)i j (可写成: ,2222 ,i j P P p i j T T T C x y ρλτ?????=+ ?????? ,1 , ,()i j P P P i j i j T T T οτττ+-???= +? ????? () , 1 , , 1 ,22 2()i j P P P P i j i j i j T T T T x x x ο+--+??? =+? ????? () , ,1 , ,122 2()i j P P P P i j i j i j T T T T y y y ο+--+???=+? ?????τ?、x ?、y ? 当τ?、x ?、y ?较小时,忽略()οτ?、2()x ο?、2 ()y ο?项。当x y ?=?时, 即x 、y 方向网格划分步长相等?最后得到节点 ,)i j (的差分方程: ()1 , ,0 1 , 1 , ,1 ,1 ,4P P P P P P P i j i j i j i j i j i j i j T T F T T T T T ++-+-=++++- 式中:() 02 p F C x λτ ρ?= ??

建筑工程钢结构焊接过程模拟与焊接变形、焊接ansys应力有限元分析(详细图解分析)

焊接过程模拟与焊接变形、焊接Ansys应力有限元分析 1.1 焊接变形与焊接应力 焊接时,加热和冷却循环总会导致一定程度的变形,焊接变形对尺寸稳定性以及结构力学性能都有很大的影响,控制焊接变形在焊接加工中是一个关键的任务。 在钢结构焊接中,焊接工艺会使构件温度场产生不均匀变化,从而在构件中产生复杂的残余应力分布。残余应力是一种自相平衡的力系,当构件承受荷载时,如受拉、受压等,荷载引起的应力将与截面残余应力相叠加,从而使构件某些部位提前达到屈服强度,并发生塑性变形,故会严重降低构件的刚度和稳定性以及结构疲劳强度。 对构件进行焊接,在焊件上产生局部高温的不均匀温度场,焊接中心处温度可达1600℃,高温区的钢材会发生较大程度的膨胀伸长,但受到相邻钢材的约束,从而在焊件内引起较高的温度应力,并在焊接过程中,随时间和温度而不断变化,称其为焊接应力。焊接应力较高的部位,甚至将达到钢材的屈服强度而发生塑性变形,因而钢材冷却后将有残存于焊件内的应力,称为焊接残余应力。并且在冷却过程中,钢材由于不能自由收缩,而受到拉伸,于是焊件中出现了一个与焊件加热方向大致相反的内应力场。 1.2 Ansys有限元焊接分析 为通过对焊接过程的三维有限元模拟分析以及焊接后构件变形及残余应力分布分析,为评估焊接对焊件的影响提供更加合理、有效、可靠的分析数据,并为焊接工艺提供一定的指导,为采用的焊接过程提供一定的分析依据,采用大型有限元计算软件Ansys作为分析工具对焊接过程与焊件的变形与残余应力进行了分析。 ANSYS有2种方式来考虑热分析与力学分析之间的耦合,即直接耦合和间接耦合。 间接耦合法的处理思路为先进行温度场的模拟,然后将求出的结点温度作为体载荷施加在结构中,计算焊接残余应力与变形。即:

焊接温度场与应力场的研究历史与发展

科技信息2008年第3期 SCIENCE&TECHNOLOGYINFORMATION科焊接温度场的准确计算或测量,是焊接冶金分析和焊接应力、应 变热弹塑性动态分析的前提。关于焊接热过程的分析,苏联科学院的 助Rykalin院士对焊接过程传热问题进行了系统的研究,建立了焊接 传热学的理论基础。为了求热传导微分方程的解,他把焊接热源简化 为点、线、面三种形式的理想热源,且不考虑材料热物理性质随温度的 变化以及有限尺寸对解的影响。实际上焊接过程中除了包含由于温度 变化和高温引起的材料热物理性能和变化而导致传热过程严重的非 线性外,还涉及到金属的熔化、 凝固以及液固相传热等复杂现象,因此是非常复杂的。由于这些假定不符合焊接的实际情况,因此所得到的 解与实际测定有一定的偏差,尤其是在焊接熔池附近的区域,误差很 大,而这里又恰恰是研究者最为关心的部位。 Adames、 木原博和稻埂道夫等人根据热传导微分方程,以大量的实验为基础,积累了不同材料、不同厚度、不同焊接线能量以及不同预 热温度等测量数据,然后从传热理论的有关规律出发,经过整理、 归纳和验证,最后建立了不同情况下的焊接传热公式。这种方法比前者采 用数学解析法要准确,但实验的工作量很大,有确定的应用条件和范 围,且可靠性取决于测试手段的精度。 1966年Wilson和Nickell首次把有限元法用于固体热传导的分 析计算中。70年代,有限元法才逐渐在焊接温度场的分析计算中使 用。1975年,加拿大的Poley和Hibbert在发表的文章中,介绍了利用 有限元法研究焊接温度场的工作,编制了可以分析非矩形截面以及常 见的单层、双层U,V型坡口的焊接温度场计算程序,证实了有限元法 研究焊接温度场的可行性。之后国内外众多学者进行了这方面的研究 工作。Krutz在1976年的博士论文中专门研究了利用焊接温度场预测 接头强度问题,其中分析了非线性温度场,在二维分析模型中,假定电 弧运动速度比材料热扩散率高,因此传到电弧前面的热量输出量相对 比较小,从而忽略了在电弧运动方向的传热,这实际上与Rykalin高速 移动热源公式的处理方法是一致的。 西安交通大学唐慕尧等人于1981年编制了有限元热传导分析程 序,进行了薄板焊接准稳态温度场的线性计算,其结果与实验值吻合。 随后上海交通大学的陈楚等人对非线性的热传导问题进行了有限元 分析,建立了焊接温度场的计算模型,编制了相应的程序,程序中考虑 了材料热物理性能参数随温度的变化以及表面散热的情况,能进行固 定热源或移动热源、薄板或厚板、准稳态或非准稳态二维温度场的有 限元分析。并在脉冲TIG焊接温度场以及局部干法水下焊接温度场等 方面进行了实例分析。对于三维问题,国内外也是近十年来才刚开始 研究。其原因是焊接过程温度梯度很大,在空间域内,大的温度梯度导 致严重材料非线性,产生求解过程的收敛困难的和解的不稳定性;在 时间域内,大的温度梯度决定了必须在瞬态分析时在时间域内的离散 度加大,导致求解时间步的增加。国内上海交通大学汪建华等人和日 本大阪大学合作对三维焊接温度场问题进行了一系列的有限元研究, 探究了焊接温度场的特点和提高精度的若千途径,并对几个实际焊接 问题进行了三维焊接热传导的有限元分析。蔡洪能等人建立了运动电 弧作用下的表面双椭圆分布模型基础上研制了三维瞬态非线性热传 导问题的有限元程序,程序中利用分析节点热烩的方法对低碳钢(A3 钢)板的焊接温度场进行了计算,计算结果和实验值吻合得很好。 焊接过程中应力应变的研究工作始于二十世纪三十年代,但是研 究工作只能是定性的和实测性的。五十年代,前苏联学者奥凯尔布洛 母等人在考虑材料机械性能与温度之间的相互依赖关系的情况下,用 图解的形式分析了焊接过程的热弹塑性性质及其动态过程,并分析了 一维条件下对焊接应力应变的影响。六十年代,由于计算机的推广应用,对焊接应力和变形的数值模拟才发展起来。1961年,Tall等人首先利用计算机对焊接热应力进行计算,编制了一套沿板条中线进行堆焊的热应力一维分析程序。1971年,Iwaki编制了可用于分析板平面堆焊热应力的二维有限元程序,后来Muraki对它作了重大改进,扩大了这个二维程序的功能,使之可用于对接焊和平板堆焊过程的热应力分析。日本的上田幸雄等人以有限元为基础,应用材料性能与温度相关的热弹塑性理论,导出了分析焊接热应力所需的各表达式。此后美国的H.D.Hibbert,E.F.Ryblicki,Y.Iwamuk以及美国MIT的Masubuchi等在焊接残余应力和变形的预测和控制等方面进行了许多研究工作。Anderson分析了平板埋弧焊时的热应力,并考虑了相变的影响。进入二十世纪八十年代,有限元技术日益成熟,人们对焊接应力和变形过程及残余应力的分布规律的认识不断深入。1985年Josefson等人通过大量的数值计算,进一步提高了预测焊缝周围残余应力分布的精度,同时考虑定位焊对残余应力分布的影响。Josefson对薄壁管件焊接残余应力以及回火去应力过程的应力分布情况进行了研究,并探讨了一些调整焊接残余应力的措施。进入九十年代,随着计算机性能的进一步提高,对焊接应力和变形的研究更加深入。1991年Mahin等人在研究中考虑了耦合的热应力问题,其中热源分布采用实验矫正的方法进行处理,同时考虑了熔池对流、辐射及传热对温度分布的影响,其残余应力的计算结果与采用中子衍射测得的结果吻合很好。T.Inoue等研究了伴有相变的温度变化过程中,温度、相变、热应力三者之间的耦合效应,并提出了在考虑耦合效应的条件下本构方程的一般形式。1992年加拿大的Chen等人对厚板表面重熔时的应力和变形进行了有限元计算,其中考虑了熔化潜热及凝固过程中固液相转变过渡区应力的变化,其残余应力计算值和实验值相当吻合。美国的Shim等人利用平板应变热弹塑性有限元计算了厚板多层焊的残余应力,并对不同坡口形状的焊接残余应力进行了比较,揭示了厚板残余应力分布的规律。1993年,加拿大的Chidiac等人研究了厚板焊接过程的应力和变形以及残余应力的分布,其中涉及了三维加热模型,并考虑了显微组织的变化和晶体生长等情况。另外,与焊接温度场的有限元分析类似,焊接热弹塑性有限元分析过去大都局限于二维、三维问题的研究是二十世纪九十年代才开始的。国内对焊接残余应力和变形的数值分析起步于二十世纪七十年代,首先是西安交通大学的楼志文等人把数值分析应用到焊接温度和热弹塑性应力场的分析中,编制了热弹塑性有限元分析程序,并对两个较简单的焊接问题进行了分析。到二十世纪八十年代,上海交通大学焊接教研室在焊接热传导的数值分析方面做了许多工作,特别是对非线性瞬态温度场进行了有限元分析,提出了求解非线性热传导方程的变步长外推法,并编制了二维热弹塑性有限元分析程序,计算了平板对接焊时应力和变形的发展过程以及残余应力分布。关桥等人编制了用于进行平板轴对称焊接应力和变形分析的有限差分和有限元程序,对薄板氢弧点状热源的应力和变形进行了计算,该分析仅限于点状热源。孟繁森等人利用迭代解法研制了计算焊接过程应力应变程序和图形显示程序,分析了板条边沿堆焊时的应力和变形的发展过程。陈楚等人利用平截面的假设分析了厚板焊接时的瞬态拉应力以及厚板补焊时的残余应力。刘敏等人研制了三角差分温度场和轴对称热弹塑性有限元程序,计算了1Cr18Ni9Ti和20号钢圆管对接多层焊接时的应力和变形。汪建华把三维问题转化为二维问题利用平面变形热弹塑性有限元法对厚板的应力问题进行了分析。[责任编辑:张艳芳] 焊接温度场与应力场的研究历史与发展 栾尚清左玉营丁国峰 (济南技术学院山东济南250000) 【 摘要】本文主要讲述了有关焊接温度场与应力场的研究历史与发展。【 关键词】焊接温度场;应力场;历史;发展thehistoryanddevelopmentofthetemperaturefieldandresidualstressfield Luanshangqing,Zuoyuying,Dingguofeng (JinanTtechnicalInstitute,250000) 【Abstract】Thispaperdescribesthehistoryanddevelopmentofthetemperaturefieldandresidualstressfield. 【Keywords】weldingtemperaturefield,weldingresidualstress,history,development ○职校论坛○206

基于ANSYS软件焊接温度场应力场模拟研究

本文由geyongyahoo贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 第 2 卷第 5 期 0 Vl2 o5 o .0N . [ 文章编号] 0 3-4 8 (0 5 1-0 10 10 6 4 2 0 )00 8-4 湖 北 工 业 大 学 学 报 Junl fH biU ies yo eh ooy or a o ue nvr t fTc nlg i 20 年1 月 05 0 Ot2 0 c .0 5 ================================================== 基于 AN d 软件焊接温度场应力场模拟研究 S S 李冬林 ( 湖北工业大学机械工程学院,湖北武汉 4 0 6 ) 308 [ 摘要]阐述了如何运用有限元软件 AN d 对焊接温度场、应力场进行数值模拟计算, 出在计算过程中指SS 要注意的环节, 并对平板堆焊问题进行实例计算 . 总结出模拟计算中的难点问题和未来的研究发展方向 . [ 关键词]温度场;应力场;AN d ;数值模拟 SS [ 中图分类号]T 4 G [ 文献标识码] A : 焊接温度场的准确计算是焊接质量控制、接焊冶金和力学分析的前提, 对焊接过程应力场的动而态变化及焊后残余应力和变形进行准确预见, 减是 . 通过实验的方法来获得焊接过程的温度和应力值虽然比较可靠, 但往往需要花费很长的时间和大量的经费 . 运用有限元软件在计算机上进行焊接过程的数值模拟, 可以在较短的时间内获得不同参数条件下的各项数据 . 因此, 计算机模拟技术有其独特的优点. 笔者在查阅大量文献并反复试验的基础上, 总结出了一套如何采用有限元软件 AN d 对焊接温 S S 度场、应力场的动态变化过程进行数值模拟的方法, 并提出了模拟计算中的难点问题和未来重点的研究方向 . 少焊接裂纹和提高接头强度与性能的重要手段 [] 1 需给定随温度变化的各物理性能参数值 . 般高温一时的物理性能参数比较缺乏, 它对计算结果有较但大的影响, 可采取实验和插值等方法获得 . 焊接热应力的计算属于热弹塑性问题, 算时应指定塑性分计析选项为双线性等向强化, 定义随温度变化的屈并服应力和切变模量值 . 焊接过程中存在两种相变潜热: 态相变潜热固和熔化潜热 . 由于前者一般比后者小得多, 通常可以忽略 . 关于熔化潜热的处理, S S 中在定义材料 AN d 属性时通过给定热焓的值加以考虑 . 依 1. 2 建模和划分网格建模时, 据焊件的形 1. 状、尺寸、载荷的形式等综合考虑几何模型的形状 . 对于对称、反对称或轴对称焊件结构, 尽量运用其对称性来简化模型 . 在焊接过程中, 由于高度集中的热源输入, 必须将焊缝处的网格划分得极为细密, 单元网格最好故在 2mm 以下, 以提高计算精度 . 远离焊缝的地方网格划分得可以稀疏些, 以减少整个模型的节点数, 进而

Ansys有限元分析温度场模拟指导书

实验名称:温度场有限元分析 一、实验目的 1. 掌握Ansys分析温度场方法 2. 掌握温度场几何模型 二、问题描述 井式炉炉壁材料由三层组成,最外一层为膨胀珍珠岩,中间为硅藻土砖构成,最里层为轻质耐火黏土砖,井式炉可简化为圆筒,筒内为高温炉气,筒外为室温空气,求内外壁温度及温度分布。井式炉炉壁体材料的各项参数见表1。 表1 井式炉炉壁材料的各项参数 三、分析过程 1. 启动ANSYS,定义标题。单击Utility Menu→File→Change Title菜单,定义分析标题为“Steady-state thermal analysis of submarine” 2.定义单位制。在命令流窗口中输入“/UNITS, SI”,并按Enter 键

3. 定义二维热单元。单击Main Menu→Preprocessor→Element Type→Add/Edit/Delete 菜单,选择Quad 4node 55定义二维热单元PLANE55 4.定义材料参数。单击Main Menu→Preprocessor→Material Props→Material Models菜单

5. 在右侧列表框中依次单击Thermal→Conductivity→Isotropic,在KXX文本框中输入膨胀珍珠岩的导热系数0.04,单击OK。 6. 重复步骤4和5分别定义硅藻土砖和轻质耐火黏土砖的导热系数为0.159和0.08,点击Material新建Material Model菜单。 7.建立模型。单击Main Menu→Preprocessor→Modeling→Create→Areas→Circle→By Dimensions菜单。在RAD1文本框中输入0.86,在RAD2文本框中输入0.86-0.065,在THERA1文本框中输入-3,在THERA2文本框中输入3,单击APPL Y按钮。

T型接头焊接温度场ANSYS仿真分析

焊缝凝固过程的温度场分析 初始条件:焊接件的初始温度为25度,焊缝温度为3000; 对流边界条件:表面传热系数为5e-4,比热容0.2,材料密度0.28,空气温度为25度;求2000s后整个焊接件的温度分布 1、选择网格单元类型 Preprocessor>Element Type>Add/Edit/Delete>Add>Thermal Mass>Solid>Brick 8 node 70 图1-1 定义单元类型 2、设置钢板及焊缝材料属性 Preprocessor>Material Props>Material Models>Material Model Number 1>Thermal a.设置焊件材料密度、热传导系数、比热容,设置焊缝材料密度、热传导系数、比热容及与温度相关的涵参数,如下图所示。 b.设置左右两道焊缝的焓参数,焓参数随温度变化曲线如图2-5所示。

图2-1 钢板热导率设置 图2-2 设置钢板比热容 图2-3 设置钢板密度

图2-4 焊缝焓参数设置 图2-5 左右焊缝焓参数 3、建立几何模型 Preprocessor>Modeling>Create>V olumes>Block>By Dimensions 建立焊件几何模型。 Preprocessor>Modeling>Create>V olumes>Cylinder>By Dimensions 建立焊缝几何模型。建模过程如图3-1所示。

图3-1 几何模型建模过程1 图3-2 几何模型建模过程2 通过Reflect建立完整的几何模型,之后运用布尔运算中glue使整个模型成为一个

电磁场有限元分析

水轮发电机单通风沟三维简化模型温升计算 一、问题分析 近年来,随着水轮发电机单机容量的不断增加,在发电机进行能量转换过程中产生的损耗不断增大,使其运行的温升问题日趋严峻。根据上述情况,运用有限元分析方法,建立发电机单通风沟三维简化模型进行发电机温升计算。 二、电机单通风沟有限元分析 1.1 水轮发电机单通风沟三维简化模型建立 根据实际水轮发电机结构和通风沟特点,并考虑可接受误差,进行适当简化,以便于简化有限元分析计算得到以下模型,如图1所示。 图1 发电机单通风沟简化物理模型 由图1所示:水轮发电机单风沟简化物理模型三维求解域在轴向上包含发电机一个通风沟以及通风沟两侧各半个轴向铁心段;幅向上包含发电机定子三个槽、转子两个槽。 根据有限元分析特点,对发电机单通风沟简化物理模型进行网格剖分,得到发电机单通风沟简化物理模型剖分图如图2所示。

图2 电机单通风沟简化物理模型网格剖分 由于物理模型较小,可以适当加密剖分进而提高计算精度,故采用楔形和六面体的混合网格进行剖分,总网格数共48万,节点数为30万。利用有限体积法,将流体场和温度场进行强耦合求解,从而 得到发电机的详细温升分布情况。 1.2 边界条件 在图1中,求解域内的面 S为径向通风沟的进风口,沿径向与面 1 S对应的面2S为径向通风沟的出风口。由此,根据所研究发电机的实1 际运行工况,可以给定如下发电机单风沟物理模型的边界条件:1)冷却空气的初始基值绝对温度为0K; 2)径向通风沟入口 S风速为5.1m/s的速度入口边界,通风沟出 1 口 S为自由流动边界; 2 3)求解域其它外边界均为绝热面,发电机内部流体与固体的接 触面均为无滑移边界面。

激光焊接温度场数值模拟讲解

第24卷第2期 2OO 焊接学报 v01.24April No.220O3 3年4月TRANSAC’n0NS0FTHECHINA碍砸LDINGINSnTUrnON 激光焊接温度场数值模拟 薛忠明,顾 兰, 张彦华 (北京航空航天大学机械工程及自动化学院。北京100083) 摘要:深入分析了激光焊接小孔传热模型的特点,在此基础上选取合适的热源形式,研究了移动线热源和高斯分布热源作用下,准稳态与瞬态激光焊接温度场。利用MAT-LAB软件及ANsYS有限元分析程序对激光焊接温度场分别进行了计算及模拟,并且将两种分析结果进行了比较。最后还将有限元的模拟值与实测值进行了对比分析,进一步验证了小孔模型与高斯热源在激光焊接温度场模拟中的适用性。关键词:激光焊接;温度场;有限元;ANsYs 中围分类号:1嘶6 O 文献标识码:A文章编号:0253—360x(2003)01—79—04薛忠明 序言 实测值进行了对比分析,验证了小孔模型与高斯热源在激光焊接温度场模拟中的适用性(板厚≤4mm)。 激光焊接是利用高能量密度的激光束作为热源的一种高效精密的焊接方法。激光焊接具有高能量密度、可聚焦、深穿透、高效率、高精度、适应性强等优点,广泛应用于航空航天、汽车、微电子、轻工业、医疗及核工业等要求高精度和高质量的焊接领域。 1 激光焊接中的小孔传热模型 当激光功率密度达到106W,/cm2时,激光能量 由于激光焊接是一巾陕速而不均匀的热循环过 程,焊缝附近出现很大的温度梯度,因此在焊后的结构中也会出现不同程度的残余应力和变形,这些都成为影响焊接结构质量和使用性能的重要因素。准确地认

识焊接热过程,对焊接结构力学分析、显微组织分析以及最终的焊接质量控制具有重要意义。 20世纪70年代以来,国外很多学者对激光焊接机理进行了深入的研究,提出了蒸汽小孔模型。考虑熔池形状以及熔池中金属的流动和热流分布,考虑电子密度、离子化程度、等离子体对入射激光的吸收系数和激光焊接工艺参数对熔深的影响,建立了不同的能量吸收模型”。。这些研究偏向于应用物理和量子力学的研究领域,在实际工程分析中存在一定的局限性。在国内,有关激光焊接机理以及激光焊接温度场与力学场的数值模拟方面的研究正在引起重视。 作者深入分析了激光焊接小孔传热模型,在此基础上选取合适的热源形式,研究了移动线热源和高斯分布热源作用下,准稳态与瞬态激光焊接温度场。利用MAllAB软件及ANSYs有限元程序对激光焊接温度场分别进行了计算及模拟,并且将两种分析结果进行了比较。最后还将有限元的模拟值与 收稿日期:2002—07—12 向工件输入的速率远大于传导、对流、辐射散热的速率,材料表面产生汽化而形成小孔,激光能量是通过小孔而进行转换和传递的。 激光焊接中熔池与小孔的几何特征如图l所示。焊件表面被加热、熔化、蒸发,在蒸汽压力的作用下形成小孔,当小孔产生的蒸汽压力与熔池中液体金属的静应力达到平衡时,小孔是稳定存在的‘“。 固1Hg.1 激光焊接熔池与小孔几何特征囤 G岫etr萱cf嘲ur嚣0fmolten andkeyh0Iein pool J∞erweⅫ咂g 激光焊接中,小孔与工件作相对运动,运动过程 中的动量扩散和热量扩散的相对程度由佩克莱特准 万方数据 80

ANSYS大型变压温度场的有限元分析

ANSYS大型变压温度场的有限元分析 杨涛 华北科技学院机电工程系材控B112班 摘要:变压器是一种静止的电能转换装置,它利用电磁感应原理,根据需要可以将一种交流电压和电流等级转变成同频率的另一种电压和电流等级。它对电能的经济传输、灵活分配和安全使用具有重要的意义;同时,它在电气的测试、控制和特殊用电设备上也有广泛的应用。如何开发合适的温度场计算技术,准确地计算变压器在各种运行状态下内部线圈、结构件及铁芯等部位的温度,控制内部热点温度不超过其内部绝缘材料的许用温度,从而保证变压器的热寿命,提高变压器的安全可靠性,是企业急需解决的问题。准确计算出变压器的平均温升和最热点温升,并合理地控制其分布,以满足标准要求,是保证变压器安全、稳定和高校运行的关键。 关键字:温度场;变压器;铁芯;有限元;ANSYS 1引言 变压器是电力网中的主要设备,其总容量达到发电设备总容量的5~6倍。电力变压器的技术性能、经济指标直接影响着电力系统的安全性、可靠性和经济性。随着科学技术的发展、生产技术的进步以及新型电工材料的开发应用,变压器的各项性能指标不断刷新,单机容量越来越大,变压器中的漏磁场也随之增大,引起了人们的关注。在额定运行情况下,漏磁场的增强引起的变压器附加损耗的增加将直接影响变压器的运行效率和产品的竞争力。严重的是,由于漏磁场在一定范围内的金属结构件中产生的涡流损耗不均匀,有可能造成这些结构件的局部过热现象。变压器的容量越大,漏磁场就越强,从而使稳态漏磁场引起的各种附加损耗增加,如设计不当它将造成变压器的局部过热,使变压器的热性能变坏,最终导致绝缘材料的热老化与击穿。 在电力系统发生短路时,暂态短路电流产生的漏磁场还可能产生巨大的机械力,对其绝缘和机械结构造成致命威胁。为了避免此种事故发生,必须对漏磁场进行全面的分析。为此,对变压器运行的效率、寿命和可靠性提出了越来越高的要求。 变压器在220℃温度下, 保持长期稳定性,在350℃温度下, 可承受短期运行,在很广的温度和湿度范围内, 保持性能稳定,在250℃温度下, 不会熔融,流动和助燃,在750℃温度下, 不会释放有毒或腐蚀性气体。为了减少过高温度对变压器绝缘材料的影响,使变压器实现预期的使用寿命,保证变压器安全可靠的运行,变压器各部分都有各自所规定的温度极限,现主要对变压器的铁芯和绕组进行有限元分析。 2变压器 2.1变压器的基本原理 由于变压器是利用电磁感应原理工作的,因此它主要由铁心和套在铁心上的两个(或两个以上)互相绝缘的线圈所组成,线圈之间有磁的耦合,但没有电的联系(如图1所示)。

相关主题
文本预览
相关文档 最新文档