当前位置:文档之家› 电力电子技术重点王兆安第五版

电力电子技术重点王兆安第五版

电力电子技术重点王兆安第五版
电力电子技术重点王兆安第五版

第1章绪论

1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。

2 电力变换的种类

(1)交流变直流AC-DC:整流

(2)直流变交流DC-AC:逆变

(3)直流变直流DC-DC:一般通过直流斩波电路实现

(4)交流变交流AC-AC:一般称作交流电力控制

3 电力电子技术分类:分为电力电子器件制造技术和变流技术。

第2章电力电子器件

1 电力电子器件与主电路的关系

(1)主电路:指能够直接承担电能变换或控制任务的电路。

(2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件。

2 电力电子器件一般都工作于开关状态,以减小本身损耗。

3 电力电子系统基本组成与工作原理(1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。

(2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。

(3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。

(4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。

4 电力电子器件的分类

根据控制信号所控制的程度分类(1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。如SCR晶闸管。

(2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。如GTO、GTR、MOSFET和IGBT。(3)不可控器件:不能用控制信号来控制其通断的电力电子器件。如电力二极管。

根据驱动信号的性质分类

(1)电流型器件:通过从控制端注入或抽出电流的方式来实现导通或关断的电

力电子器件。如SCR、GTO、GTR。

(2)电压型器件:通过在控制端和公共端之间施加一定电压信号的方式来实现导通或关断的电力电子器件。如MOSFET、IGBT。

根据器件内部载流子参与导电的情况分

(1)单极型器件:内部由一种载流子参与导电的器件。如MOSFET。

(2)双极型器件:由电子和空穴两种载流子参数导电的器件。如SCR、GTO、GTR。(3)复合型器件:有单极型器件和双极型器件集成混合而成的器件。如IGBT。

5 半控型器件—晶闸管SCR

将器件N1、P2半导体取倾斜截面,则晶闸管变成V1-PNP和V2-NPN两个晶体管。

晶闸管的导通工作原理

(1)当AK间加正向电压

A

E,晶闸管不能

导通,主要是中间存在反向PN结。

(2)当GK间加正向电压

G

E,NPN晶体管

基极存在驱动电流

G

I,NPN晶体管导通,

产生集电极电流

2c I

(3)集电极电流

2c I

构成PNP的基极驱动电流,PNP导通,进一步放大产生PNP集电极电流

1c I

(4)

1c I

G

I构成NPN的驱动电流,继续上述过程,形成强烈的负反馈,这样NPN 和PNP两个晶体管完全饱和,晶闸管导通。

2.3.1.4.3 晶闸管是半控型器件的原因

(1)晶闸管导通后撤掉外部门极电流

G

I,但是NPN基极仍然存在电流,由PNP集电

极电流

1c I

供给,电流已经形成强烈正反馈,因此晶闸管继续维持导通。

(2)因此,晶闸管的门极电流只能触发控制其导通而不能控制其关断。

2.3.1.4.4 晶闸管的关断工作原理

满足下面条件,晶闸管才能关断:

(1)去掉AK间正向电压;

(2)AK间加反向电压;

(3)设法使流过晶闸管的电流降低到接近于零的某一数值以下。

2.3.2.1.1 晶闸管正常工作时的静态特

(1)当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。(2)当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能导通。(3)晶闸管一旦导通,门极就失去控制

作用,不论门极触发电流是否还存在,晶闸管都保持导通。

(4)若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下。

2.4.1.1 GTO的结构

(1)GTO与普通晶闸管的相同点:是PNPN 四层半导体结构,外部引出阳极、阴极和门极。

(2)GTO与普通晶闸管的不同点:GTO是一种多元的功率集成器件,其内部包含数十个甚至数百个供阳极的小GTO元,这些GTO元的阴极和门极在器件内部并联在一起,正是这种特殊结构才能实现门极关断作用。

2.4.1.2 GTO的静态特性

(1)当GTO承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。(2)当GTO承受正向电压时,仅在门极有触发电流的情况下晶闸管才能导通。(3)GTO导通后,若门极施加反向驱动电流,则GTO关断,也即可以通过门极电流控制GTO导通和关断。(4)通过AK间施加反向电压同样可以保证GTO关断。

2.4.3 电力场效应晶体管MOSFET (1)电力MOSFET是用栅极电压来控制漏极电流的,因此它是电压型器件。

(3)当

GS

U大于某一电压值T U时,栅极下P区表面的电子浓度将超过空穴浓度,从而使P型半导体反型成N型半导体,形成反型层。

2.4.4 绝缘栅双极晶体管IGBT (1)GTR和GTO是双极型电流驱动器件,其优点是通流能力强,耐压及耐电流等级高,但不足是开关速度低,所需驱动功率大,驱动电路复杂。

(2)电力MOSFET是单极型电压驱动器件,其优点是开关速度快、所需驱动功率小,驱动电路简单。

(3)复合型器件:将上述两者器件相互取长补短结合而成,综合两者优点。(4)绝缘栅双极晶体管IGBT是一种复合型器件,由GTR和MOSFET两个器件复合而成,具有GTR和MOSFET两者的优点,具有良好的特性。

(1)IGBT是三端器件,具有栅极G、集

电极C和发射极E。

(2)IGBT由MOSFET和GTR组合而成。

第3章整流电路

(1)整流电路定义:将交流电能变成直流电能供给直流用电设备的变流装置。

3.1.1 单相半波可控整流电路(4)触发角α:

从晶闸管开始承受正向阳极电压起,到施加触发脉冲为止的电角度,称为触发角或控制角。

(7)几个定义

①“半波”整流:改变触发时刻,

d

u和d i

波形随之改变,直流输出电压

d

u为极性不变但瞬时值变化的脉动直流,其波形只在2

u正半周内出现,因此称“半波”整流。

②单相半波可控整流电路:如上半波整流,同时电路中采用了可控器件晶闸管,且交流输入为单相,因此为单相半波可控整流电路。

3.1.1.3 电力电子电路的基本特点及分析方法

(1)电力电子器件为非线性特性,因此电力电子电路是非线性电路。

(2)电力电子器件通常工作于通态或断态状态,当忽略器件的开通过程和关断过程时,可以将器件理想化,看作理想开关,即通态时认为开关闭合,其阻抗为零;断态时认为开关断开,其阻抗为无穷大。

3.1.2 单相桥式全控整流电路

3.1.2.1 带电阻负

载的工作情况

(1)单相桥式全控

整流电路带电阻负载时的原理图

①由4个晶闸管(VT1 ~VT4)组成单相桥式全控整流电路。

② VT1和VT4组成一对桥臂,VT2和VT3组成一对桥臂。

(2)单相桥式全控整流电路带电阻负载时的波形图

①α

~

0:

●VT1 ~VT4未触发导通,呈现断态,

则0

d=

u、0

d=

i、0

2=

i。

●2

VT

VT4

1

u

u

u=

+,2

VT

VT2

1

4

1

u

u

u=

=。

② πα~:

在α角度时,给VT 1 和VT 4加触发脉冲,此时a 点电压高于b 点,VT 1 和VT 4承受正向电压,因此可靠导通,04

1VT VT ==u u 。

电流从a 点经VT 1 、R 、VT 4流回b 点。

2d u u =,d 2i i =,形状与电压相同。

③ )(~αππ+:

电源2u 过零点,VT 1 和VT 4承受反向电压而关断,2VT VT 2

1

41u u u =

=(负半周)。

同时,VT 2 和VT 3未触发导通,因此0d =u 、0d =i 、02=i 。

④ παπ2~)(+:

在)(απ+角度时,给VT 2 和VT 3加触发脉冲,此时b 点电压高于a 点,VT 2 和VT 3承受正向电压,因此可靠导通,03VT VT 2

==u u 。

VT 1 阳极为a 点,阴极为b 点;VT 4 阳极为a 点,阴极为b 点;因此

2VT VT 41u u u ==。

电流从b 点经VT 3 、R 、VT 2流回b 点。

2d u u -=,d 2i i -=。

(3)全波整流

在交流电源的正负半周都有整流输出电流流过负载,因此该电路为全波整流。 (4)直流输出电压平均值

2

cos 19.02cos 122)(sin 212

22d α

απωωππ

α

+=+=

=

?

U U t td U U

(5)负载直流电流平均值

2

cos 19.02cos 122R 22d d α

απ+=+==

R U R U U I

(6)晶闸管参数计算 ① 承受最大正向电压:)2(

2

12U

② 承受最大反向电压:

22U

③ 触发角的移相范围:0=α时,

2d 9.0U U =;o 180=α时,0d =U 。因此移相范围为o 180。

④ 晶闸管电流平均值:VT 1 、VT 4与VT 2 、VT 3轮流导电,因此晶闸管电流平均值只

有输出直流电流平均值的一半,即

2

cos 145.021

2d dVT α+==

R U I I 。

3.1.2.2 带阻感负载的工作情况 (1)单相桥式全控整流电路带阻感负载时的原理图

(2

)单相桥式全控整流电路带阻感负载

时的波形图

● 分析时,假设电路已经工作于稳态下。 ●

假设负载电感很大,负载电流不能突变,使负载电流d i 连续且波形近似为一水平线。

① πα~:

在α角度时,给VT 1 和VT 4加触发脉冲,此时a 点电压高于b 点,VT 1 和VT 4承受正向电压,因此可靠导通,04

1VT VT ==u u 。

电流从a 点经VT 1 、L 、R 、VT 4流回b 点,2d u u =。

● d i 为一水平线,2d VT 1,4i i i ==。

VT 2 和VT 3为断态,02,3

VT =i

② )(~αππ+:

虽然二次电压2u 已经过零点变负,但因大电感的存在使VT 1 和VT 4持续导通。

041VT VT ==u u ,2d u u =,2d VT 1,4i i i ==,02,3VT =i 。

③ παπ2~)(+:

在)(απ+角度时,给VT 2 和VT 3加触发脉冲,此时b 点电压高于a 点,VT 2 和VT 3承受正向电压,因此可

靠导通,03VT VT 2

==u u 。

由于V T

2

和V T

3

的导通,使VT 1 和VT 4承受反向电

压而关断01,4

VT =i 。VT 1 阳极为

a 点,

阴极为b 点;VT 4 阳极为a 点,阴极为b 点;因此2VT 1,4

u u =。

电流从b 点经VT 3 、L 、R 、VT 2流回b 点,2d u u -=。

d i 为一水平线,2d VT 2,3i i i -==。

④ )2(~2αππ+:

虽然二次电压2u 已经过零点变正,但因大电感的存在使VT 2 和VT 3持续导通。

032VT VT ==u u ,2

VT 1,4u u =,2d u u -=,

2d VT 2,3i i i -==,01,4VT =i 。

(3)直流输出电压平均值

α

απ

ωωπα

πα

cos 9.0cos 22)(sin 2122

2d U U t td U U ==

=

?

+

(4)触发角的移相范围

0=α时,2d 9.0U U =;o 90=α时,0d =U 。因此

移相范围为o 90。

(5)晶闸管承受电压:正向:22U ;反

向:

22U

3.1.2.3 带反电动势负载时的工作情况 (1)单相桥式全控整流电路带反电动势负载时的原理图

① 当负载为蓄电池、直流电动机的电枢(忽略其中的电感)等时,负载可看成一个直流电压源,即反电动势负载。正常情况下,负载电压d u 最低为电动势E 。 ② 负载侧只有2u 瞬时值的绝对值大于反电动势,即E u >2

时,才有晶闸管承受正

电压,有导通的可能。

(2)单相桥式全控整流电路带反电动势负载时的波形图 ① )(~θαα+:

在α角度时,给VT 1 和VT 4加触发脉冲,此时E u >2

,说明

VT 1 和VT 4

承受正向电压,因此可靠导通,

2d u u =,R

d d E u i -=

② )(~)(απθα++:

在)(θα+角度时,E u <2,说明VT 1 和VT 4已经开始承受反向电压关断。

同时,由于VT 2 和VT 3还未触发导通,因此E u =d ,0d =i 。

③ )(~)(θαπαπ+++:

此过程为VT 2 和VT 3导通阶段,由于是桥式全控整流,因此负载电压与电流同前一阶段,

2

d u u -=,R

d d

E

u i -=

3.2 三相可控整流电路 3.2.1 三相半波可控整流电路 3.2.1.1 电阻负载

(1)三相半波

可控整流电路带电阻负载时的原理图 ① 变压器一次侧接成三角

形,防止3次谐波流入电网。

② 变压器二次侧接成星形,以得到零线。 ③ 三个晶闸管分别接入a 、b 、c 三相电源,其所有阴极连接在一起,为共阴极接法。

(2)三相半波不可控整流电路带电阻负载时的波形图

将上面原理图中的三个晶闸管换成不可控二极管,分别采用VD 1、VD 2和VD 3表示。

工作过程分析基础:三个二极管对应的相电压中哪一个的值最大,则该相所对应的二极管导通,并使另两相的二极管承受反压关断,输出整流电压即为该相的相电压。

① 21~t t ωω:a 相电压最高,则VD 1导通,VD 2和VD 3反压关断,a u u =d 。

② 32~t t ωω:b 相电压最高,则VD 2导通,VD 3和VD 1反压关断,b u u =d 。

③ 43~t t ωω:b 相电压最高,则VD 2导通,VD 3和VD 1反压关断,b u u =d 。

④ 按照上述过程如此循环导通,每个二极管导通o 120。

⑤ 自然换向点:在相电压的交点1t ω、2t ω、

3t ω处,出现二极管换相,即电流由一个二

极管向另一个二极管转移,这些交点为自然换向点。

(3)三相半波可控整流电路带电阻负载时的波形图(o 0=α)

自然换向点:对于三相半波可控整流电路而言,自然换向点是各相晶闸管能触发导通的最早时刻(即开始承受正向电压),该时刻为各晶闸管触发角α的起点,即

o 0=α。

① 21~t t ωω:

a 相电压最高,VT 1开始承受正压,在1t ω时刻触发导通,01VT =u ,而VT 2和VT 3反压关断。

a u u =d ,R

u i i d

d VT 1=

=。

② 32~t t ωω:

b 相电压最高,VT 2开始承受正压,在2

t

ω

时刻触发导通,02VT =u ,而VT 3和VT 1

反压关断。

b d u u =,01VT =i ,VT 1承受a 点-b 点间电

压,即ab VT 1u u =。

③ 43~t t ωω:

c 相电压最高,VT 3开始承受正压,在3t ω时刻触发导通,03VT =u ,而

VT 1和VT 2反压关断。

c d u u =,01VT =i ,VT 1承受a 点-c 点间电

压,即ac VT 1u u =。

(4)三相半波可控整流电路带电阻负载时的波形图(o 30=α)

定义:1t ω时刻为自然换向点后o 30,2t ω和

3t ω时刻依次间距o 120。

① )90(~o 11+t t ωω:

a 相电压最高,VT 1已经承受正压,但在1t ω时刻(即o 30=α)时开始触发导通,

01VT =u ,而

VT 2和VT 3反压关断。

a u u =d ,R

u i i d d VT 1=

=。

② 2o 1~)90(t t ωω+:

虽然已到a 相和b 相的自然换向点,b 相电压高于a 相电压,VT 2已经开始承受正压,但是VT 2没有门极触发脉冲,因此VT 2保持关断。

这样,原来已经导通的VT 1仍然承受正向电压(0a

>u )而持续导通,01VT =u ,

a u u =d ,R

u i i d

d VT 1=

=。

③ 32~t t ωω:

b 相电压最高,VT 2已经承受正压,2t ω时刻(即o 30=α)时开始触发导通VT 2,

2VT =u ,这样VT 1开始承受反压而关

断。

b d u u =,01VT =i ,VT 1承受a 点-b 点间电

压,即ab VT 1u u =。

④ 43~t t ωω:

c 相电压最高,VT 3已经承受正压,3t ω时刻(即o 30=α)时开始触发导通VT 3,

03VT =u ,这样

VT 2开始承受反压而关

断。

c d u u =,01VT =i ,VT 1承受a 点-c 点间电

压,即ac VT 1u u =。

(5)三相半波可控整流电路带电阻负载时的波形图(o 60=α)

定义:1t ω时刻为自然换向点后o 60,2t ω和

3t ω时刻依次间距o 120。

① )90(~o 11+t t ωω:

a 相电压最高,VT 1在1t ω时刻(即o 60=α)时开始触发导通,即使过了自然换向点,但因VT 2未导通及0a

>u ,而使

VT 1

持续导通,01VT =u ,而VT 2和VT 3反压关断。

a u u =d ,R

u i i d d VT 1=

=。

② 2o 1~)90(t t ωω+:

a 相电压过零变负(0a

0d VT 1==i i ,0d =u 。

③ 32~t t ωω及43~t t ωω期间情况分别为VT 2和VT 3导通过程,与上述相同。 (6)三相半波可控整流电路带电阻负载不同触发角工作时的情况总结

① 当o 30<α时,负载电流处于连续状态,各相导电o

120。

② 当o 30=α时,负载电流处于连续和断续的临界状态,各相仍导电o 120。 ③ 当o 30>α时,负载电流处于断续状态,直到o 150=α时,整流输出电压为零。 ④ 结合上述分析,三相半波可控整流电

路带电阻负载时α角的移相范围为o 150,其中经历了负载电流连续和断续的工作过程。

(7)数值计算

① o 30≤α时,整流电压平均值(负载电流连续):

απωωπαπαπco 17.1cos 26

3)(sin 23

212265

6

2d U U t td U U ===?

++

当o 0=α时,d U 最大,2d 17.1U U =。

② o 30>α时,整流电压平均值(负载电流断续):

)]6cos(1[675.0)]6cos(1[223)(sin 23

212262d απ

αππωωππαπ

++=++==

?

+U U t td U U

当o 150=α时,d U 最小,0d =U 。

③ 负载电流平均值:R

U

I d

d =。

④ 晶闸管承受的最大反向电压:

为变压器二次侧线电压的峰值,

222RM 45.2632U U U U ==?=

⑤ 晶闸管承受的最大正向电压:

如a 相,二次侧a 相电压与晶闸管正向电压之和为负载整流输出电压d U ,由于

d

U 最小为0,因此晶闸管最大正向电压

2FM 2U U =。 2.2.1.2 阻感负载

(1)三相半波可控整流电路带阻感负载时的原理图

① 当阻感负载中的电感值很大时,整流获得的电流d i 波形基本是平直的,即流过晶闸管的电流接近矩形波。

② 当o 30≤α时,整流电压波形与电阻负载时相同,因为两种负载情况下,负载电流均连续。

(2)三相半波可控整流电路带阻感负载时的波形图(o 60=α)

定义:1t ω时刻为自然换向点后o 60,2t ω和3t ω时

刻依次

间距

o 120。

2

1~t t ωω:

VT 1承

受正压并触发导通,过自然换向点后a 相电压仍大于0,VT 1仍持续导通。

a 相过零点后,由于电感的存在,阻止电流下降,因而VT 1仍持续导通。

a

d u u =,

d

d a I i i ==,

0c b ==i i ,01VT =u 。

② 32~t t ωω:

当2t ω时刻,b 相电压最高,同时触发导通,则VT 2导通,这样VT 1承受反压关断,由VT 2向负载供电。

● b d u u =,d d b I i i ==,0c a ==i i ,ab VT 1u u =。

③ 43~t t ωω:

● 工作过程与上述相同。

c d u u =,d d c I i i ==,0b a ==i i ,ac VT 1u u =。

(3)三相半波可控整流电路带阻感负载不同触发角工作时的情况总结

① 阻感负载状态下,由于大电感的存在,使负载电流始终处于连续状态,各相导电

o 120。

② 当o 30>α时,负载电压d u 波形将出现负的部分,并随着触发角的增大,使负的部分增多。

③ 当o 90=α时,负载电压d u 波形中正负面积相等,d u 平均值为0。

④ 结合上述分析,三相半波可控整流电路带阻感负载时α角的移相范围为o 90。 (4)数值计算

① 整流电压平均值(负载电流始终连续):αcos 17.12d U U =。

② 晶闸管承受的最大正反向电压: 为变压器二次侧线电压的峰值,

222RM FM 45.2632U U U U U ==?==

3.2.2 三相桥式全控整流电路 三相桥式全控整流电路原理图:

(1)由6只晶闸管组成,形成三个桥臂,

其中每个桥臂连接一相电源。

(2)阴极连接在一起的3只晶闸管(VT 1、VT 3、VT 5)称为共阴极组,处于桥臂上端。 (3)阳极连接在一起的3只晶闸管(VT 4、VT 6、VT 2)称为共阳极组,处于桥臂下端。 (4)晶闸管的导通顺序:VT 1、VT 2、VT 3、VT 4、VT 5、VT 6。

3.2.2.1 带电阻负载时的工作情况(o 0=α) (1)基本说明

① 自然换向点仍为a 、b 、c 相的交点。 ② 将1t ω时刻(自然换向点)后的一个电源周期分成6段,每段电角度为o 60,分别为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ。 (2)波形图分析 ① 阶段Ⅰ:

a 相电压最大,

b 相电压最小,触发导通VT 1(事实上,VT 6已经导通)

ab d u u =,R

u i ab

VT 1=

,01VT =u 。

② 阶段Ⅱ:

a 相电压最大,c 相电压最小,触发导通VT 2,则VT 6承受反

(0cb

ac d u u =,R

u i ac VT 1=

,01VT =u 。

③ 阶段Ⅲ:

b 相电压最大,

c 相电压最小,触发导通VT 3,则VT 1承受反压(0ab

bc d u u =,R

u i bc

VT 1=

,ab VT 1u u =。

④ 阶段Ⅳ:

b 相电压最大,a 相电压最小,触发导通VT 4,则VT 2承受反压(0a

c

ba d u u =,R

u i ba VT 1=

,ab VT 1u u =。

⑤ 阶段Ⅴ:

c 相电压最大,a 相电压最小,触发导通VT 5,则VT 3承受反压(0bc

ca d u u =,R

u i ca VT 1=

,ac VT 1u u =。

⑥ 阶段Ⅵ:

c 相电压最大,b 相电压最小,触发导通VT 6,则VT 4承受反压(0ba

cb d u u =,R

u i cb

VT 1=

,ac VT 1u u =。

(3)总结

① 对于共阴极组的3个晶闸管来说,

阳极所接交流电压值最高的一个导通;对于共阳极组的3个晶闸管来说,阴极所接交流电压值最低的一个导通。

② 每个时刻均需2个晶闸管同时导通,形成向负载供电的回路,其中1个晶闸管是共阴极组的,1个是共阳极组的,且不能为同1相的晶闸管。

③ 对触发脉冲的要求:6个晶闸管的脉冲按VT 1—VT 2—VT 3—VT 4—VT 5—VT 6的顺序,相位依次差o 60。

④ 共阴极组VT 1、VT 3、VT 5的脉冲依次差

o 120,共阳极组

VT 2、VT 4、VT 6的脉冲依次

差o 120。

⑤ 同一相的上下两个桥臂,即VT 1与VT 4,VT 3与VT 6,VT 5与VT 2,脉冲相差o 180。

⑥ 整流输出电压d u 一周期脉动6次,每次脉动的波形都一样,故该电路为6脉冲整流电路。

3.2.2.2 带电阻负载时的工作情况(o 30=α) (1)基本说明

① 自然换向点仍为a 、b 、c 相的交点。 ② 1t ω时刻为a 相o 30触发角位置,将该时刻后的一个电源周期o 360分成6段,每段电角度为o 60,分别为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ。 (2)波形图分析 ① 阶段Ⅰ:

a 相电压最大,

b 相电压最小,触发导通VT 1

(事实上,VT 6已经导通) ●

当过b 、c 相交点后,虽然b 电压高于c 相电压,但是由于未触发导通VT 2,且a 相电压仍高于b 相,因此整个阶段I 中,VT 1和VT 6持续导通。

ab d u u =,01VT =u ,R

u i i ab d a =

=。

② 阶段Ⅱ:

分析过程同阶段I ,VT 1和VT 2持续导通。

ac d u u =,01VT =u ,R

u i i ac d a =

=。

③ 阶段Ⅲ:

分析过程同阶段I ,VT 2和VT 3持续导通。

bc d u u =,ab VT 1u u =,0a =i 。

④ 阶段Ⅳ:

分析过程同阶段I ,VT 3和VT 4持续导通。

ba d u u =,ab VT 1u u =,R

u i i ba

d a -

=-=。

⑤ 阶段Ⅴ:

分析过程同阶段I ,VT 4和VT 5持续导通。

ca d u u =,ac VT 1u u =,R

u i i ca d a -

=-=。

⑥ 阶段Ⅵ:

分析过程同阶段I ,VT 5和VT 6持续导通。

cb d u u =,ac VT 1u u =,0a =i 。

(3)总结

① 与o 0=α时相比,晶闸管起始导通时刻推迟了o 30,组成d u 的每一段线电压因此推迟o 30,d u 平均值降低。

② VT 1处于通态的o 120期间,变压器二次侧a 相电流0a >i ,波形与同时段的d u 波形相同。VT 4处于通态的o 120期间,a i 波形与同时段的d u 波形相同,但为负值。 3.2.2.3 带电阻负载时的工作情况(o 60=α) (1)波形图分析

① 阶段Ⅰ:

a 相电压最大,c 相电压最小,通过以往经验知道VT 6已经导通,此时触发导通VT 1,不触发VT 2,则整个阶段I 中,VT 1和VT 6持续导通。

ab d u u =,01VT =u 。

② 阶段Ⅱ:

b 相电压最大,

c 相电压最小,此时触发导通VT 2,则VT 6承受电压0cb

● ac d u u =,01VT =u 。

③ 阶段Ⅲ:

分析过程同阶段Ⅱ,VT 2和VT 3持续导通。

● bc d u u =,ab VT 1u u =。

④ 阶段Ⅳ:

分析过程同阶段Ⅱ,VT 3和VT 4持续导通。

ba d u u =,ab VT 1u u =。

⑤ 阶段Ⅴ:

分析过程同阶段Ⅱ,VT 4和VT 5持续导通。

ca d u u =,ac VT 1u u =。

⑥ 阶段Ⅵ:

分析过程同阶段Ⅱ,VT 5和VT 6持续导通。

cb d u u =,ac VT 1u u =。

(2)总结

① 与o 30=α时相比,晶闸管起始导通时刻继续向后推迟o 30,d u 平均值继续降低,并出现了为零的点。

② 当o 60≤α时,d u 波形均连续,对于电阻负载,d i 波形与d u 波形的形状一样,保持连续。

3.2.2.4 带电阻负载时的工作情况(o 90=α)

(1)o 60≥α时整流电路触发脉冲要求 ① o 60≥α时,负载电流将出现断续状态,这样为确保电路的正常工作,需保证同时导通的2个晶闸管均有触发脉冲。 ② 方法一:采用宽脉冲触发,即触发脉冲的宽度大于o 60,一般取o 80~o 100。 ③ 方法二:采用双脉冲触发,即在触发某个晶闸管的同时,给序号紧前的一个晶闸管补发脉冲。即用两个窄脉冲代替宽脉冲,两个窄脉冲的前沿相差o 60,脉宽一般

为o 20~o 30。 (2)波形图分析 ① 阶段Ⅰ:

前半段内,c b a u u u >>,通过以往经验知道VT 6已经导通,此时触发导通VT 1,不触发VT 2,则VT 1和VT 6导通。ab d u u =,

R

u i i i d

a VT d 1===。

后半段内,c a b u u u >>,出现a 、b 相交点,则过交点后VT 6和VT 1承受反压关断。0d =u ,0a

VT d 1===i i i 。

② 阶段Ⅱ:

前半段内,c a b u u u >>,此时触发导通VT 2,同时采用宽脉冲或双脉冲方式触发VT 1导通。ac d u u =,R

u

i i i d

a VT d

1===。

● 后半段内,a c b u u u >>,出现a 、c 相交点,则过交点后VT 1和VT 2承受反压关断。0d =u ,0a

VT d 1===i i i 。

③ 阶段Ⅲ:

前半段内,VT 2和VT 3持续导通。bc d u u =,

R

u i d

d =,0a

VT 1==i i 。

● 后半段内,0d =u ,0a

VT d 1===i i i 。

④ 阶段Ⅳ:

前半段内,VT 3和VT 4持续导通。ba d u u =,

R

u i i d

a d =-=,01

VT =i 。

后半段内,

d =u ,

0a VT d 1===i i i 。

⑤ 阶段Ⅴ:

前半段内,VT 4和VT 5持续导通。

ca

d u u =,

R

u

i i d

a d =-=,

01VT =i 。

后半段内,

d =u ,

0a VT d 1===i i i 。

⑥ 阶段Ⅵ:

前半段内,VT 5和VT 6持续导

通。cb d u u =,

R

u i d d =,

0a VT 1==i i 。 ●

后半段内,0d =u ,0a

VT d 1===i i i 。

(3)总结

① 当o 60≥α时,负载电流将出现断续状态。

② 当o 120=α时,整流输出电压d u 波形全为零,因此带电阻负载时的三相桥式全控整流电路α角的移相范围是o 120。 3.2.2.7 三相桥式全控整流电路的定量分析

(1)带电阻负载时的平均值

① 特点:o 60≤α时,整流输出电压连续;

o o 12060<<α时,整流输出电压断续。

② 整流电压平均值计算公式:以d u 所处

的线电压波形为背景,周期为3

π。

????

??

??

?+==<<==≤?

?

+++3cos(1[34.2)(sin 63112060cos 34.2)(sin 6316023

2d o

o 23232d o πωωπαα

ωωπαπαπαπαπU t td U U U t td U U ::

③ 输出电流平均值计算公式:R

U I d

d

=。

3.7 整流电路的有源逆变工作状态

3.7.1 逆变的概念

3.7.1.1 什么是逆变?为什么要逆变? (1)逆变定义:生产实践中,存在着与整流过程相反的要求,即要求把直流电转变成交流电,这种对应于整流的逆向过程,定义为逆变。

(3)逆变电路定义:把直流电逆变成交流电的电路。

(4)有源逆变电路:将交流侧和电网连结时的逆变电路,实质是整流电路形式。 (5)无源逆变电路:将交流侧不与电网连结,而直接接到负载的电路,即把直流电逆变为某一频率或可调频率的交流电供给负载的电路。

(6)有源逆变电路的工作状态:只要满足一定条件,可控整流电路即可以工作于整流状态,也可以工作于逆变状态。 3.7.1.3 逆变产生的条件

(1)单相全波电路(相当发电机)- 电

动机系统

(2)单相全波电路(整流状态) - 电动机(电动状态)系统

① 电动机处于电动运行状态,全波电路处于整流工作状态(2

0πα<<),直流输出

电压0d >U ,而且M d E U >,才能输出电枢电流∑

-=

R E U I M

d d 。

② 能量流向:交流电网输出电功率,电动机输入电功率。

(3)单相全波电路(有源逆变状态) - 电动机(发电回馈制动)系统

① 电动机处

于发电回馈

制动运行状

态,由于晶闸管单向导电性,电路内d I 的

方向依然不变。 ② 这样,要保证电动机有电动运行变成发

电回馈制动运行,必须

改变M E 的极性,同时直流输出电压d U 也改变极性(0d

απ

<<2)。 ③ 此时,必须保证d

M

U E >,∑

-=

R U E I d

M d ,

才能把电能从直流侧送到交流侧,实现逆

变。

④ 能量流向:电动机输出电功率,交流电网吸收电功率。

⑤ 全波电路有源逆变工作状态下,为什么晶闸管触发角处于π

απ<<2,仍能导通运

行?

答:主要由于全波电路有外接直流电动势

M E 的存在且d

M U E >,这是电动机处于发

电回馈制动状态时得到的,这样能够保证系统得到很大的续流,即使晶闸管的阳极电位大部分处于交流电压为负的半周期,但是仍能承受正向电压而导通。 (4)有源逆变产生的条件

① 变流电路外侧要有直流电动势,其极性必须和晶闸管的导通方向一致,其值应大于变流电路直流侧的平均电压。 ② 要求晶闸管的控制触发角2

πα>,使d

U 为负值。

第4章 逆变电路

(1)逆变定义:将直流电能变成交流电能。

(2)有源逆变:逆变电路的交流输出侧接在电网上。

(3)无源逆变:逆变电路的交流输出侧

直接和负载相连。

4.2 电压型逆变电路

(1)逆变电路分类:根据直流侧电源性质可以分为电压(源)型逆变电路和电流(源)型逆变电路。

(2)电压(源)型逆变电路VSI :直流侧为电压源。 (3)电流(源)型逆变电路CSI :直流侧为电流源。

(4)电压型逆变电路举例:

① 直流侧为电压源,或并联有大电容。直流侧电压基本无脉动,直流回路呈低阻抗。

② 由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。而交流侧输出电流波形和相位因

负载阻抗情况的不同而不同。

③ 当交流侧为阻感负载时,需要提供无功功率,直流侧电容起缓冲无功能量的作用。

④ 图中逆变桥各臂都并联反馈二极管,

为了给交流侧向直流侧反馈的无功能量

提供通道。

4.2.1 单相电压型逆变电路 4.2.1.1 半桥逆变电路 (1)电路原理图

① 由两个桥臂组成,其中每个桥臂均包含一个可控器件和一个反并联二极管。 ② 直流输入侧接有两个相互串联的足够大的电容,两个电容的连接点为直流电源的中点。

③ 负载连接在直流电源中点和两个桥臂连接点之间。 (2)栅极驱动信号

① 开关器件V 1 和V 2 的栅极信号在一个周期内半周正偏,半周反偏,且二者互补。 ② 2~0t :V 1 栅极高电平,V 2 栅极低电平。 ③ 42~t t :V 2 栅极高电平,V 1栅极低电平。 ④ 64~t t :V 1 栅极高电平,V 2 栅极低电平。 (3)电压与电流波形图

① 2~0t :V 1 栅极高电平,V 2 栅极

低电平,因此V 1 为通态,V 2为断态,则负载电压2/d m o U U u ==。

② 2t 时刻:V 1 开始关断,但感性负载中的电流o i 不能立即改变方向,于是VD 2 导通续流(称为续流二极管),则负载电压

2/d m o U U u -=-=。直到3t 时刻o i 降为零时,

VD 2 截止,V 2开始导通,负载电压仍为

2/d m o U U u -=-=,o i 反向。

③ 其他时刻同理。 (4)有功功率与无功功率

① 当V 1或V 2 为通态时,负载电流与电压同方向,直流侧向负载提供能量。 ② 当VD 1 或VD 2 为通态时,负载电流与电压反向,则负载电感中储存的能量向直流侧反馈,即负载电感将其吸收的无功能量反馈回直流侧,反馈回的能量暂时储存在直流侧电容中,直流侧电容器起着缓冲这种无功能量的作用。

电力电子技术答案第五版(全)

电子电力课后习题答案 第一章电力电子器件 1.1 使晶闸管导通的条件是什么? 答:使晶闸管导通的条件是:晶闸管承受正相阳极电压,并在门极施加触发电流(脉冲)。 或者U AK >0且U GK >0 1.2 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断? 答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。 1.3 图1-43中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为 I m ,试计算各波形的电流平均值I d1 、I d2 、I d3 与电流有效值I 1 、I 2 、I 3 。 解:a) I d1= Im 2717 .0 )1 2 2 ( 2 Im ) ( sin Im 2 1 4 ≈ + = ?π ω π π π t I 1= Im 4767 .0 2 1 4 3 2 Im ) ( ) sin (Im 2 1 4 2≈ + = ?π ? π π π wt d t b) I d2= Im 5434 .0 )1 2 2 ( 2 Im ) ( sin Im 1 4 = + = ?wt d t π π ? π I 2= Im 6741 .0 2 1 4 3 2 Im 2 ) ( ) sin (Im 1 4 2≈ + = ?π ? π π π wt d t c) I d3= ?= 2 Im 4 1 ) ( Im 2 1π ω π t d I 3= Im 2 1 ) ( Im 2 1 2 2= ?t dω π π 1.4.上题中如果不考虑安全裕量,问100A的晶阐管能送出的平均电流I d1、I d2 、I d3 各为多 少?这时,相应的电流最大值I m1、I m2 、I m3 各为多少? 解:额定电流I T(AV) =100A的晶闸管,允许的电流有效值I=157A,由上题计算结果知 a) I m1 35 . 329 4767 .0 ≈ ≈ I A, I d1 ≈0.2717I m1 ≈89.48A

电力电子技术(第二版)第2章答案

第2章 可控整流器与有源逆变器习题解答 2-1 具有续流二极管的单相半波可控整流电路,电感性负载,电阻为5Ω,电感为0.2H ,电源电压2U 为220V ,直流平均电流为10A ,试计算晶闸管和续流二极管的电流有效值,并指出其电压定额。 解:由直流输出电压平均值d U 的关系式: 2 cos 145.02α+=U U d 已知直流平均电流d I 为10A ,故得: A R I U d d 50510=?== 可以求得控制角α为: 01220 45.0502145.02cos 2≈-??=-=U U d α 则α=90°。 所以,晶闸管的电流有效值求得, ()A I I I t d I I d d d d VT 52 1222212==-=-==?ππππαπωππα 续流二极管的电流有效值为:A I I d VD R 66.82=+=π απ 晶闸管承受的最大正、反向电压均为电源电压的峰值22U U M =,考虑2~3倍安全裕量,晶闸管的额定电压为 ()()V U U M TN 933~6223113~23~2=?== 续流二极管承受的最大反向电压为电源电压的峰值22U U M =,考虑2~3倍安全裕量,续流二极管的额定电压为 ()()V U U M TN 933~6223113~23~2=?==

2-2 具有变压器中心抽头的单相双半波可控整流电路如图2-44所示,问该变压器是否存在直流磁化问题。试说明晶闸管承受的最大反向电压是多少?当负载是电阻或者电感时,其输出电压和电流的波形与单相全控桥时是否相同。 解:因为单相双半波可控整流电路变压器二次测绕组中,正负半周内上下绕组内电流的方向相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题。 分析晶闸管承受最大反向电压及输出电压和电流波形的情况: (1) 以晶闸管 2VT 为例。当1VT 导通时,晶闸管2VT 通过1VT 与2个变 压器二次绕组并联,所以2VT 承受的最大电压为222U 。 (2)当单相全波整流电路与单相全控桥式整流电路的触发角α相同时, 对于电阻负载: (α~0)期间无晶闸管导通,输出电压为0;(πα~)期间,单相全波电路中VT1导通,单相全控桥电路中1VT 、4VT 导通,输出电压均与 电源电压2u 相等;(παπ+~)期间,均无晶闸管导通,输出电压为0; (παπ2~+)期间,单相全波电路中2VT 导通,单相全控桥电路中2VT 、 3VT 导通,输出电压等于2u -。 对于电感负载: (απα+~)期间,单相全波电路中VT1导通,单相全控桥电路中1VT 、4VT 导通,输出电压均与电源电压2u 相等;(απαπ++2~)期间,单

电力电子技术第四版课后题答案

第6章 PWM控制技术 1.试说明PWM控制的基本原理。 答:PWM控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(吠形状和幅值)。 在采样控制理论中有一条重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,冲量即窄脉冲的面积。效果基本相同是指环节的输出响应波形基本相同。上述原理称为面积等效原理 以正弦PWM控制为例。把正弦半波分成N等份,就可把其看成是N个彼此相连的脉冲列所组成的波形。这些脉冲宽度相等,都等于π/N,但幅值不等且脉冲顶部不是水平直线而是曲线,各脉冲幅值按正弦规律变化。如果把上述脉冲列利用相同数量的等幅而不等宽的矩形脉冲代替,使矩形脉冲的中点和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦波部分面积(冲量)相等,就得到PWM波形。各PWM脉冲的幅值相等而宽度是按正弦规律变化的。根据面积等效原理,PWM波形和正弦半波是等效的。对于正弦波的负半周,也可以用同样的方法得到PWM波形。可见,所得到的PWM波形和期望得到的正弦波等效。 2.设图6-3中半周期的脉冲数是5,脉冲幅值是相应正弦波幅值的两倍,试按面积等效原理计算脉冲宽度。 解:将各脉冲的宽度用i(i=1, 2, 3, 4, 5)表示,根据面积等效原理可得 1= = =0.09549(rad)=0.3040(ms) 2 = = =0.2500(rad)=0.7958(ms) 3 = = =0.3090(rad)=0.9836(ms) 4 = = 2 =0.2500(rad)=0.7958(ms) 5 = = 1 =0.0955(rad)=0.3040(ms) 3. 单极性和双极性PWM调制有什么区删?三相桥式PWM型逆变电路中,输出相电压(输出端相对于直流电源中点的电压)和线电压SPWM波形各有几种电平?答:三角波载波在信号波正半周期或负半周期里只有单一的极性,所得的PWM波形在半个周期中也只在单极性范围内变化,称为单极性PWM控制方式。 三角波载波始终是有正有负为双极性的,所得的PWM波形在半个周期中有正、有负,则称之为双极性PWM控制方式。 三相桥式PWM型逆变电路中,输出相电压有两种电平:0.5Ud和-0.5 Ud。输出线电压有三种电平Ud、0、- Ud。 4.特定谐波消去法的基本原理是什么?设半个信号波周期内有10个开关时刻(不吠0和时刻)可以控制,可以消去的谐波有几种? 答:首先尽量使波形具有对称性,为消去偶次谐波,应使波形正负两个半周期对称,为消去谐波中的余弦项,使波形在正半周期前后1/4周期以/2为轴线对称。 考虑到上述对称性,半周期内有5个开关时刻可以控制。利用其中的1个自由度控制基波的大小,剩余的4个自由度可用于消除4种频率的谐波。 5.什么是异步调制?什么是同步调制?两者各有何特点?分段同步调制有什么优点?

电力电子技术重点王兆安第五版打印版

第1章绪论 1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。 2 电力变换的种类 (1)交流变直流AC-DC:整流 (2)直流变交流DC-AC:逆变 (3)直流变直流DC-DC:一般通过直流斩波电路实现(4)交流变交流AC-AC:一般称作交流电力控制 3 电力电子技术分类:分为电力电子器件制造技术和变流技术。 第2章电力电子器件 1 电力电子器件与主电路的关系 (1)主电路:指能够直接承担电能变换或控制任务的电路。(2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件。 2 电力电子器件一般都工作于开关状态,以减小本身损耗。 3 电力电子系统基本组成与工作原理 (1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。 (2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。(3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。 (4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。 4 电力电子器件的分类 根据控制信号所控制的程度分类 (1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。如SCR晶闸管。 (2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。如GTO、GTR、MOSFET 和IGBT。 (3)不可控器件:不能用控制信号来控制其通断的电力电子器件。如电力二极管。 根据驱动信号的性质分类 (1)电流型器件:通过从控制端注入或抽出电流的方式来实现导通或关断的电力电子器件。如SCR、GTO、GTR。(2)电压型器件:通过在控制端和公共端之间施加一定电压信号的方式来实现导通或关断的电力电子器件。如MOSFET、IGBT。 根据器件内部载流子参与导电的情况分类 (1)单极型器件:内部由一种载流子参与导电的器件。如MOSFET。 (2)双极型器件:由电子和空穴两种载流子参数导电的器件。如SCR、GTO、GTR。(3)复合型器件:有单极型器件和双极型器件集成混合而成的器件。如IGBT。 5 半控型器件—晶闸管SCR 将器件N1、P2半导体取倾斜截面,则晶闸管变成V1-PNP 和V2-NPN两个晶体管。 晶闸管的导通工作原理 (1)当AK间加正向电压A E,晶闸管不能导通,主要是中间存在反向PN结。 (2)当GK间加正向电压G E,NPN晶体管基极存在驱动电流G I,NPN晶体管导通,产生集电极电流2c I。 (3)集电极电流2c I构成PNP的基极驱动电流,PNP导通,进一步放大产生PNP集电极电流1c I。 (4)1c I与G I构成NPN的驱动电流,继续上述过程,形成强烈的负反馈,这样NPN和PNP两个晶体管完全饱和,晶闸管导通。 2.3.1.4.3 晶闸管是半控型器件的原因 (1)晶闸管导通后撤掉外部门极电流G I,但是NPN基极仍然存在电流,由PNP集电极电流1c I供给,电流已经形成强烈正反馈,因此晶闸管继续维持导通。 (2)因此,晶闸管的门极电流只能触发控制其导通而不能控制其关断。 2.3.1.4.4 晶闸管的关断工作原理 满足下面条件,晶闸管才能关断: (1)去掉AK间正向电压; (2)AK间加反向电压; (3)设法使流过晶闸管的电流降低到接近于零的某一数值以下。 2.3.2.1.1 晶闸管正常工作时的静态特性 (1)当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 (2)当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能导通。 (3)晶闸管一旦导通,门极就失去控制作用,不论门极触发电流是否还存在,晶闸管都保持导通。 (4)若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下。 2.4.1.1 GTO的结构 (1)GTO与普通晶闸管的相同点:是PNPN四层半导体结构,外部引出阳极、阴极和门极。 (2)GTO与普通晶闸管的不同点:GTO是一种多元的功率集成器件,其内部包含数十个甚至数百个供阳极的小GTO元,这些GTO元的阴极和门极在器件内部并联在一起,正是这种特殊结构才能实现门极关断作用。 2.4.1.2 GTO的静态特性 (1)当GTO承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 (2)当GTO承受正向电压时,仅在门极有触发电流的情

王兆安版电力电子技术试卷及答案

20××-20××学年第一学期期末考试 《电力电子技术》试卷(A) (时间90分钟 满分100分) (适用于 ××学院 ××级 ××专业学生) 一、 填空题(30分,每空1分)。 1.如下器件:电力二极管(Power Diode )、晶闸管(SCR )、门极可关断晶闸管(GTO )、电力晶体管(GTR )、电力场效应管(电力MOSFET )、绝缘栅双极型晶体管(IGBT )中,属于不可控器件的是________,属于半控型器件的是________,属于全控型器件的是________;属于单极型电力电子器件的有________,属于双极型器件的有________,属于复合型电力电子器件得有 ________;在可控的器件中,容量最大的是________,工作频率最高的是________,属于电压驱动的是________,属于电流驱动的是________。(只写简称) 2.单相桥式全控整流电路中,带纯电阻负载时,α角移相范围为 _,单个晶闸管所承受的最大正向电压和反向电压分别为 和 ;带阻感负载时,α角移相范围为 ,单个晶闸管所承受的最大正向电压和反向电压分别为 和 。 3.直流斩波电路中最基本的两种电路是 和 。 4.升降压斩波电路呈现升压状态时,占空比取值范围是__ _。 5.与CuK 斩波电路电压的输入输出关系相同的有 、 和 。 6.当采用6脉波三相桥式电路且电网频率为50Hz 时,单相交交变频电路的输出上限频率约为 。 7.三相交交变频电路主要有两种接线方式,即 _和 。 8.矩阵式变频电路是近年来出现的一种新颖的变频电路。它采用的开关器件是 ;控制方式是 。 9.逆变器按直流侧提供的电源的性质来分,可分为 型逆变器和 型逆变器。 10.把电网频率的交流电直接变换成可调频率的交流电的变流电路称为 。 二、简答题(18分,每题6分)。 1.逆变电路多重化的目的是什么?如何实现?串联多重和并联多重逆变电路各应用于什么场合? 2.交流调压电路和交流调功电路有什么异同? 3.功率因数校正电路的作用是什么?有哪些校正方法?其基本原理是什么? 三、计算题(40分,1题20分,2题10分,3题10分)。 1.一单相交流调压器,电源为工频220V ,阻感串联作为负载,其中R=0.5Ω,L=2mH 。 试求:①开通角α的变化范围;②负载电流的最大有效值;③最大输出功率及此时电源侧的功率因数;④当2πα=时,晶闸管电流有效值,晶闸管导通角和电源侧功率因数。 2..三相桥式电压型逆变电路,工作在180°导电方式,U d =200V 。试求输出相电压的基波幅值U UN1m 和有效值U UN1、输出线电压的基波幅值U UV1m 和有效值U UV1、输出线电压中7次谐波的有效值U UV7。 3 .如图所示降压斩波电路E=100V ,L 值极大,R=0.5Ω,E m =10V ,采用脉宽调制控制方式,T=20μs ,当t on =5μs 时,计算输出电压平均值U o ,输出电流平均值

第1章 电力电子器件王兆安

第1章电力电子器件 填空题: 1.电力电子器件一般工作在________状态。 2.在通常情况下,电力电子器件功率损耗主要为________,而当器件开关频率较高时,功率损耗主要为________。 3.电力电子器件组成的系统,一般由________、________、________三部分组成,由于电路中存在电压和电流的过冲,往往需添加________。 4.按内部电子和空穴两种载流子参与导电的情况,电力电子器件可分为________、________、________三类。 5.电力二极管的工作特性可概括为________。 6.电力二极管的主要类型有________、________、________。 7.肖特基二极管的开关损耗________快恢复二极管的开关损耗。 8.晶闸管的基本工作特性可概括为 ____ 正向有触发则导通、反向截止 ____ 。 9.对同一晶闸管,维持电流I H与擎住电流I L在数值大小上有I L________I H。 10.晶闸管断态不重复电压U DRM与转折电压U bo数值大小上应为,U DRM________Ubo。 11.逆导晶闸管是将________与晶闸管________(如何连接)在同一管芯上的功率集成器件。 12.GTO的________结构是为了便于实现门极控制关断而设计的。 13.功率晶体管GTR从高电压小电流向低电压大电流跃变的现象称为________。 14.MOSFET的漏极伏安特性中的三个区域与GTR共发射极接法时的输出特性中的三个区域有对应关系,其中前者的截止区对应后者的________、前者的饱和区对应后者的________、前者的非饱和区对应后者的________。 15.电力MOSFET的通态电阻具有________温度系数。 16.IGBT 的开启电压U GE(th)随温度升高而________,开关速度________电力MOSFET 。 17.功率集成电路PIC分为二大类,一类是高压集成电路,另一类是________。 18.按照驱动电路加在电力电子器件控制端和公共端之间的性质,可将电力电子器件分为________和________两类。 19.为了利于功率晶体管的关断,驱动电流后沿应是________。 20.GTR的驱动电路中抗饱和电路的主要作用是________。 21.抑制过电压的方法之一是用________吸收可能产生过电压的能量,并用电阻将其消耗。在过电流保护中,快速熔断器的全保护适用于________功率装置的保护。

电力电子技术课后题答案

0-1.什么是电力电子技术? 电力电子技术是应用于电力技术领域中的电子技术;它是以利用大功率电子器件对能量进行变换和控制为主要内容的技术。国际电气和电子工程师协会(IEEE)的电力电子学会对电力电子技术的定义为:“有效地使用电力半导体器件、应用电路和设计理论以及分析开发工具,实现对电能的高效能变换和控制的一门技术,它包括电压、电流、频率和波形等方面的变换。” 0-2.电力电子技术的基础与核心分别是什么? 电力电子器件是基础。电能变换技术是核心. 0-3.请列举电力电子技术的 3 个主要应用领域。 电源装置;电源电网净化设备;电机调速系统;电能传输和电力控制;清洁能源开发和新蓄能系统;照明及其它。 0-4.电能变换电路有哪几种形式?其常用基本控制方式有哪三种类型? AD-DC整流电;DC-AC逆变电路;AC-AC交流变换电路;DC-DC直流变换电路。 常用基本控制方式主要有三类:相控方式、频控方式、斩控方式。 0-5.从发展过程看,电力电子器件可分为哪几个阶段? 简述各阶段的主要标志。可分为:集成电晶闸管及其应用;自关断器件及其应用;功率集成电路和智能功率器件及其应用三个发展阶段。集成电晶闸管及其应用:大功率整流器。自关断器件及其应用:各类节能的全控型器件问世。功率集成电路和智能功率器件及其应用:功率集成电路(PIC),智能功率模块(IPM)器件发展。 0-6.传统电力电子技术与现代电力电子技术各自特征是什么? 传统电力电子技术的特征:电力电子器件以半控型晶闸管为主,变流电路一般 为相控型,控制技术多采用模拟控制方式。 现代电力电子技术特征:电力电子器件以全控型器件为主,变流电路采用脉宽 调制型,控制技术采用PWM数字控制技术。 0-7.电力电子技术的发展方向是什么? 新器件:器件性能优化,新型半导体材料。高频化与高效率。集成化与模块化。数字化。绿色化。 1-1.按可控性分类,电力电子器件分哪几类? 按可控性分类,电力电子器件分为不可控器件、半控器件和全控器件。 1-2.电力二极管有哪些类型?各类型电力二极管的反向恢复时间大约为多少? 电力二极管类型以及反向恢复时间如下: 1)普通二极管,反向恢复时间在5us以上。 2)快恢复二极管,反向恢复时间在5us以下。快恢复极管从性能上可分为快速恢复和超快速恢复二极管。前者反向恢复时间为数百纳秒或更长,后者在100ns 以下,甚至达到20~30ns,多用于高频整流和逆变电路中。 3)肖特基二极管,反向恢复时间为10~40ns。 1-3.在哪些情况下,晶闸管可以从断态转变为通态? 维持晶闸管导通的条件是什么? 1、正向的阳极电压; 2、正向的门极电流。两者缺一不可。阳极电流大于维持电流。

电力电子技术(王兆安第五版)课后习题全部答案

电力电子技术答案 2-1与信息电子电路中的二极管相比,电力二极管具有怎样的结构特点才使得其具有耐受高压和大电流的能力?答:1.电力二极管大都采用垂直导电结构,使得硅片中通过电流的有效面积增大,显著提高了二极管的通流能力。 2.电力二极管在P区和N区之间多了一层低掺杂N区,也称漂移区。低掺杂N区由于掺杂浓度低而接近于无掺杂的纯半导体材料即本征半导体,由于掺杂浓度低,低掺杂N区就可以承受很高的电压而不被击穿。 2-2.使晶闸管导通的条件是什么?答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。或:uAK>0且uGK>0。 2-3. 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断?答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。 要使晶闸管由导通变为关断,可利用外加电压和外电路的作用使流过晶闸管的电流降 到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。 2-4图2-27中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流 最大值均为I m ,试计算各波形的电流平均值I d1 、I d2 、I d3 与电流有效值I 1 、I 2 、I 3 。 解:a) I d1= Im 2717 .0 )1 2 2 ( 2 Im ) ( sin Im 2 1 4 ≈ + = ?π ω π π π t I 1= Im 4767 .0 2 1 4 3 2 Im ) ( ) sin (Im 2 1 4 2≈ + = ? π ? π π π wt d t b) I d2= Im 5434 .0 )1 2 2 ( 2 Im ) ( sin Im 1 4 = + = ?wt d t π π ? π I 2= Im 6741 .0 2 1 4 3 2 Im 2 ) ( ) sin (Im 1 4 2≈ + = ? π ? π π π wt d t c) I d3= ?= 2 Im 4 1 ) ( Im 2 1π ω π t d I 3= Im 2 1 ) ( Im 2 1 2 2= ?t dω π π 2-5上题中如果不考虑安全裕量,问100A的晶阐管能送出的平均电流I d1、 I d2、I d3 各为多少?这时,相应的电流最大值I m1 、I m2 、I m3 各为多少? 解:额定电流I T(AV) =100A的晶闸管,允许的电流有效值I=157A,由上题计算 结果知

电力电子技术(王兆安第五版)课后习题全部答案

电力电子技术 2-1与信息电子电路中的二极管相比,电力二极管具有怎样的结构特点才使得其具有耐受高压和大电流的能力? 答:1.电力二极管大都采用垂直导电结构,使得硅片过电流的有效面积增大,显著提高了二极管的通流能力。 2.电力二极管在P 区和N 区之间多了一层低掺杂N 区,也称漂移区。低掺杂N 区由于掺杂浓度低而接近于无掺杂的纯半导体材料即本征半导体,由于掺杂浓度低,低掺杂N 区就可以承受很高的电压而不被击穿。 2-2. 使晶闸管导通的条件是什么? 答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。或:uAK>0且uGK>0。 2-3. 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断? 答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。 要使晶闸由导通变为关断, 可利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。 2-4 图2-27中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为I m ,试计算各波形的电流平均值I d1、I d2、I d3与电流有效值I 1、I 2、I 3。 解:a) I d1=Im 2717.0)122(2Im )(sin Im 21 4≈+= ?πωπ π π t I 1=Im 4767.021 432Im )()sin (Im 21 4 2≈+= ? π?π ππ wt d t b) I d2=Im 5434.0)122(2Im )(sin Im 1 4 =+= ? wt d t ππ ?π I 2=Im 6741.021 432Im 2)()sin (Im 14 2≈+= ? π?π π π wt d t c) I d3=? = 20 Im 41)(Im 21 π ωπ t d I 3=Im 21)(Im 21 20 2= ? t d ωπ π 2-5上题中如果不考虑安全裕量,问100A 的晶阐管能送出的平均电流I d1、I d2、I d3各为多少?这时,相应的电流最大值I m1、I m2、I m3各为多少? 解:额定电流I T(AV)=100A 的晶闸管,允许的电流有效值I=157A,由上题计算结果知 a) I m1 35 .3294767.0≈≈ I A, I d1≈0.2717I m1≈89.48A

电力电子技术第五版第二章答案

电力电子技术第五版课后习题答案 第二章电力电子器件 2. 使晶闸管导通的条件是什么? 答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电 流(脉冲)。或:U AK >0且U GK >0。 3. 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断? 答:维持晶 闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电 流,即维持电流。 要使晶闸管由导通变为关断,可利用外加电压和外电路的作用使流过晶闸管 的电流降到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶 闸管关断。 4. 图2-27中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最 解:a) I di =丄 jmsin ,td(,t)=5 (2 1) 0.27仃 I m 2冗 4 2冗 2 5. 上题中如果不考虑安全裕量,问100A 的晶闸管能送出的平均电流I di 、I d2、 I d3各为多少?这时,相应的电流最大值 I m1 > I m2 > I m3 解:额定电流I T (AV )=100A 的晶闸管,允许的电流有效值I =157A,由上题计算结 果 知 a) I m1 0.4767 329.35, I d1 0.27 仃 I m1 89.48 b) c) "=J 舟 /(泾:n^t)2 d(

电力电子技术第二版张兴课后习题问题详解

一、简答题 2.1 晶闸管串入如图所示的电路,试分析开关闭合和关断时电压表的读数。 题2.1图 在晶闸管有触发脉冲的情况下,S开关闭合,电压表读数接近输入直流电压;当S开关断开时,由于电压表内阻很大,即使晶闸管有出发脉冲,但是流过晶闸管电流低于擎住电流,晶闸管关断,电压表读数近似为0(管子漏电流形成的电阻与电压表内阻的分压值)。 2.2 试说明电力电子器件和信息系统中的电子器件相比,有何不同。 电力电子系统中的电子器件具有较大的耗散功率;通常工作在开关状态;需要专门的驱动电路来控制;需要缓冲和保护电路。 2.3 试比较电流驱动型和电压驱动型器件实现器件通断的原理。 电流驱动型器件通过从控制极注入和抽出电流来实现器件的通断;电压驱动型器件通过在控制极上施加正向控制电压实现器件导通,通过撤除控制电压或施加反向控制电压使器件关断。 2.4 普通二极管从零偏置转为正向偏置时,会出现电压过冲,请解释原因。 导致电压过冲的原因有两个:阻性机制和感性机制。阻性机制是指少数载流子注入的电导调制作用。电导调制使得有效电阻随正向电流的上升而下降,管压降随之降低,因此正向电压在到达峰值电压U FP 后转为下降,最后稳定在U F。感性机制是指电流随时间上升在器件内部电感上产生压降,d i/d t 越大,峰值电压U FP 越高。 2.5 试说明功率二极管为什么在正向电流较大时导通压降仍然很低,且在稳态导通时其管压降随电流的大小变化很小。 若流过 PN 结的电流较小,二极管的电阻主要是低掺杂 N-区的欧姆电阻,阻值较高且为常数,因而其管压降随正向电流的上升而增加;当流过 PN 结的电流较大时,注入并积累在低掺杂 N-区的少子空穴浓度将增大,为了维持半导体电中性条件,其多子浓度也相应大幅度增加,导致其电阻率明显下降,即电导率大大增加,该现象称为电导调制效应。 2.6 比较肖特基二极管和普通二极管的反向恢复时间和通流能力。从减小反向过冲电压的角度出发,应选择恢复特性软的二极管还是恢复特性硬的二极管? 肖特基二极管反向恢复时间比普通二极管短,通流能力比普通二极管小。从减少反向过冲电压的角度出发,应选择恢复特性软的二极管。

电力电子技术(王兆安第五版)课后习题全部答案

电力电子技术 2-1与信息电子电路中的二极管相比,电力二极管具有怎样的结构特点才使得其具有耐受高压和大电流的能力 答:1.电力二极管大都采用垂直导电结构,使得硅片中通过电流的有效面积增大,显著提高了二极管的通流能力。 2.电力二极管在P 区和N 区之间多了一层低掺杂N 区,也称漂移区。低掺杂N 区由于掺杂浓度低而接近于无掺杂的纯半导体材料即本征半导体,由于掺杂浓度低,低掺杂N 区就可以承受很高的电压而不被击穿。 2-2. 使晶闸管导通的条件是什么 答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。或:uAK>0且uGK>0。 2-3. 维持晶闸管导通的条件是什么怎样才能使晶闸管由导通变为关断 答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。 要使晶闸由导通变为关断, 可利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。 2-4 图2-27中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为I m ,试计算各波形的电流平均值I d1、I d2、I d3与电流有效值I 1、I 2、I 3。 解:a) I d1=Im 2717.0)122(2Im )(sin Im 21 4≈+= ?πωπ π π t I 1=Im 4767.021 432Im )()sin (Im 21 4 2≈+= ? π?π ππ wt d t b) I d2=Im 5434.0)122(2Im )(sin Im 1 4 =+= ? wt d t ππ ?π I 2=Im 6741.021 432Im 2)()sin (Im 14 2≈+= ? π?π π π wt d t c) I d3=? = 20 Im 41)(Im 21 π ωπ t d I 3=Im 21)(Im 21 20 2= ? t d ωπ π 2-5上题中如果不考虑安全裕量,问100A 的晶阐管能送出的平均电流I d1、I d2、I d3各为多少这时,相应的电流最大值I m1、I m2、I m3各为多少 解:额定电流I T(AV)=100A 的晶闸管,允许的电流有效值I=157A,由上题计算结果知 a) I m1 35 .3294767.0≈≈ I A, ≈≈ I m2,90.2326741.0A I ≈≈

《电力电子技术第二版》习题答案

《电力电子技术》习题及解答 第1章思考题与习题 1.1晶闸管的导通条件是什么? 导通后流过晶闸管的电流和负载上的电压由什么决定? 答:晶闸管的导通条件是:晶闸管阳极和阳极间施加正向电压,并在门极和阳极间施加正向触发电压和电流(或脉冲)。 导通后流过晶闸管的电流由负载阻抗决定,负载上电压由输入阳极电压UA决定。 1.2晶闸管的关断条件是什么?如何实现?晶闸管处于阻断状态时其两端的电压大小由什么决定? 答:晶闸管的关断条件是:要使晶闸管由正向导通状态转变为阻断状态,可采用阳极电压反向使阳极电流IA减小,IA下降到维持电流I H以下时,晶闸管内部建立的正反馈无法进行。进而实现晶闸管的关断,其两端电压大小由电源电压U A决定。 1.3温度升高时,晶闸管的触发电流、正反向漏电流、维持电流以及正向转折电压和反向击穿电压如何变化? 答:温度升高时,晶闸管的触发电流随温度升高而减小,正反向漏电流随温度升高而增大,维持电流IH会减小,正向转折电压和反向击穿电压随温度升高而减小。 1.4晶闸管的非正常导通方式有哪几种? 答:非正常导通方式有:(1) I g=0,阳极电压升高至相当高的数值;(1) 阳极电压上升率du/dt过高;(3) 结温过高。 1.5请简述晶闸管的关断时间定义。 答:晶闸管从正向阳极电流下降为零到它恢复正向阻断能力所需的这段时间称为关断时

间。即gr rr q t t t +=。 1.6试说明晶闸管有哪些派生器件? 答:快速晶闸管、双向晶闸管、逆导晶闸管、光控晶闸管等。 1.7请简述光控晶闸管的有关特征。 答:光控晶闸管是在普通晶闸管的门极区集成了一个光电二极管,在光的照射下,光电二极管电流增加,此电流便可作为门极电触发电流使晶闸管开通。主要用于高压大功率场合。 1.8型号为KP100-3,维持电流I H =4mA的晶闸管,使用在图题1.8所示电路中是否合理,为什么?(暂不考虑电压电流裕量) 图题1.8 答:(a )因为H A I mA K V I <=Ω =250100,所以不合理。 (b) 因为A V I A 2010200=Ω =, KP100的电流额定值为100A ,裕量达5倍,太大了。 (c)因为A V I A 1501150=Ω= ,大于额定值,所以不合理。 1.9 图题1.9中实线部分表示流过晶闸管的电流波形,其最大值均为I m ,试计算各图的电流平均值.电流有效值和波形系数。 解:图(a): I T(A V)=π 21?πωω0)(sin t td I m =πm I IT =?πωωπ02)()sin (21t d t I m =2 m I

电力电子技术第五版试题与答案4套

《电力电子技术》试题(1) 一、填空(30分) 1、双向晶闸管的图形符号是 ,三个电极分别是 , 和 ;双向晶闸管的的触发方式有 、 、 、 .。 2、单相全波可控整流电路中,晶闸管承受的最大反向电压为 。三相半波可控整流电路中,晶闸管承受的最大反向电压为 。(电源相电压为U 2) 3、要使三相全控桥式整流电路正常工作,对晶闸管触发方法有两种,一是用 触发;二是用 触发。 4、在同步电压为锯齿波的触发电路中,锯齿波底宽可达 度;实际移相才能达 度。 5、异步电动机变频调速时,对定子频率的控制方式有 、 、 、 。 6、软开关电路种类很多,大致可分成 电路、 电路两大类。 7、变流电路常用的换流方式有 、 、 、 四种。 8、逆变器环流指的是只流经 、 而不流经 的电流,环流可在电路中加 来限制。 9、提高变流置的功率因数的常用方法有 、 、 。 10、绝缘栅双极型晶体管是以 作为栅极,以 作为发射极与集电极复合而成。 三、选择题(每题2分 10分) 1、α为 度时,三相桥式全控整流电路,带电阻性负载,输出电压波形处于连续和断续的临界状态。 A 、0度。B 、60度。C 、30度。D 、120度。 2、晶闸管触发电路中,若使控制电压U C =0,改变 的大小,使触发角α=90o,可使直流电机负载电压U d =0。达到调整移相控制围,实现整流、逆变的控制要求。 A 、 同步电压, B 、控制电压, C 、偏移调正电压。 3、能够实现有源逆变的电路为 。 A 、三相半波可控整流电路, B 、三相半控整流桥电路, C 、单相全控桥接续流二极管电路, D 、单相桥式全控整流电路。 4、如某晶闸管的正向阻断重复峰值电压为745V ,反向重复峰值电压为825V ,则该晶闸管的额定电压应为( ) A 、700V B 、750V C 、800V D 、850V 5、单相半波可控整流电阻性负载电路中,控制角α的最大移相围是( ) A 、90° B 、120° C 、150° D 、180° 四、问答题(20分) 1、 实现有源逆变必须满足哪些必不可少的条件?(6分) 2、根据对输出电压平均值进行控制的方法不同,直流斩波电路可有哪三种控制方式?并简述其控制原理。(7分) 3、电压型逆变电路中反馈二极管的作用是什么?为什么电流型逆变电路中没有反馈二极管?(7分) 五、计算题(每题10分,20分) 1.在图示升压斩波电路中,已知E=50V ,负载电阻R=20Ω,L 值和C 值极大,采用脉宽调制控制方式,当T=40μs ,t on =25μs 时,计算输出电压平均值U 0,输出电流平均值I 0。 2、三相半波整流电路,如图所示:将变压器二次侧绕组等分为二段,接成曲折接法,每段绕组电压为100V 。试求: (1) 晶闸管承受的最大反压是多少? (2) 变压器铁心有没有直流磁化?为什么? 一、填空 1、 第一阳极T1,第二阳极T2,门极G ;I +,I -,III +,III -; 2、22U 2;6U 2。 3、大于60o小于120o的宽脉冲,脉冲前沿相差60o的双窄脉冲, 4、240o;0o—180o。 5、恒压频比控制、转差劲频率控制、矢量控制、直接转矩控制。 6、零电压、零电流 7、器件换流;电网换流;负载换流;强迫换流。 8、两组反并联的逆变桥;不流经负载;采用串联电抗器。 9、减小触发角;增加整流相数;采用多组变流装置串联供电;设置补偿电容。 10、电力场效应晶体管栅极为栅极;以电力晶体管集电极和发射极 一、 选择题

电力电子技术(第二版)第4章答案

第四章 直流直流变换器习题解答 4-1 降压型斩波电路,直流电压为80V ,负载电阻为10Ω,斩波频率为50kHz ,导通比为0.5。 (1) 画出各电流波形。 (2) 求输出电压和电流的平均值。 解: T t off t 1t 2 I 20 s kHz f T s μ205011=== 5.00==d U U D V U U d 40805.05.00=?== A R U I 410 4000=== 4-2 在降压变换器中,认为所有的元件都是理想的。通过控制占空比D 保持输出电压不变,U o =5V ,输入电压为10~40V ,P o ≥5W ,f s =50kHz ,为保证变换器工作在电流连续模式,计算要求的最小电感量。 解:s f T kHz f s s s μ201,50=== ∴在该变换器中,V U u 500==不变, 5000≥=I U P 即 A U P I 10 00=≥

要求在电流连续模式下的最小电感,电感电流在电流临界情况下。 当输入电压为10~40V 时,D=0.5~0.125 在输出电压不变时,由)1(2o s LB D L U T I -=得, H D D I U T L μ75.43~25)1(1 251020)1(26LB o s =-???=-=- 当D=0.125~0.5变化时,保持连续的电感的取值如上式,所以保持在整个工作范围内连续的最小电感是43.75μH 4-3 在降压变换器中,认为所有的元件都是理想的,假设输出电压U o =5V ,f s =20kHz ,L =1mH ,C =470μF ,当输入电压为12.6V ,I o =200mA ,计算输出电压的纹波。 解: 因为 ms f T s s 05.020/1/1=== 假设 电路工作在电路连续的模式下, 所以有:6.12/5/==d O U U D =0.397 电路在临界状态下时,有 L U U DT I o d S O B 2/)(-==mA 4.75102/)56.12(1005.0397.033=?-???-- 由于O OB I I <,所以电路工作在电流连续模式下, 电压纹波为 mV D LC U T U o s o 065.2)379.01(10 47085)1050()1(89262=-????=-=?-- 输出电压的纹波2.065mV 4.4 (略) 4-5 在升压型斩波器电路中,直流电压为100V ,R L =50Ω,t on =80 μs ,t off =20 μs ,设电感和电容的值足够大。 (1) 画出u o 、i C 的波形。 (2) 计算输出电压U o 。 解:(1):

电力电子技术第四版三四章课后答案

第3章 直流斩波电路 1.简述图3-1a 所示的降压斩波电路工作原理。 答:降压斩波器的原理是:在一个控制周期中,让V 导通一段时间t on ,由电源E 向L 、R 、M 供电,在此期间,u o =E 。然后使V 关断一段时间t off ,此时电感L 通过二极管VD 向R 和M 供电,u o =0。一个周期内的平均电压U o =E t t t ?+off on on 。输出电压小于电源电压,起到降压的作用。 2.在图3-1a 所示的降压斩波电路中,已知E =200V ,R =10Ω,L 值极大,E M =30V ,T =50μs,t on =20μs,计算输出电压平均值U o ,输出电流平均值I o 。 解:由于L 值极大,故负载电流连续,于是输出电压平均值为 U o = E T t on =50 20020?=80(V) 输出电流平均值为 I o =R E U M o -=103080-=5(A) 3.在图3-1a 所示的降压斩波电路中,E =100V , L =1mH ,R =Ω,E M =10V ,采用脉宽调制控制方式,T =20μs ,当t on =5μs 时,计算输出电压平均值U o ,输出电流平均值I o ,计算输出电流的最大和最小值瞬时值并判断负载电流是否连续。当t on =3μs 时,重新进行上述计算。 解:由题目已知条件可得: m = E E M =100 10= τ=R L =5.0001.0= 当t on =5μs 时,有 ρ=τT = = τon t = 由于 11--ραρe e =1101.00025.0--e e =>m

所以输出电流连续。 此时输出平均电压为 U o = E T t on =20 5100?=25(V) 输出平均电流为 I o =R E U M o -=5.01025-=30(A) 输出电流的最大和最小值瞬时值分别为 I max =R E m e e ???? ??-----ραρ11=5.01001.01101.00025.0??? ? ??-----e e =(A) I min =R E m e e ??? ? ??---11ραρ=5.01001.01101.00025.0???? ??---e e =(A) 当t on =3μs 时,采用同样的方法可以得出: αρ= 由于 11--ραρe e =1 101.0015.0--e e =>m 所以输出电流仍然连续。 此时输出电压、电流的平均值以及输出电流最大、最小瞬时值分别为: U o = E T t on =203100?=15(V) I o =R E U M o -=5.01015-=10(A) I max =5.01001.01101.00015.0???? ??-----e e =(A) I min =5.01001.01101.00015.0??? ? ??---e e =(A) 4.简述图3-2a 所示升压斩波电路的基本工作原理。 答:假设电路中电感L 值很大,电容C 值也很大。当V 处于通态时,电源E 向电感L 充电,充电电流基本恒定为I 1,同时电容C 上的电压向负载R 供电,因C 值很大,基本保持输出电压为恒值U o 。设V 处于通态的时间为t on ,此阶段电感L 上积蓄的能量为on 1t EI 。当 V 处于断态时E 和L 共同向电容C 充电并向负载R 提供能量。设V 处于断态的时间为t off ,则在此期间电感L 释放的能量为()off 1o t I E U -。当电路工作于稳态时,一个周期T 中电感L 积蓄的能量 与释放的能量相等,即: ()off 1o on 1t I E U t EI -=

文本预览
相关文档 最新文档