当前位置:文档之家› IHW30N120R3

IHW30N120R3

IHW30N120R3
IHW30N120R3

Reverse Conducting IGBT with monolithic body diode

Features: ? Powerful monolithic Body Diode with very low forward voltage

? Body diode clamps negative voltages

? TrenchStop and Fieldstop technology for 1200 V applications

offers :

- very tight parameter distribution - high ruggedness, temperature stable behavior

? NPT technology offers easy parallel switching capability due to

positive temperature coefficient in V CE(sat) ? Low EMI

? Qualified according to JEDEC 1 for target applications ? Pb-free lead plating; RoHS compliant

? Complete product spectrum and PSpice Models : https://www.doczj.com/doc/369789097.html,/igbt/

Applications: ? Inductive Cooking ? Soft Switching Applications Type

V CE

I C

V CE(sat ),Tj=25°C

T j,max Marking Package

IHW30N120R2 1200V 30A 1.65V 175°C H30R1202 PG-TO-247-3

Maximum Ratings

Parameter Symbol Value Unit Collector-emitter voltage V C E 1200 V DC collector current T C = 25°C T C = 100°C

I C

60 30 Pulsed collector current, t p limited by T jmax

I C p u l s 90 Turn off safe operating area (V CE ≤ 1200V, T j ≤ 175°C) - 90 Diode forward current T C = 25°C T C = 100°C

I F

60 30

Diode pulsed current, t p limited by T jmax

I F p u l s 90

Diode surge non repetitive current, t p limited by T jmax T C = 25°C, t p = 10ms, sine halfwave T C = 25°C, t p ≤ 2.5μs, sine halfwave T C = 100°C, t p ≤ 2.5μs, sine halfwave I F S M

50 130 120 A

Gate-emitter voltage

Transient Gate-emitter voltage (t p < 5 ms) V G E

±20 ±25

V Power dissipation T C = 25°C P t o t 390 W Operating junction temperature T j -40...+175 Storage temperature

T s t g -55...+175 Soldering temperature, 1.6mm (0.063 in.) from case for 10s

-

260

°C

1

J-STD-020 and JESD-022

PG-TO-247-3

?

Thermal Resistance

Parameter Symbol

Conditions

Max.

Value Unit Characteristic

IGBT thermal resistance,

junction – case

R t h J C0.38

Diode thermal resistance,

junction – case

R t h J C D0.37

Thermal resistance, junction – ambient R t h J A40

K/W

Electrical Characteristic, at T j = 25 °C, unless otherwise specified

Value

Parameter Symbol

Conditions

min. Typ. max.

Unit Static Characteristic

Collector-emitter breakdown voltage V(B R)C E S V G E=0V, I C=1mA1200 - - Collector-emitter saturation voltage V C E(s a t)V G E = 15V, I C=30A

T j=25°C T j=125°C T j=175°C -

-

-

1.65

1.85

2.0

1.8

-

-

Diode forward voltage V F V G E=0V, I F=30A

T j=25°C T j=125°C T j=175°C -

-

-

1.55

1.7

1.75

1.8

-

-

Gate-emitter threshold voltage V G E(t h)I C=0.7mA,

V C E=V G E 5.1 5.8 6.4

V

Zero gate voltage collector current I C E S V C E=1200V,

V G E=0V

T j=25°C T j=175°C -

-

-

-

5

2500

μA

Gate-emitter leakage current I G E S V C E=0V,V G E=20V- - 100

nA Transconductance g f s V C E=20V, I C=30A- 19.7 - S Integrated gate resistor R G i n t none ?

Dynamic Characteristic Input capacitance C i s s - 2589 - Output capacitance

C o s s

- 77 - Reverse transfer capacitance C r s s V C E =25V, V G E =0V, f =1MHz - 62 - pF Gate charge

Q G a t e

V C C =960V, I C =30A V G E =15V

- 198 - nC

Internal emitter inductance

measured 5mm (0.197 in.) from case

L E

- 13 - nH

Switching Characteristic, Inductive Load, at T j =25 °C

Value

Parameter Symbol Conditions min. typ. Max. Unit

IGBT Characteristic Turn-off delay time t d (o f f ) - 792 - Fall time t f - 33 -

Turn-on energy E o n - - - Turn-off energy E o f f - 2.4 - ns Total switching energy E t s T j =25°C,

V C C =600V,I C =30A V G E =0 /15V,

R G =28Ω,

L σ2)

=180nH,

C σ2)

=39pF

- 2.4 - mJ

Switching Characteristic, Inductive Load, at T j =175 °C

Value

Parameter Symbol Conditions min. Typ. Max. Unit

IGBT Characteristic Turn-off delay time t d (o f f ) - 860 - Fall time t f - 40 -

Turn-on energy E o n - - - Turn-off energy E o f f - 3.1 - ns Total switching energy

E t s

T j =175°C

V C C =600V,I C =30A,V G E = 0 /15V,

R G = 28Ω,

L σ=180nH 2),

C σ=39pF 2)

- 3.1 - mJ

2)

Leakage inductance L σ and Stray capacity C σ due to dynamic test circuit in Figure E.

I C , C O L L E C T O R C U R R E N T

10Hz

100Hz 1kHz 10kHz 100kHz

0A

20A

40A

60A

80A

I C , C O L L E C T O R C U R R E N T

1V 10V 100V 1000V

1A

10A

f , SWITCHING FREQUENCY

V CE , COLLECTOR -EMITTER VOLTAGE

Figure 1. Collector current as a function of

switching frequency for hard switching (turn-off)

(T j ≤ 175°C, D = 0.5, V CE = 600V, V GE = 0/+15V, R G = 28Ω) Figure 2. IGBT Safe operating area

(D = 0, T C = 25°C, T j ≤175°C;V GE =15V)

P t o t , D I S S I P A T E D P O W E R

25°C

50°C

75°C

100°C

125°C

150°C

0W 50W 100W 150W 200W 250W 300W 350W I C , C O L L E C T O R C U R R E N T

25°C

50°C 75°C 100°C 125°C 150°C

0A

10A

20A

30A

40A

50A

T C , CASE TEMPERATURE

T C , CASE TEMPERATURE

Figure 3. Power dissipation as a function of

case temperature (T j ≤ 175°C)

Figure 4. DC Collector current as a function

of case temperature (V GE ≥ 15V, T j ≤ 175°C)

I C , C O L L E C T O R C U R R E N T

0.0V

0.5V

1.0V

1.5V

2.0V

2.5V

0A

10A

20A 30A 40A 50A 60A 70A

80A I C , C O L L E C T O R C U R R E N T

0V 1V 2V 3V

0A

10A 20A 30A

40A 50A 60A

70A

80A

V CE , COLLECTOR -EMITTER VOLTAGE

V CE , COLLECTOR -EMITTER VOLTAGE

Figure 5. Typical output characteristic

(T j = 25°C) Figure 6. Typical output characteristic

(T j = 175°C)

I C , C O L L E C T O R C U R R

E N T

0V

2V

4V

6V

8V

10V

0A

10A 20A 30A 40A 50A 60A 70A 80A

V C E (s a t ), C O L L E C T O R -E M I T T S A T U R A T I O N V O L T A G E

0°C

50°C

100°C

150°C

0.0V

0.5V

1.0V

1.5V

2.0V

2.5V

V GE , GATE-EMITTER VOLTAGE

T J , JUNCTION TEMPERATURE

Figure 7. Typical transfer characteristic

(V CE =20V)

Figure 8. Typical collector-emitter saturation

voltage as a function of junction temperature (V GE =15V)

t , S W I T

C H I N G T I M E S

20A 30A 40A 50A

100ns

1000ns

t , S W I T C H I

N G T I M E S

10Ω20Ω30Ω40Ω

50Ω60Ω70Ω

100ns

1000ns

I C , COLLECTOR CURRENT

R G , GATE RESISTOR

Figure 9. Typical switching times as a

function of collector current (inductive load, T J =175°C,

V CE =600V, V GE =0/15V, R G =28?, Dynamic test circuit in Figure E) Figure 10. Typical switching times as a

function of gate resistor

(inductive load, T J =175°C, V CE =600V, V GE =0/15V, I C =30A,

Dynamic test circuit in Figure E)

t , S W I T C

H I N G T I M E S

25°C 50°C 75°C 100°C 125°C 150°C

100ns

1000ns

V G E (t h ), G A T E -E M I T T T R S H O L D V O L T A G E

-50°C

0°C 50°C 100°C

2V

3V

4V

5V

6V

T J , JUNCTION TEMPERATURE

T J , JUNCTION TEMPERATURE

Figure 11. Typical switching times as a

function of junction temperature (inductive load, V CE =600V, V GE =0/15V, I C =30A, R G =28?, Dynamic test circuit in Figure E)

Figure 12. Gate-emitter threshold voltage as a

function of junction temperature (I C = 0.7mA)

E , S W I T C H I N G E N E R G

Y L O S S E S

0A

10A

20A

30A

40A

50A

0.0mJ

1.0mJ

2.0mJ

3.0mJ

4.0mJ

5.0mJ

6.0mJ

E , S W I T C H I N G E N E

R G Y L O S S E S

20Ω

30Ω

40Ω

50Ω60Ω70Ω

0.0mJ

1.0mJ

2.0mJ

3.0mJ

4.0mJ

I C , COLLECTOR CURRENT

R G , GATE RESISTOR

Figure 13. Typical turn-off energy as a

function of collector current (inductive load, T J =175°C,

V CE =600V, V GE =0/15V, R G =28?, Dynamic test circuit in Figure E) Figure 14. Typical turn-off energy as a

function of gate resistor

(inductive load, T J =175°C, V CE =600V, V GE =0/15V, I C =30A,

Dynamic test circuit in Figure E)

E , S W I T C H I N G E N E R G Y

L O S S E S

25°C

50°C 75°C 100°C 125°C 150°C

0.0mJ

0.5mJ 1.0mJ 1.5mJ 2.0mJ 2.5mJ

3.0mJ E , S W I T C H I N G E N E R G Y

L O S S E S

400V

500V 600V 700V 800V 900V

0mJ mJ

2mJ

3mJ

4mJ

T J , JUNCTION TEMPERATURE

V CE , COLLECTOR -EMITTER VOLTAGE

Figure 15. Typical turn-off energy as a

function of junction temperature (inductive load, V CE =600V, V GE =0/15V, I C =30A, R G =28?, Dynamic test circuit in Figure E)

Figure 16. Typical turn-off energy as a

function of collector emitter voltage

(inductive load, T J =175°C, V GE =0/15V, I C =30A, R G =28?, Dynamic test circuit in Figure E)

V G E , G A T E -E M I T T

E R V O L T A G E

0nC 50nC 100nC 150nC 200nC 250nC

0V

5V

10V

c , C A P A C I

T A N C E

0V 10V 20V

100pF

1nF

Q GE , GATE CHARGE

V CE , COLLECTOR -EMITTER VOLTAGE

Figure 17. Typical gate charge

(I C =30 A) Figure 18. Typical capacitance as a function

of collector-emitter voltage (V GE =0V, f = 1 MHz)

Z t h J C , T R A N S I E N T T H E R M A L R E S I S T A N C E

10μs 100μs 1ms 10ms 100ms 10-3

K/W

10-2

K/W

10-1

K/W

Z t h J C , T R A N S I E N T T H E R M A L R E S I S T A N C E

10μs

100μs

1ms 10ms 100ms

10-2

K/W

10-1

K/W

t P , PULSE WIDTH

t P , PULSE WIDTH

Figure 19. IGBT transient thermal resistance (D = t p / T )

Figure 20. Diode transient thermal

impedance as a function of pulse width (D =t P /T )

I F , F O R W A R D C U R R E N T

0.0V

0.5V

1.0V

1.5V

2.0V

0A 10A

20A

30A

40A

50A

V F , F O R W A R D V O L T A G E

0°C

50°C

100°C

150°C

0.0V

0.5V

1.0V

1.5V

2.0V

V F , FORWARD VOLTAGE

T J , JUNCTION TEMPERATURE

Figure 21. Typical diode forward current as a function of forward voltage

Figure 22. Typical diode forward voltage as a function of junction temperature

PG-TO247-3

Leakage inductance Lσ and Stray capacity Cσ

Edition 2006-01

Published by

Infineon Technologies AG

81726 München, Germany

? Infineon Technologies AG 12/2/09.

All Rights Reserved.

Attention please!

The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (https://www.doczj.com/doc/369789097.html,).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support

and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

相关主题
文本预览
相关文档 最新文档