当前位置:文档之家› 高三数学第二轮复习教案 第5讲 解析几何问题的题型与方法(二)

高三数学第二轮复习教案 第5讲 解析几何问题的题型与方法(二)

高三数学第二轮复习教案

第5讲 解析几何问题的题型与方法(二)

五、注意事项

1.(1) 直线的斜率是一个非常重要的概念,斜率k 反映了直线相对于x 轴的倾斜程度。当斜率k 存在时,直线方程通常用点斜式或斜截式表示,当斜率不存在时,直线方程为x =a (a ∈R )。因此,利用直线的点斜式或斜截式方程解题时,斜率k 存在与否,要分别考虑。

(2) 直线的截距式是两点式的特例,a 、b 分别是直线在x 轴、y 轴上的截距,因为a ≠0,b ≠0,所以当直线平行于x 轴、平行于y 轴或直线经过原点,不能用截距式求出它的方程,而应选择其它形式求解。

(3)求解直线方程的最后结果,如无特别强调,都应写成一般式。

(4)当直线1l 或2l 的斜率不存在时,可以通过画图容易判定两条直线是否平行与垂直

(5)在处理有关圆的问题,除了合理选择圆的方程,还要注意圆的对称性等几何性质的运用,这样可以简化计算。

2.(1)用待定系数法求椭圆的标准方程时,要分清焦点在x 轴上还是y 轴上,还是两种都存在。 (2)注意椭圆定义、性质的运用,熟练地进行a 、b 、c 、e 间的互求,并能根据所给的方程画出椭圆。

(3)求双曲线的标准方程 应注意两个问题:(1) 正确判断焦点的位置;(2) 设出标准方程后,运用待定系数法求解。

(4)双曲线12222=-b

y a x 的渐近线方程为x a b y ±=或表示为022

22=-b y a x 。若已知双曲线的渐近线方程是x n m y ±=,

即0=±ny mx ,那么双曲线的方程具有以下形式:

k y n x m =-2222,其中k 是一个不为零的常数。

(5)双曲线的标准方程有两个12222=-b y a x 和12222=-b

x a y (a >0,b >0)。这里2

22a c b -=,其中|1F 2F |=2c 。要注意

这里的a 、b 、c 及它们之间的关系与椭圆中的异同。

(6)求抛物线的标准方程,要线根据题设判断抛物线的标准方程的类型,再求抛物线的标准方程,要线根据题设判断抛

物线的标准方程的类型,再由条件确定参数p 的值。同时,应明确抛物线的标准方程、焦点坐标、准线方程三者相依并存,知道其中抛物线的标准方程、焦点坐标、准线方程三者相依并存,知道其中一个,就可以求出其他两个。

六、范例分析

例1、求与直线3x +4y +12=0平行,且与坐标轴构成的三角形面积是24的直线l 的方程。

分析:满足两个条件才能确定一条直线。一般地,求直线方程有两个解法,即用其中一个条件列出含待定系数的方程,再用另一个条件求出此参数。

解法一:先用“平行”这个条件设出l 的方程为3x +4y +m =0①再用“面积”条件去求m ,∵直线l 交x 轴于)0,3

(m A -

,交y 轴于)4,0(m B -由244

321

=-?-

?m m ,得24±=m ,代入①得所求直线的方程为:02443=±+y x 解法二:先用面积这个条件列出l 的方程,设l 在x 轴上截距离a ,在y 轴上截距b ,则有242

1

=ab ,因为l 的倾角为钝角,所以a 、b 同号,|ab |=ab ,l 的截距式为148=+

a

y a x ,即48x +a 2y -48a =0②又该直线与3x +4y +2=0平行,∴2

4843482a a -≠=,∴8±=a 代入②得所求直线l 的方程为02443=±+y x

说明:与直线A x +B y +C=0平行的直线可写成A x +B y +C 1=0的形式;与A x +B y +C=0垂直的直线的方程可表示为B x -A y +C 2=0的形式。

例2、若直线mx +y +2=0与线段AB 有交点,其中A (-2,3),B (3,2),求实数m 的取值范围。

解:直线mx +y +2=0过一定点C (0,-2),直线mx +y +2=0实际上表示的是过定点(0,-2)的直线系,因为直线与线段AB 有交点,则直线只能落在∠ABC 的内部,设BC 、CA 这两条直线的斜率分别为k 1、k 2,则由斜率的定义可知,直线mx +y +2=0的斜率k 应满足k ≥k 1或k ≤k 2,∵A (-2,3) B (3,2)

∴2

5 3421-==k k ∴-m ≥

34或-m ≤25- 即m ≤34-或m ≥2

5 说明:此例是典型的运用数形结合的思想来解题的问题,这里要清楚直线mx +y +2=0的斜率-m 应为倾角的正切,而当倾

角在(0°,90°)或(90°,180°)内,角的正切函数都是单调递增的,因此当直线在∠ACB 内部变化时,k 应大于或等于k BC ,或者k 小于或等于k AC ,当A 、B 两点的坐标变化时,也要能求出m 的范围。

例3、已知x 、y 满足约束条件

??

?

??≤+-≤-≥3053431y x y x x 求目标函数z =2x -y 的最大值和最小值。

解:根据x 、y 满足的约束条件作出可行域,即如图所示的阴影部分(包括边界)。

作直线0l :2x -y =0,再作一组平行于0l 的直线l :2x -y =t ,t ∈R 。

可知,当l 在0l 的右下方时,直线l 上的点(x ,y )满足2x -y >0,即t >0,而且直线l 往右平移时,t 随之增大。当直线l 平移至1l 的位置时,直线经过可行域上的点B ,此时所对应的t 最大;当l 在0l 的左上方时,直线l 上的点(x ,y )满足2x -y <0,即t <0,而且直线l 往左平移时,t 随之减小。当直线l 平移至2l 的位置时,直线经过可行域上的点C ,此时所对应的t 最小。

由 ??

?=-+=+-0

30530

43y x y x 解得点B 的坐标为(5,3);

由 ?

??=-+=030531y x x 解得点C 的坐标为(1,527

)。

所以,最大值z =235-3=7;最小值z =231-527=5

17-。

例4、某运输公司有10辆载重量为6吨的A 型卡车与载重量为8吨的B 型卡车,有11名驾驶员。在建筑某段高速公路中,

该公司承包了每天至少搬运480吨沥青的任务。已知每辆卡车每天往返的次数为A 型卡车8次,B 型卡车7次;每辆卡车每天的成本费A 型车350元,B 型车400元。问每天派出A 型车与B 型车各多少辆,公司所花的成本费最低,最低为多少?

解:设每天派出A 型车与B 型车各x 、y 辆,并设公司每天的成本为z 元。由题意,得

????

???

≥+≤+≤≤60

564811510y x y x y x x ,y ∈N , 且z =350x +400y 。

即 ????

???≥+≤+≤≤55

7611510

y x y x y x x ,y ∈N ,

作出可行域,作直线0l :350x +400y =0,即7x +8y =0。

作出一组平行直线:7x +8y =t 中(t 为参数)经过可行域内的点和原点距离最近的直线,此直线经过6x +7y =60和y =5的交点A (

625,5),由于点A 的坐标不都是整数,而x ,y ∈N ,所以可行域内的点A (6

25,5)不是最优解。 为求出最优解,必须进行定量分析。

因为,736

25

+835≈69.2,所以经过可行域内的整点(横坐标和纵坐标都是整数的点)且与原点最小的直线是7x +8y =10,在可行域内满足该方程的整数解只有x =10,y =0,所以(10,0)是最优解,即当l 通过B 点时,z =350310+40030=3500元为

最小。

答:每天派出A 型车10辆不派B 型车,公司所化的成本费最低为3500元。

例5、已知点T 是半圆O 的直径AB 上一点,AB=2、OT=t (0

(1)写出直线B A ''的方程; (2)计算出点P 、Q 的坐标;

(3)证明:由点P 发出的光线,经AB 反射后,反射光线通过点Q 。

解: (1) 显然()t A -1,1',(),

,‘

t B +-11 于是 直线B A ''的方程为1+-=tx y ; (2)由方程组?

??+-==+,1,122tx y y x 解出 ),(10P 、),(2

2

21112t t t t Q +-+; (3)t

t k PT 1

001-=--=

, t t t t t t

t t t k QT

11112011222

22

=--=-+-+-=)(。 由直线PT 的斜率和直线QT 的斜率互为相反数知,由点P 发出的光线经点T 反射,反射光线通过点Q 。 说明:需要注意的是,Q 点的坐标本质上是三角中的万能公式,有趣吗?

例6、设P 是圆M :(x -5)2+(y -5)2=1上的动点,它关于A (9,0)的对称点为Q ,把P 绕原点依逆时针方向旋转90°

到点S ,求|SQ|的最值。

解:设P (x ,y ),则Q (18-x ,-y ),记P 点对应的复数为x +y i ,则S 点对应的复数为: (x +y i )2i=-y +x i ,即S (-y ,x ) ∴22)()18(||x y y x SQ --++-=

2

22222222)9()9(281811818222363618++-?=+++-+?=+++-+-++=y x y x y x xy y x xy y x y x

其中2

2)9()9(++-y x 可以看作是点P 到定点B (9,-9)的距离,共最大值为1532||+=+r MB 最小值为

1532||-=-r MB ,则|SQ|的最大值为21062+,|SQ|的最小值为21062-

例7、 已知⊙M :x Q y x 是,1)2(22=-+轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点,

(1)如果3

2

4||=

AB ,求直线MQ 的方程; (2)求动弦AB 的中点P 的轨迹方程。

解:(1)由3

2

4||=

AB ,可得 ,3

1

)322(1)2||(

||||2222=-=-=AB MA MP 由射影定理,得,3|||,|||||2=?=MQ MQ MP MB 得 在R t △MOQ 中,

523||||||2222=-=-=MO MQ OQ ,

故55-==a a 或, 所以直线AB 方程是

;0525205252=+-=-+y x y x 或

(2)连接MB ,MQ ,设),0,(),,(a Q y x P 由 点M ,P ,Q 在一直线上,得

(*),2

2x

y a -=-由射影定理得|,|||||2MQ MP MB ?= 即(**),14)2(2

22=+?-+a y x 把(*)及(**)消去a ,

并注意到2

1

)4

7(2

2

≠=

-+y y x 说明:适时应用平面几何知识,这是快速解答本题的要害所在。

例8、直线l 过抛物线)0(22≠=p px y 的焦点,且与抛物线相交于A ),(),(2211y x B y x 和两点。(1)求证:2214p x x =; (2)求证:对于抛物线的任意给定的一条弦CD ,直线l 不是CD 的垂直平分线。

解: (1)易求得抛物线的焦点)0,2

(P F 。

若l ⊥x 轴,则l 的方程为4

,22

21P x x P x ==显然。

若l 不垂直于x 轴,可设)2(P x k y -=,代入抛物线方程整理得 4

,04)21(2

2122

2P x x P x k P P x ==++-则。

综上可知 2214p x x =。

(2)设d c d p d D c p c C ≠且),2(),,2(2

2,则CD 的垂直平分线l '的方程为)4(2222p

d c x p d c d c y +-+-=+-

假设l '过F ,则)42(2202

2p

d c p p d c d c +-+-=+-整理得

0)2)((222=+++d c p d c 0≠p

02222≠++∴d c p ,0=+∴d c 。

这时l '的方程为y =0,从而l '与抛物线px y 22

=只相交于原点。 而l 与抛物线有两个不同的交点,因此l '与l 不重合,l 不是CD 的垂直平分线。

说明:此题是课本题的深化,课本是高考试题的生长点,复习要重视课本。

例9、已知椭圆13

422=+y x ,能否在此椭圆位于y 轴左侧的部分上找到一点M ,使它到左准线的距离为它到两焦点F 1、F 2距离的等比中项,若能找到,求出该点的坐标,若不能找到,请说明理由。

解:假设存在满足条件的点,设M (x 1,y 1)a 2=4,b 2=3,∴a =2,3=

b ,

c =1,∴2

1

=

e , 2

12

12211214

14))((||||x x e a ex a ex a MF MF -

=-=-+=?,点M 到椭圆左准线的距离 412

1+=+=x c

a x d ,∴212121)4(414 ,+=-∴=x x d r r ,∴048325121=++x x ,∴41-=x 或5121-=x ,这与

x 1∈[-2,0)相矛盾,∴满足条件的点M 不存在。

例10、已知椭圆中心在原点,焦点在y 轴上,焦距为4,离心率为3

2

, (Ⅰ)求椭圆方程;

(Ⅱ)设椭圆在y 轴正半轴上的焦点为M ,又点A 和点B 在椭圆上,且M 分有向线段AB 所成的比为2,求线段AB 所在直线的方程。

解:(Ⅰ)设椭圆方程为122

22=+b

x a y 由2c =4得c =2 又32=a c

故a =3, 52

2

2

=-=c a b ∴所求的椭圆方程为22

195

y x += (Ⅱ)若k 2≠,若k 存在,则设直线AB 的方程为:y =kx +2

又设A ),()(221,1y x B y x

由?????=++=195

2

2

2y x kx y 得 02520)59(22=-++kx x k 122

2095k x x K -+=

+① 122

2595x x K -?=

+②

∵点M 坐标为M (0,2) ∴)2,()2,(2211-=--=y x y x

得2

=MB

MB AM 2=∴)2,(2)2,(2211-=--y x y x

∴212x x -=代入①、②得222095k x k =

+… ③ 2

2

2

25295x k =+④

由③、④ 得 22202(

)95k k =+22595k + ∴2

13k =

k = ∴线段AB 所在直线的方程为:23

3

=x y 。 说明:有向线段所成的比,线段的定比分点等概念,本身就是解析几何研究的一类重要问题。向量概念的引入,使这类问题的解决显得简洁而流畅。求解这类问题可以用定比分点公式,也可以直接用有向线段的比解题。

另外,向量的长度,点的平移等与解析几何都有着千丝万缕的联系,向量与解析几何的结合,为解决这些问题开辟了新的解题途径。

例11、已知直线l 与椭圆)0(122

22>>=+b a b

y a x 有且仅有一个交点Q ,且与x 轴、y 轴分别交于R 、S ,求以线段SR 为

对角线的矩形ORPS 的一个顶点P 的轨迹方程.

解:从直线l 所处的位置,设出直线l 的方程,

由已知,直线l 不过椭圆的四个顶点,所以设直线l 的方程为).0(≠+=k m kx y 代入椭圆方程,222222b a y a x b =+ 得 .)2(22222222b a m kmx x k a x b =+++

化简后,得关于x 的一元二次方程

.02)(222222222=-+++b a m a mx ka x b k a

于是其判别式).(4))((4)2(222222222222222m b k a b a b a m a b k a m ka -+=-+-=? 由已知,得△=0.即.2222m b k a =+ ①

在直线方程m kx y +=中,分别令y =0,x =0,求得).,0(),0,(m S k

m

R -

令顶点P 的坐标为(x ,y ), 由已知,得?????=-=?????

=-=y

m x y k m y k m x ,.,解得 代入①式并整理,得 122

22=+y b x a , 即为所求顶点P 的轨迹方程.

说明:方程12

2

22=+y b x a 形似椭圆的标准方程,你能画出它的图形吗?

例12、已知双曲线12222=-b

y a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23

(1)求双曲线的方

程;

(2)已知直线)0(5≠+=k kx y 交双曲线于不同的点C ,D 且C ,D 都在以B 为圆心的圆上,求k 的值。

解:∵(1),3

32=a c 原点到直线AB :1=-b y a x 的距离.

3,1.2322==∴==+=a b c ab

b a ab d 。

故所求双曲线方程为 .13

22

=-y x

(2)把33522=-+=y x kx y 代入中消去y ,整理得 07830)31(22=---kx x k 。 设CD y x D y x C ),,(),,(2211的中点是),(00y x E ,则

.

11,315

5311520020

02210k

x y k k kx y k k x x x BE

-=+=-=+=?-=+= ,000=++∴k ky x

即7,0,031531152

2

2=∴≠=+-+-k k k k

k k k 又 故所求k=±7。

说明:为了求出k 的值,需要通过消元,想法设法建构k 的方程。

例13、过点)0 ,3(-P 作直线l 与椭圆3x 2+4y 2=12相交于A 、B 两点,O 为坐标原点,求△OAB 面积的最大值及此时直线倾斜角的正切值。

分析:若直接用点斜式设l 的方程为)3(0+=-x k y ,则要求l 的斜率一定要存在,但在这里l 的斜率有可能不存在,因此要讨论斜率不存在的情形,为了避免讨论,我们可以设直线l 的方程为3-=my x ,这样就包含了斜率不存在时的情形了,从而简化了运算。

解:设A (x 1,y 1),B (x 2,y 2),l :3-=my x

)(3|)||(|3||||2

1

||||21212121y y y y y OP y OP S AOB -=+=?+?=

? 把3-=my x 代入椭圆方程得:0124)332(3222=-++-y my y m ,即

0336)43(22=--+my y m ,4

3362

21+=

+m m

y y ,433221+-=m y y 481444

314312)43(108||2

2

222221++=+++=-x m m m m y y

3

)13(1

33443133443394222222+++?=

++?=++=m m m m m m 23

23

41

33133422=≤

++

+=m m m ∴3223=?≤

S ,此时1

331322+=

+m m 36

±=m 令直线的倾角为α,则266

3±=±

=αtg 即△OAB 面积的最大值为3,此时直线倾斜角的正切值为2

6

±。

例14、(2003年江苏高考题)已知常数0>a ,向量(0,),(1,0).c a i ==

经过原点O 以c i λ+为方向向量的直线与经过定点A (0,a )以2i c λ-为方向向量的直线相交于点P ,其中.R ∈λ试问:是否存在两个定点E 、F ,使得|PE|+|PF|为定值。若存在,求出E 、F 的坐标;若不存在,说明理由。

解:∵i =(1,0),c =(0,a ), ∴c +λi =(λ,a ),i -2λc =(1,-2λa )。 因此,直线OP 和AP 的方程分别为 ax y =λ 和 ax a y λ2-=-。 消去参数λ,得点),(y x P 的坐标满足方程222)(x a a y y -=-。

整理得 .1)2

()2(812

2

2

=-+

a

a

y x ……① 因为,0>a 所以得:

(i )当2

2

=

a 时,方程①是圆方程,故不存在合乎题意的定点E 和F ; (ii )当2

20<

(iii )当22>a 时,方程①也表示椭圆,焦点))21(21,0(2-+a a E 和))21(21,0(2--a a F 为合乎题意的两个定点。

说明:由于向量可以用一条有向线段来表示,有向线段的方向可以决定解析几何中直线的斜率,故直线的方向向量与解析

几何中的直线有着天然的联系。求解此类问题的关键是:根据直线的方向向量得出直线方程,再转化为解析几何问题解决。

例15、已知椭圆)0(122

22>>=+b a b

y a x 的长、短轴端点分别为A 、B ,从此椭圆上一点M 向x 轴作垂线,恰好通过椭圆

的左焦点1F ,向量AB 与OM 是共线向量。

(1)求椭圆的离心率e ;

(2)设Q 是椭圆上任意一点,1F 、2F 分别是左、右焦点,求∠21QF F 的取值范围;

解:(1)∵a b y c x c F M

M 21,),0,(=-=-则,∴ac

b k OM 2

-=。 ∵a b k AB

与,-=是共线向量,∴a b ac b -=-2,∴b =c ,故22

=e 。

(2)设

1

122121212,,,2,2,

FQ r F Q r F QF r r a F F c θ==∠=∴+==

2222222

121212212121212

4()24cos 11022()2

r r c r r r r c a a r r r r r r r r θ+-+--===-≥-=+

当且仅当21r r =时,c os θ=0,∴θ]2

,

0[π

∈。

说明:由于共线向量与解析几何中平行线、三点共线等具有异曲同工的作用,因此,解析几何中与平行线、三点共线等相关的问题均可在向量共线的新情景下设计问题。求解此类问题的关键是:正确理解向量共线与解析几何中平行、三点共线等的关系,把有关向量的问题转化为解析几何问题。

例16、一条斜率为1的直线l 与离心率为22

的椭圆C :12222=+b

y a x (0>>b a )交于P 、Q ,两点,直线l 与Y 轴交

于点R ,且3-=?OQ OP ,RQ PR 3=,求直线l 和椭圆C 的方程。

解: 椭圆离心率为

22,∴=a c 2

2,2

22b a =

所以椭圆方程为1222

22=+b

y b x ,设l 方程为:m x y +=,),(),,(2211y x Q y x P

由??

???+==+m x y b y b x 1222

22消去y 得022432

22=-++b m mx x 0)3(8)22(341622222>+-=-?-=?b m b m m 223m b >∴(*)

m x x 3421-=+……(1) )(3

2

2221b m x x -= (2)

3-=?OQ OP 所以32121-=+y y x x

而2

21212121)())((m x x m x x m x m x y y +++=++= 所以3)(222121-=+++m x x m x x

33

4

)(342222-=+--m m b m 所以9432

2

-=-b m ……(3)又),0(m R ,3=,),(3),(2211m y x y m x -=-- 从而213x x =-……(4) 由(1)(2)(4)得2

2

3b m = (5)

由(3)(5)解得32

=b ,1±=m 适合(*),

所以所求直线l 方程为:1+=x y 或1-=x y ;椭圆C 的方程为13

622

=+y x

说明:向量数量积的坐标表示,构建起向量与解析几何的密切关系,使向量与解析几何融为一体。求此类问题的关键是:

利用向量数量积的坐标表示,沟通向量与解析几何的联系。体现了向量的工具性。

例17、已知椭圆C 的中心在原点,焦点F 1、F 2在x 轴上,点P 为椭圆上的一个动点,且∠F 1PF 2的最大值为90°,直线l 过左焦点F 1与椭圆交于A 、B 两点,△ABF 2的面积最大值为12.

(1)求椭圆C 的离心率; (2)求椭圆C 的方程.

解法一:(1)设| PF 1 |=r 1,| PF 2 |=r 2,| F 1F 2 |=2c ,对,21F PF ? 由余弦定理,得 1)2

(2441244242)(24cos 2

21222

12221221221212221121-+-≥--=--+=-+=∠r r c a r r c a r r c r r r r r r c r r PF F

0212=-=e , 解出 .2

2=e

(2)考虑直线l 的斜率的存在性,可分两种情况:

i ) 当k 存在时,设l 的方程为)(c x k y +=………………①

椭圆方程为),(),,(,1221122

22y x B y x A b y a x =+

由.2

2=e 得 2222,2c b c a ==。

于是椭圆方程可转化为 x 2+2y 2—2c 2=0………………② 将①代入②,消去y 得 02)(22222=-++c c x k x ,

整理为x 的一元二次方程,得 0)1(24)21(22222=-+++k c x ck x k 。

则x 1、x 2是上述方程的两根.且

2

21221122||k k c x x ++=

-,

2

212221)1(22||1||k k c x x k AB ++=

-+=, AB 边上的高,1||2sin ||2

2121k

k c F BF F F h +?

=∠=

c k

k k k c S 21||)211(2221222+++=

2

2.== ii ) 当k 不存在时,把直线c x -=代入椭圆方程得

2222

1,2,22c c S c AB c y ?==±

= 由①②知S 的最大值为22c 由题意得22c =12 所以2226b c == 2122=a

故当△ABF 2面积最大时椭圆的方程为: .12

62122

2=+y x 解法二:设过左焦点的直线方程为:c my x -=…………①

椭圆的方程为:),(),,(,122112

2

22y x B y x A b

y a x =+

由.

2

2=

e 得:,,22222

c b c a ==于是椭圆方程可化为:022222=-+c y x ……② 把①代入②并整理得:02)2(222=---c mcy y m 于是21,y y 是上述方程的两根。

()()2122

212211y y m y y x x AB -+=-+-=

2

)

2(441222222

++++=m m c c m m

2

)1(2222++=

m m c , AB 边上的高2

12m

c h +=

从而2

22

2

2

2

)2(122122

)1(2221||21++=+?

++?==m m c

m c m m c h AB S .

22

1

1

11

222

22

2

c m m c

≤++++=

当且仅当m =0取等号,即.22max c S =

由题意知1222=c , 于是 212,26222===a c b 。 故当△ABF 2面积最大时椭圆的方程为: .12

62

1222=+

y x

例18、(2002年天津高考题)已知两点M (-1,0),N (1,0)且点P 使???,,成公差小于零的等差数列,

(Ⅰ)点P 的轨迹是什么曲线?

(Ⅱ)若点P 坐标为),(00y x ,θ为与的夹角,求ta n θ。 解:(Ⅰ)记P (x ,y ),由M (-1,0)N (1,0)得

),1(y x MP PM ---=-= ),1(y x NP PN ---=-= )0,2(=-=NM MN

所以 )1(2x +=?

122-+=?y x PN PM )1(2x NP NM -=?

于是,???,,是公差小于零的等差数列等价于

??

?

?

?<+---++=-+0)1(2)1(2)]1(2)1(2[2112

2x x x x y x 即 ?

?

?>=+03

22x y x 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆。 (Ⅱ)点P 的坐标为),(00y x 。212

020=-+=?y x 。

(1PM PN ===cos 4PM PN PM PN

θ?=

=

?所以 因为 0<30≤x , 所以

,3

0,1cos 21πθθ<≤≤< ,41

1cos 1sin 2

2x --

=-=θθ.34141

1cos sin tan 02

02

2

y x x x =-=---

==θθθ

说明:在引入向量的坐标表示后,可以使向量运算代数化,这样就可以将“形”和“数”紧密地结合在一起。向量的夹角

问题融入解析几何问题中,也就显得十分自然。求解这类问题的关键是:先把向量用坐标表示,再用解析几何知识结合向量的夹角公式使问题获解;也可以把两向量夹角问题转化为两直线所成角的问题,用数形结合方法使问题获解。

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

高中数学解析几何专题之抛物线(汇总解析版)

圆锥曲线第3讲抛物线 【知识要点】 一、抛物线的定义 平面内到某一定点F的距离与它到定直线l(l F?)的距离相等的点的轨迹叫抛物线,这个定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。 注1:在抛物线的定义中,必须强调:定点F不在定直线l上,否则点的轨迹就不是一个抛物线,而是过点F且垂直于直线l的一条直线。 注2:抛物线的定义也可以说成是:平面内到某一定点F的距离与它到定直线l(l F?)的距离之比等于1的点的轨迹叫抛物线。 注3:抛物线的定义指明了抛物线上的点到其焦点的距离与到其准线的距离相等这样一个事实。以后在解决一些相关问题时,这两者可以相互转化,这是利用抛物线的定义解题的关键。 二、抛物线的标准方程 1.抛物线的标准方程 抛物线的标准方程有以下四种: (1) px y2 2= ( > p),其焦点为 )0, 2 ( p F ,准线为2 p x- = ; (2) px y2 2- =(0 > p),其焦点为 )0, 2 ( p F- ,准线为2 p x= ; (3) py x2 2= ( > p),其焦点为 ) 2 ,0( p F ,准线为2 p y- = ; (4) py x2 2- = ( > p),其焦点为 ) 2 ,0( p F- ,准线为2 p y= . 2.抛物线的标准方程的特点

抛物线的标准方程px y 22±=(0>p )或py x 22±=(0>p )的特点在于:等号的一端 是某个变元的完全平方,等号的另一端是另一个变元的一次项,抛物线方程的这个形式与其位置特征相对应:当抛物线的对称轴为x 轴时,抛物线方程中的一次项就是x 的一次项,且一次项x 的符号指明了抛物线的开口方向;当抛物线的对称轴为y 轴时,抛物线方程中的一次项就是y 的一次项,且一次项y 的符号指明了抛物线的开口方向. 三、抛物线的性质 以标准方程 px y 22 =(0>p )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:0≥x ,R y ∈; (2)顶点:坐标原点)0,0(O ; (3)对称性:关于x 轴轴对称,对称轴方程为0=y ; (4)开口方向:向右; (5)焦参数:p ; (6)焦点: )0,2(p F ; (7)准线: 2p x - =; (8)焦准距:p ; (9)离心率:1=e ; (10)焦半径:若 ) ,(00y x P 为抛物线 px y 22=(0>p )上一点,则由抛物线的定义,有20p x PF + =; (11)通径长:p 2. 注1:抛物线的焦准距指的是抛物线的焦点到其相应准线的距离。以抛物线 px y 22=

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

(整理)届高三数学总复习平面解析几何练习题目汇总

第8章 第1节 一、选择题 1.(2010·崇文区)“m =-2”是“直线(m +1)x +y -2=0与直线mx +(2m +2)y +1=0相互垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A [解析] m =-2时,两直线-x +y -2=0、-2x -2y +1=0相互垂直;两直线相互垂直时,m(m +1)+2m +2=0,∴m =-1或-2,故选A. 2.(文)(2010·安徽文)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 [答案] A [解析] 解法1:所求直线斜率为12,过点(1,0),由点斜式得,y =12(x -1),即x -2y -1=0. 解法2:设所求直线方程为x -2y +b =0, ∵过点(1,0),∴b =-1,故选A. (理)设曲线y =ax2在点(1,a)处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12 D .-1 [答案] A [解析] y′=2ax ,在(1,a)处切线的斜率为k =2a , 因为与直线2x -y -6=0平行,所以2a =2,解得a =1. 3.点(-1,1)关于直线x -y -1=0的对称点是( ) A .(-1,1) B .(1,-1) C .(-2,2) D .(2,-2) [答案] D [解析] 一般解法:设对称点为(x ,y),则

????? x -12-y +12-1=0 y -1x +1=-1,解之得????? x =2y =-2, 特殊解法:当直线l :Ax +By +C =0的系数满足|A|=|B|=1时,点A(x0,y0)关于l 的对称 点B(x ,y)的坐标,x =-By0-C A ,y =-Ax0-C B . 4.(2010·惠州市模考)在平面直角坐标系中,矩形OABC ,O(0,0),A(2,0),C(0,1),将矩形折叠,使O 点落在线段BC 上,设折痕所在直线的斜率为k ,则k 的取值范围为( ) A .[0,1] B .[0,2] C .[-1,0] D .[-2,0] [答案] D [解析] 如图,要想使折叠后点O 落在线段BC 上,可取BC 上任一点D 作线段OD 的垂直平分线l ,以l 为折痕可使O 与D 重合,故问题转化为在线段CB 上任取一点D ,求直线OD 的斜率的取值范围问题, ∵kOD≥kOB =12,∴k =-1kOD ≥-2,且k<0, 又当折叠后O 与C 重合时,k =0,∴-2≤k≤0. 5.(文)已知点(3,1)和点(1,3)在直线3x -ay +1=0的两侧,则实数a 的取值范围是( ) A .(-∞,10) B .(10,+∞) C.??? ?-∞,43∪(10,+∞) D.??? ?43,10 [答案] D [解析] 将点的坐标分别代入直线方程左边,所得两值异号,∴(9-a +1)(3-3a +1)<0,∴43

高三数学复习专题之一解析几何

高三数学复习专题之一 ----解析几何高考题目的分析 解析几何是历届高考的热点和重点,它的基本特点是数形结合,是代数、三角、几何知识的综合应用.一般以四个小题、一个大题的结构出现,且大题往往是压轴题.纵观近几年高考试题有如下特征: (1)考查直线的基本概念,求在不同条件下的直线方程,判定直线的位 置关系等题目,多以选择题、填空题形式出现; (2)中心对称与轴对称、充要条件多为基本题目; (3)考查圆锥曲线的基本知识和基本方法也多以选择题、填空题形式出 现; (4)有关直线与圆锥曲线等综合性试题,通常作为解答题形式出现,有一定难度.一般情况是:给出几何条件,求曲线(动点的轨迹)方程;或利用曲线方程来研究诸如几何量的计算、直线与曲线的位置关系、最近(或最远)问题.但近几年的高考解析几何试题类型比较分散,每年都有不同.解题过程中的运算量有逐年降低的趋势,而解题过程中的思维量在增加.但万变不离其宗,常用的解题规律与技巧不变. 例①求圆锥曲线的有关轨迹方程时,要注意运用平面几何的基本知识 特别是圆的知识,便于简化运算和求解; ②在直线与圆锥曲线的有关问题中,要注意韦达定理和判别式的运用; ③要注意圆锥曲线定义的活用. 另外,解析几何的解答题也常在知识网络的交汇处出题,它具有一定的综合性,重点考察数形结合、等价转换、分类讨论、逻辑推理等能力.解析几何常与函数、不等式等建立联系. . , ),0,1()3 ,)2 )1 , ,)0,(1:.122 222 22中点的轨迹方程求、为轴的端点为左准线的椭圆,其短为左焦点,以经过点设双曲线的方程;求双曲线截得的弦长为被直线若双曲线的值; 的离心率求双曲线为等边,且右焦点两点、与两条渐近线交于右准线的离心率为设双曲线例BF F B l F C C a e b b ax y C e C PQF F Q P l e b a b y a x C +=? ?>=-

高中数学平面解析几何的知识点梳理

平面解析几何 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针 方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:1 21121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=. 线段21P P 的中点是),(00y x M ,则??? ????+=+=2221 0210y y y x x x .

高三数学解析几何专题复习讲义(含答案解析)

二轮复习——解析几何 一.专题内容分析 解析几何:解析几何综合问题(椭圆或抛物线)及基本解答策略+圆锥曲线的定义和几何性质+直线与圆+极坐标、参数方程+线性规划 二.解答策略与核心方法、核心思想 圆锥曲线综合问题的解答策略: 核心量的选择: 常见的几何关系与几何特征的代数化: ①线段的中点:坐标公式 ②线段的长:弦长公式;解三角形 ③三角形面积: 2 1底×高,正弦定理面积公式 ④夹角:向量夹角;两角差正切;余弦定理;正弦定理面积公式 ⑤面积之比,线段之比:面积比转化为线段比,线段比转化为坐标差之比 ⑥三点共线:利用向量或相似转化为坐标差之比 ⑦垂直平分:两直线垂直的条件及中点坐标公式 ⑧点关于直线的对称,点关于点,直线关于直线对称 ⑨直线与圆的位置关系 ⑩等腰三角形,平行四边形,菱形,矩形,正方形,圆等图形的特征 代数运算:设参、消参 重视基本解题思路的归纳与整理但不要模式化,学会把不同类型的几何问题转化成代数形式.

三.典型例题分析 1.(海淀区2017.4)已知椭圆C :22 221(0)x y a b a b +=>>的左、右顶点分别为A ,B ,且||4AB =,离心率为12 . (Ⅰ)求椭圆C 的方程; (Ⅱ)设点(4,0)Q , 若点P 在直线4x =上,直线BP 形APQM 为梯形?若存在,求出点P 解法1:(Ⅰ)椭圆C 的方程为22 143 x y +=. (Ⅱ)假设存在点,P 使得四边形APQM 为梯形. 由题可知,显然,AM PQ 不平行,所以AP 与MQ AP MQ k k =. 设点0(4,)P y ,11(,)M x y ,06 AP y k =,114MQ y k x = -, ∴ 01164y y x =-① ∴直线PB 方程为0(2)2 y y x =-, 由点M 在直线PB 上,则0 11(2)2 y y x = -② ①②联立,0 101(2) 264y x y x -=-,显然00y ≠,可解得11x =. 又由点M 在椭圆上,211143y + =,所以132y =±,即3 (1,)2 M ±, 将其代入①,解得03y =±,∴(4,3)P ±. 解法2:(Ⅰ)椭圆C 的方程为22 143 x y +=. (Ⅱ)假设存在点,P 使得四边形APQM 为梯形. 由题可知,显然,AM PQ 不平行,所以AP 与MQ 平行, AP MQ k k =, 显然直线AP 斜率存在,设直线AP 方程为(2)y k x =+. 由(2)4y k x x =+??=? ,所以6y k =,所以(4,6)P k ,又(2,0)B ,所以632PB k k k ==. ∴直线PB 方程为3(2)y k x =-,由22 3(2) 34120 y k x x y =-?? +-=?,消y , 得2222(121)484840k x k x k +-+-=.

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

高中数学椭圆常考题目解题方法及练习2018高三专题复习-解析几何专题

高中数学椭圆常考题目解题方法及练习 2018高三专题复习-解析几何专题(2) 第一部分:复习运用的知识 (一)椭圆几何性质 椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()0122 22>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,122 22≤≤b y a x ,即 b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3. 顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴: 21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5. 离心率 (1)椭圆焦距与长轴的比a c e = ,()10,0<<∴>>e c a (2)22F OB Rt ?,2 22 22 22OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率. (3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越

(完整)高中数学解析几何解题方法

高考专题:解析几何常规题型及方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 分析:设P x y 111(,),P x y 222(,)代入方程得x y 1 2 1221-=,x y 22 22 2 1-=。 两式相减得 ()()()()x x x x y y y y 121212121 2 0+-- +-=。 又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x y y y x x - --=·。 又k y y x x y x = --=--12121 2 , 代入得2402 2 x y x y --+=。 当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。 因此所求轨迹方程是2402 2 x y x y --+= 说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。 (1)求证离心率β αβαsin sin ) sin(++= e ; (2)求|||PF PF 13 23 +的最值。

高中数学解析几何题型

解析几何题型 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22 162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =, 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123 301y x x x b x x y x b ?=-+?++-=?+=-? =+?,进而可求出AB 的中点11(,)22M b -- +,又由11 (,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出2 211 14(2)32AB =+-?-=. 例3.如图,把椭圆22 12516 x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++=____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用. 解答过程:由椭圆22 12516 x y +=的方程知225, 5.a a =∴= ∴1234567 7277535.2 a PF P F P F P F P F P F P F a ?++++++==?=?= 考点3. 曲线的离心率

高中数学解析几何知识点总结

高中数学解析几何知识 点总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

§0 7. 直线和圆的方程 知识要点 一、直线方程. 1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是 )0(1800παα ≤≤. 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在. ②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+b y a x . 注:若23 2--=x y 是一直线的方程,则这条直线的方程是23 2--=x y ,但若 )0(23 2 ≥-- =x x y 则不是这条线. 附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线. 3. ⑴两条直线平行: 1l ∥212k k l =?两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜 率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误. (一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则 1l ∥212k k l =?,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条 件,且21C C ≠)

高中数学解析几何答题全攻略,2020高考生必看!

高中数学解析几何答题全攻略,2020高考生必看! 解析几何由于形式复杂多样,一直是难于解决的问题,很多同学对于解析几何的把握还差很多,很多同学对此知识点提出了相应的问题。对此清华附中数学老师有针对性的回答了同学们的共性问题。下面是对本次答疑情况的汇总,希望对大家学习数学尤其是解析几何部分有所帮助。 1 考试时间分配 问题1:老师我怎么这么短时间内做几道题通解一类题目呢?解析几何也有不少类型题 老师:理解的基础上去做,不要单纯的套公式,做题一定要保证真的会了,而不是只追求数量。如果感觉自己的水平没有提高,那么问问自己错题有没有好好整理,有没有盖住答案重新做过,再做的时候能不能保证很快的就有思路,之前出过的问题有没有及时得到解决?总之刷题不能埋头死刷,要有总结和反思。如果都做到了,考试还是没有好成绩,那么看看是不是考试时过于紧张,这个时候心态也很重要! 问题2:错题也有很多呀,怎么从错题那里去帮助学习数学呀?都抄几遍和看几遍吗?很多呀!该怎么办呢? 老师:对待错题,不要抄也不要只是看,当做新题重新做一遍,有时候一道题我们直接去看答案,总是发现不了问题,我建议把错题的题目直接汇编在一起,不要有答案,每隔一段时间都重新做一下,如果做题的过程很肯定,没有模糊的地方,这道题才可以过。这个过程比做新题更重要。

问题3:老师我数学只有三四十分马上高考该从哪里开始复习分数会提高呢? 老师:简单的题目模块比如复数、集合、线性规划、程序框图、三角函数与解三角形、简单的等差等比数列以及立体几何等,还有导数和圆锥曲线的第一问,找出前几年的高考题,看看都考了哪些简单模块,一个模块练几十道,绝对会有效果的,别放弃,只要努力一定能看到进步! 问题4:三视图怎么想也想不出来!有什么好的办法呀!老师!救救我 老师:平时见到三视图的题目无论问什么,都是去画他的立体图形,训练自己。如果考试时真的想不出来了,那么看看能不能判断出这个图形是什么,比如正视图和侧视图都只有一个最高顶点,那么基本可以判断这是一个椎体,如果是求体积的题目,直接底面积乘以高除以3就可以了,但是这个方法不是所有题目都适用。还有就是如果正视侧视和俯视都和正方形或者等腰直角三角形有关,那么可以画一个正方体,去找这个立体图形的可能性。 2 解析几何如何把握

高三数学 平面解析几何

平面解析几何(附高考预测) 一、本章知识结构: 二、重点知识回顾 1.直线 (1).直线的倾斜角和斜率 直线的的斜率为k ,倾斜角为α,它们的关系为:k =tan α; 若A(x 1,y 1),B(x 2,y 2),则1 212x x y y K AB --= 。 (2) .直线的方程

a.点斜式:)(11x x k y y -=-; b.斜截式:b kx y +=; c.两点式:121121x x x x y y y y --=--; d.截距式:1=+b y a x ; e.一般式:0=++C By Ax ,其中A 、B 不同时为0. (3).两直线的位置关系 两条直线1l ,2l 有三种位置关系:平行(没有公共点);相交(有 且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交。 若直线1l 、2l 的斜率分别为1k 、2k ,则 1l ∥2l ?1k =2k ,1l ⊥2l ?1k ·2k =-1。 (4)点、直线之间的距离 点A (x 0,y 0)到直线0=++C By Ax 的距离为:d= 2200||B A C By Ax +++。 两点之间的距离:|AB|=212212)()y y x x -+-( 2. 圆 (1)圆方程的三种形式 标准式:222)()(r b y a x =-+-,其中点(a ,b )为圆心,r>0,r 为半径,圆的标准方程中有三个待定系数,使用该方程的最大优点是可以方便地看出圆的圆心坐标与半径的大小. 一般式:022=++++F Ey Dx y x ,其中?? ? ??--22E D ,为圆心F E D 42 122-+为半径,,圆的一般方程中也有三个待定系数,即D 、E 、F .若已知条件中没有直接给出圆心的坐标(如题目为:已知一 个圆经过三个点,求圆的方程),则往往使用圆的一般方程求圆方程. 参数式:以原点为圆心、 r 为半径的圆的参数方程是???==θθsin ,cos r y r x (其中θ为参数).

高三数学一轮复习解析几何(解析版)

数 学 H 单元 解析几何 H1 直线的倾斜角与斜率、直线的方程 6.,,[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ) A .x +y -2=0 B .x -y =2=0 C .x +y -3=0 D .x -y +3=0 6.D [解析] 由直线l 与直线x +y +1=0垂直,可设直线l 的方程为x -y +m =0. 又直线l 过圆x 2+(y -3)2=4的圆心(0,3),则m =3,所以直线l 的方程为x -y +3=0,故选D. 20.、、[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程; (2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 20.解:(1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4. 设M (x ,y ),则CM =(x ,y -4),MP =(2-x ,2-y ). 由题设知CM ·MP =0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2. (2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆. 由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM . 因为ON 的斜率为3,所以直线l 的斜率为-1 3, 故l 的方程为y =-13x +8 3 . 又|OM |=|OP |=2 2,O 到直线l 的距离为410 5 , 故|PM |=4105,所以△POM 的面积为16 5 . 21.、、、[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点分别为F 1, F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为2 2 . (1)求该椭圆的标准方程. (2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由. 21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2 =a 2-b 2.

高三数学解析几何解题技巧

高三数学解析几何解题技巧 解析几何是现在高考中区分中上层学生数学成绩的一个关键考点。能顺利解答解析几何题是数学分数跃上新台阶的重要条件。在解决此类问题时的要点主要有:用运动观点看待条件;挖掘出其中隐含的几何量之间关系;用代数语言(通常即是方程或不等式)翻译几何量之间关系;注意根据题设条件分类讨论。其中对能力的要求主要体现在如何选择变量和合理的运算路径上。三种运算:坐标、向量和运用几何性质推理,如何选择?依据的不是必然的逻辑推理,而是根据经验获得的合情推理。 解析几何的学科特征是“算”,它的第一步是把几何条件转化为代数语言,转换的桥梁大致有三类:①与线段长度有关,用距离公式;②与线段比有关的用向量、坐标之间关系转换;③与角度有关用斜率或用向量夹角公式处理。一经转化,解析几何问题就转化为方程或函数问题。如讨论一元二次方程根的情况,解方程组,求代数式的最大值或最小值等等。 常见翻译方法: 距离问题:距离公式212212)()(||y y x x AB -+-= 几个特殊转换技巧: ①若一条直线上有若干点,如D C B A ,,,等,它们之间距离存在比例关系,如满足条件,||||||2BC CD AB =?则可根据它们分别在两坐标轴之间距离关系,利用平行直线分线段成比例之关系转换为坐标关系:,)(||||2C B D C B A x x x x x x -=-?-当然也可转化为向量关系再转换为坐标关系等。 ②利用向量求距离。 ③角度问题:若条件表述为所目标角A 是钝角、直角或锐角,则用向量转化为简洁,即AC AB ?的值分别是小于零、等于零或大于零。一般角度问题转化为向量夹角公式即:| |||cos b a ?= θ④面积问题:主要是三角形面积公式:在OAB ?中(O 是原点) )2 ())()((21sin 21c b a p c p b p a p p ah C ab S O ++=---=== ||2 1A B B A y x y x -== ⑤特殊地,若三角形中有某条线段是定值,则可把三角形分解为两个三角形来分别求面积。如椭圆12 2=+b y a x 的左右焦点分别为,,21F F 过左焦点直线交椭圆于),,(11y x A ),,(22y x B 则|||)||(|||2 121212121212y y c y y F F S S S F BF F AF ABF -=+=+=??? ⑥三点共线问题:一般来说,可直接写出过其中两点的直线方程,再把另一点的坐标代入即可,但在具体问题中,用两点之间斜率相等(有时是用向量共线,可不用讨论斜率存在情况)更合适。 最后,针对广东高考命题特点,请同学们记住一句话:心中有数,不如心中有图,心中有图,不如会用图。 【例题训练】 1.(本小题满分14分)

高中数学平面解析几何初步经典例题(供参考)

直线和圆的方程 一、知识导学 1.两点间的距离公式:不论A(x 1,y 1),B(x 2,y 2)在坐标平面上什么位置,都有d=|AB|=221221)()(y y x x -+-,特别地,与坐标轴平行的线段的长|AB|=|x 2-x 1|或|AB|=|y 2-y 1|. 2.定比分点公式:定比分点公式是解决共线三点A(x 1,y 1),B(x 2,y 2),P(x ,y )之间数量关系的一个公式,其中λ的值是起点到分点与分点到终点的有向线段的数量之比.这里起点、分点、终点的位置是可以任意选择的,一旦选定后λ的值也就随之确定了.若以 A 为起点, B 为终点,P 为分点,则定比分点公式是???? ?? ?++=++=λ λλλ11212 1y y y x x x .当P 点为AB 的中点时,λ=1,此时中点坐标公式是??? ???? +=+=222121y y y x x x . 3.直线的倾斜角和斜率的关系 (1)每一条直线都有倾斜角,但不一定有斜率. (2)斜率存在的直线,其斜率k 与倾斜角α之间的关系是k =tan α. 4.确定直线方程需要有两个互相独立的条件。直线方程的形式很多,但必须注意各种 5.两条直线的夹角。当两直线的斜率1k ,2k 都存在且1k ·2k ≠ -1时,tan θ= 2 11 21k k k k +-, 当直线的斜率不存在时,可结合图形判断.另外还应注意到:“到角”公式与“夹角”公式的

区别. 6.怎么判断两直线是否平行或垂直?判断两直线是否平行或垂直时,若两直线的斜率都存在,可以用斜率的关系来判断;若直线的斜率不存在,则必须用一般式的平行垂直条件来判断. (1)斜率存在且不重合的两条直线l 1∶11b x k y +=, l 2∶22b x k y +=,有以下结论: ①l 1∥l 2?1k =2k ,且b1=b2 ②l 1⊥l 2?1k ·2k = -1 (2)对于直线l 1∶0111=++C y B x A ,l 2 ∶0222=++C y B x A ,当A 1,A 2,B 1, B 2都不为零时,有以下结论: ①l 1∥l 2? 21A A =21B B ≠2 1C C ②l 1⊥l 2?A 1A 2+B 1B 2 = 0 ③l 1与l 2相交? 21A A ≠21B B ④l 1与l 2重合? 21A A =21B B =2 1 C C 7.点到直线的距离公式. (1)已知一点P (00,y x )及一条直线l :0=++C By Ax ,则点P 到直线l 的距离 d = 2 2 00| |B A C By Ax +++; (2)两平行直线l 1: 01=++C By Ax , l 2: 02=++C By Ax 之间的距离 d= 2 2 21||B A C C +-. 8.确定圆方程需要有三个互相独立的条件。圆的方程有两种形式,要知道两种形式之间的相互转化及相互联系 (1)圆的标准方程:222)()(r b y a x =-+-,其中(a ,b )是圆心坐标,r 是圆的半径; (2)圆的一般方程:022=++++F Ey Dx y x (F E D 42 2-+>0),圆心坐标 为(-2D ,-2 E ),半径为r =2422 F E D -+.

相关主题
文本预览
相关文档 最新文档