当前位置:文档之家› 分子生物学常见试题

分子生物学常见试题

分子生物学常见试题
分子生物学常见试题

分子生物学常见试题

一, 名词解释

1, 基因:能够表达和产生蛋白质和RNA的DNA序列,是决定遗传性状的功能单位.

2, 基因组:细胞或生物体的一套完整单倍体的遗传物质的总和.

3, 端粒:以线性染色体形式存在的真核基因组DNA末端都有一种特殊的结构叫端粒.该结构
是一段DNA序列和蛋白质形成的一种复合体,仅在真核细胞染色体末端存在.

4, 操纵子:是指数个功能上相关的结构基因串联在一起,构成信息区,连同其上游的调控区

(包括启动子和操纵基因)以及下游的转录终止信号所构成的基因表达单位,所转录的RNA为多顺

反子.

5, 顺式作用元件:是指那些与结构基因表达调控相关,能够被基因调控蛋白特异性识别和结

合的特异DNA序列.包括启动子,上游启动子元件,增强子,加尾信号和一些反应元件等.

6, 反式作用因子:是指真核细胞内含有的大量可以通过直接或间接结合顺式作用元件而调节

基因转录活性的蛋白质因子.

7, 启动子:是RNA聚合酶特异性识别和结合的DNA序列.

8, 增强子:位于真核基因中远离转录起始点,能明显增强启动子转录效率的特殊DNA序列.

它可位于被增强的转录基因的上游或下游,也可相距靶基因较远.

9, 基因表达:是指生物基因组中结构基因所携带的遗传信息经过转录,翻译等一系列过程,

合成特定的蛋白质,进而发挥其特定的生物学功能和生物学效应的全过程.

10, 信息分子:调节细胞生命活动的化学物质.其中由细胞分泌的调节靶细胞生命活动的化学

物质称为细胞间信息分子;而在细胞内传递信息调控信号的化学物质称为细胞内信息分子. 11, 受体:是存在于靶细胞膜上或细胞内能特异识别生物活性分子并与之结合,进而发生生物

学效应的的特殊蛋白质.

12, 分子克隆:在体外对DNA分子按照即定目的和方案进行人工重组,将重组分子导入合适

宿主,使其在宿主中扩增和繁殖,以获得该DNA分子的大量拷贝.

13, 蛋白激酶:是指能够将磷酸集团从磷酸供体分子转移到底物蛋白的氨基酸受体上的一大类酶.

14, 蛋白磷酸酶:是具有催化已经磷酸化的蛋白质分子发生去磷酸化反应的一类酶分子,与蛋

白激酶相对应存在,共同构成了磷酸化和去磷酸化这一重要的蛋白质活性的开关系统.

15, 基因工程:有目的的通过分子克隆技术,人为的操作改造基因,改变生物遗传性状的系列

过程.

16, 载体:能在连接酶的作用下和外源DN**段连接并运送DNA分子进入受体细胞的DNA

分子.

17, 转化:指质粒DNA或以它为载体构建的重组DNA导入细菌的过程.

18, 感染:以噬菌体,粘性质粒和真核细胞病毒为载体的重组DNA分子,在体外经过包装成

具有感染能力的病毒或噬菌体颗粒,才能感染适当的细胞,并在细胞内扩增.

19, 转导:指以噬菌体为载体,在细菌之间转移DNA的过程,有时也指在真核细胞之间通过

逆转录病毒转移和获得细胞DNA的过程.

20, 转染:指病毒或以它为载体构建的重组子导入真核细胞的过程.

21, DNA变性:在物理或化学因素的作用下,导致两条DNA链之间的氢键断裂,而核酸分子

中的所有共价键则不受影响.

22, DNA复性:当促使变性的因素解除后,两条DNA链又可以通过碱基互补配对结合形成

DNA双螺旋结构.

23, 退火:指将温度降至引物的TM值左右或以下,引物与DNA摸板互补区域结合形成杂交

链.

24, 筑巢PCR:先用一对外侧引物扩增含目的基因的大片段,再用内侧引物以大片段为摸板扩

增获取目的基因.可以提高PCR的效率和特异性.

25, 原位PCR:以组织固定处理细胞内的DNA或RNA作为靶序列,进行PCR反应的过程. 26, 定量PCR:基因表达涉及的转录水平的研究常需要对mRNA进行定量测定,对此采用的PCR技术就叫定量PCR.

27, 基因打靶:是指通过DNA定点同源重组,改变基因组中的某一特定基因,从而在生物活

体内研究此基因的功能.

28, DNA芯片NA芯片技术是指在固相支持物上原位合成寡核苷酸或者直接将大量的DNA 探针以显微打印的方式有序地固化于支持物表面,然后与标记的样品杂交,通过对杂交信号的检测

析,即可获得样品的遗传信息.由于常用计算机硅芯片作为固相支持物,所以称为DNA芯片. 29, 错义突变:DNA分子中碱基对的取代,使得mRNA的某一密码子发生变化,由它所编码

的氨基酸就变成另一种的氨基酸,使得多肽链中的氨基酸顺序也相应的发生改变的突变.

30, 无义突变:由于碱基对的取代,使原来可以翻译某种氨基酸的密码子变成了终止密码子的

突变.

31, 同义突变:碱基对的取代并不都是引起错义突变和翻译终止,有时虽然有碱基被取代,但

在蛋白质水平上没有引起变化,氨基酸没有被取代,这是因为突变后的密码子和原来的密码子代表

同一个氨基酸的突变.

32, 移码突变:在编码序列中,单个碱基,数个碱基的缺失或插入以及片段的缺失或插入等均

可以使突变位点之后的三联体密码阅读框发生改变,不能编码原来的蛋白质的突变.

33, 癌基因:是细胞内控制细胞生长的基因,具有潜在的诱导细胞恶性转化的特性.当癌基因

结构或表达发生异常时,其产物可使细胞无限制增殖,导致肿瘤的发生.包括病毒癌基因和细胞癌基因.

34, 细胞癌基因:存在于正常的细胞基因组中,与病毒癌基因有同源序列,具有促进正常细胞

生长,增殖,分化和发育等生理功能.在正常细胞内未激活的细胞癌基因叫原癌基因,当其受到某些条件激活时,结构和表达发生异常,能使细胞发生恶性转化.

35, 病毒癌基因:存在于病毒(大多是逆转录病毒)基因组中能使靶细胞发生恶性转化的基因.

它不编码病毒结构成分,对病毒无复制作用,但是当受到外界的条件激活时可产生诱导肿瘤发生的

作用.

36, 基因诊断:以DNA或RNA为诊断材料,通过检查基因的存在,结构缺陷或表达异常,

对人体的状态和疾病作出诊断的方法和过程.

37, RFLP:即限制性片段长度多态性,个体之间DNA的核苷酸序列存在差异,称为DNA多

态性.若因此而改变了限制性内切酶的酶切位点则可导致相应的限制性片段的长度和数量发生

变化,

称为RFLP.

38, 基因治疗:一般是指将限定的遗传物质转入患者特定的靶细胞,以最终达到预防或改变特

殊疾病状态为目的治疗方法.

39, 反义RNA:碱基序列正好与有意义的mRNA互补的RNA称为反义RNA.可以作为一种

调控特定基因表达的手段.

40, 核酶:是一种可以催化RNA切割和RNA剪接反应的由RNA组成的酶,可以作为基因表

达和病毒复制的抑制剂.

41, 三链DNA:当某一DNA或RNA寡核苷酸与DNA高嘌呤区可结合形成三链,能特异地

结合在DNA的大沟中,并与富含嘌呤链上的碱基形成氢键.

42, SSCP:单链构象多态性检测是一种基于DNA构象差别来检测点突变的方法.相同长度的

单链DNA,如果碱基序列不同,形成的构象就不同,这样就形成了单链构象多态性.

43, 管家基因:在生物体生命的全过程都是必须的,且在一个生物个体的几乎所有细胞中持续表达的基因.

44, 细胞全能性:指同一种生物的所有细胞都含有相同的DNA,即基因的数目和种类是一样

的,但在不同阶段,同一个体的不同组织和器官中基因表达的种类和数目是不同的.

45, SD序列:转录出的mRNA要进入核糖体上进行翻译,需要一段富含嘌呤的核苷酸序列与

大肠杆菌16S rRNA3,末端富含嘧啶的序列互补,是核糖体的识别位点.

46, 反义核酸技术:是通过合成一种短链且与DNA或RNA互补的,以DNA或RNA为目标

抑制翻译的反义分子,干扰目的基因的转录,剪接,转运,翻译等过程的技术.

47, 核酸探针:探针是指能与某种大分子发生特异性相互作用,并在相互作用之后可以检测出

来的生物大分子.核酸探针是指能识别特异碱基顺序的带有标记的一段DNA或RNA分子. 48, 周期蛋白:是一类呈细胞周期特异性或时相性表达,累积与分解的蛋白质,它与周期素依

赖性激酶共同影响细胞周期的运行.

49, CAP:是大肠杆菌分解代谢物基因活化蛋白,这种蛋白可将葡萄糖饥饿信号传递个许多操

纵子,使细菌在缺乏葡萄糖时可以利用其他碳源.

50, 顺反子

51, 结构域

二, 问答题

(一),病毒,原核,真核基因组的特点

答:1,病毒基因组的特点:

①种类单一;②单倍体基因组:每个基因组在病毒中只出现一次;③形式多样;④大小不一;

⑤基因重叠;⑥动物/细菌病毒与真核/原核基因相似:内含子;⑦具有不规则的结构基因;⑧基因编码区无间隔:通过宿主及病毒本身酶切;⑨无帽状结构;⑩结构基因没有翻译起始序列.

2,原核基因组的特点:

①为一条环状双链DNA;②只有一个复制起点;③具有操纵子结构;④绝大部分为单拷贝;⑤可表达基因约50%,大于真核生物小于病毒;⑥基因一般是连续的,无内含子;⑦重复序列很少.

3,真核基因组的特点:

①真核生物基因组远大于原核生物基因组,结构复杂,基因数庞大,具有多个复制起点;②基因组DNA与蛋白质结合成染色体,储存于细胞核内;③真核基因为单顺反子,而细菌和病毒的结构基因多为多顺反子;④基因组中非编码区多于编码区;⑤真核基因多为不连续的断裂基因,由外显子和

内含子镶嵌而成;⑥存在大量的重复序列;⑦功能相关的基因构成各种基因家族;⑧存在可移动的遗传因素;⑨体细胞为双倍体,而精子和卵子为单倍体.

(二),乳糖操纵子的作用机制

答:1,乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z,Y,A三个结构基因,分别编码半乳糖苷酶,

透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列O,一个启动子P和一个调节基因I.

2,阻遏蛋白的负性调节:没有乳糖存在时,I基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构, 不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶.所以,乳糖操纵子的这种调控机制为可诱导的负调控.

3,CAP的正性调节:在启动子上游有CAP结合位点,当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,激活RNA聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶.

4,协调调节:乳糖操纵子中的I基因编码的阻遏蛋白的负调控与CAP的正调控两种机制,互相协调,互相制约.

(三),真核生物转录水平的调控机制

答:真核生物在转录水平的调控主要是通过反式作用因子,顺式作用元件和RNA聚合酶的相互作用

来完成的,主要是反式作用因子结合顺式作用元件后影响转录起始复合物的形成过程.

1, 转录起始复合物的形成:真核生物RNA聚合酶识别的是由通用转录因子与DNA形成的蛋

白质-DNA复合物,只有当一个或多个转录因子结合到DNA上,形成有功能的启动子,才能被RNA 聚合酶所识别并结合.

转录起始复合物的形成过程为:TFⅡD结合TATA盒;RNA聚合酶识别并结合TFⅡD-DNA复合物

形成一个闭合的复合物;其他转录因子与RNA聚合酶结合形成一个开放复合物.

在这个过程中,反式作用因子的作用是:促进或抑制TFⅡD与TATA盒结合;促进或抑制RNA聚合酶与TFⅡD-DNA复合物的结合;促进或抑制转录起始复合物的形成.

2, 反式作用因子:一般具有三个功能域(DNA识别结合域,转录活性域和结合其他蛋白结合域);能识别并结合上游调控区中的顺式作用元件;对基因的表达有正性或负性调控作用.

3, 转录起始的调控:

?反式作用因子的活性调节:①表达式调节——反式作用因子合成出来就具有活性;②共价修饰—

—磷酸化和去磷酸化,糖基化;③配体结合——许多激素受体是反式作用因子;④蛋白质与蛋白质相互作用——蛋白质与蛋白质复合物的解离与形成.

?反式作用因子与顺式作用元件的结合:反式作用因子被激活后,即可识别并结合上游启动子元件

和增强子中的保守性序列,对基因转录起调节作用.

?反式作用因子的作用方式——成环,扭曲,滑动,Oozing.

?反式作用因子的组合式调控作用:每一种反式作用因子结合顺式作用元件后虽然可以发挥促进或

抑制作用,但反式作用因子对基因调控不是由单一因子完成的而是几种因子组合发挥特定的作用.

(四),真核生物转录后水平的调控机制

1),5,端加帽和3,端多聚腺苷酸化的调控意义:5,端加帽和3,端多聚腺苷酸化是保持mRNA

稳定的一个重要因素,它至少保证mRNA在转录过程中不被降解.

(2),mRNA选择性剪接对基因表达调控的作用

(3),mRNA运输的控制

(五),受体的特点

答:1,高度专一性;2,高度亲和性;3,可逆性;4,可饱和性;5,特定的作用模式

(六),表皮生长因子介导的信号传导途径

答:表皮生长因子受体是一个典型的蛋白酪氨酸激酶受体,这个信号转导途径的主要步骤是:

1, 受体二聚化的形成及其磷酸化:表皮生长因子与受体的结合使受体发生二聚化,从而改变

受体构象,使蛋白酪氨酸激酶活性增强,受体自身的几个蛋白酪氨酸残基在激酶的作用下发生磷酸

化.

2, 募集接头蛋白Grb2:表皮生长因子受体自身被磷酸化后,不仅其激酶活性增强,而且其构

象发生变化,从而适合与含SH2结构域的蛋白分子相结合.Grb2是作为接头蛋白结合到受体上. 3, 调控分子SOS的活化:SOS含有可与SH3结构域相结合的富含脯氨酸基序,当Grb2结合

到磷酸化的表皮生长因子受体后,它的两个SH3结构域即可结合SOS,使之活化.

4, 低分子量G蛋白Ras的活化:SOS可促进Ras释放GDP,结合GTP的反应,使Ras激活.

活化的Ras作用其下游分子Raf,使之活化.Raf是MAPK级联反应的第一个分子,由此启动了MAPK

的三级激活过程.

5, MAPK的级联激活:Raf是一种MAPKKK,它作用于MEK,使之磷酸化而激活,活化的

MEK在作用于MAPK家族的ERK1,使之磷酸化激活由此完成了三级激活.

6, 转录因子的磷酸化及转录调控作用:活化的ERK可以转至细胞核内,使某些转录调控因子

发生磷酸化,从而影响基因的转录.

(七),cAMP信号转导途径

答:1,组成:胞外信息分子(主要是胰高血糖素,肾上腺素和促肾上腺皮质激素),受体,G蛋白, AC,cAMP , PKA.

2,途径:

信号分子与受体结合,引起受体构象变化

受体活化G蛋白

活化后的G蛋白激活腺苷酸环化酶(AC)

AC 催化ATP生成cAMP

cAMP 活化PKA,PKA使目标蛋白磷酸化,调节代谢酶的活性或调节基因的表达

(八),IP3-Ca2+信号途径:

信号分子与受体结合,引起受体构象变化

受体活化G蛋白

活化后的G蛋白激活PLC

PLC 水解PIP2生成IP3 和DG

IP3 使钙通道打开,细胞内Ca2+升高

Ca2+ 与CaM结合,激活Ca2+-CaM依赖的蛋白激酶

Ca2+ -CaM依赖的蛋白激酶使目标蛋白磷酸化.

(九),分子克隆中常用的工具酶及良好载体的条件

答:(1),常用的工具酶

1, 限制性核酸内切酶:是细菌产生的一类能识别和切割双链DNA分子内特定的碱基顺序的核酸水解酶.

2, DNA连接酶:将两段DNA分子拼接起来的酶.

3, DNA聚合酶:催化单核苷酸链延伸.

4, 逆转录酶:依赖于RNA的DNA聚合酶,这是一种有效的转录RNA成为DNA的酶,产物

DNA又称互补DNA.

5, 末端脱氧核糖核酸转移酶:将脱氧核糖核酸加到DNA的3末端.

6, 碱性磷酸酶:催化去除DNA,RNA等的5磷酸基团.

7, 依赖DNA的RNA聚合酶:识别特异性启动子,RNA转录.

(2),良好载体的条件

1,必须有自身的复制子;2,载体分子上必须有限制性核酸内切酶的酶切位点,即多克隆位点,以

供外源DNA插入;3,载体应具有可供选择的遗传标志,以区别阳性重组子和阴性重组子;4,载体

分子必须有足够的容量;5,可通过特定的方法导入细胞;6,对于表达载体还应具备与宿主细胞相适应的启动子,前导顺序,增强子,加尾信号等DNA调控元件.

(十),蓝-白筛选的原理

答:某些质粒带有大肠杆菌的半乳糖苷酶基因片段,在半乳糖苷酶基因的基因区外又另外引入了一段含多种单一限制酶位点的DNA序列.这些位点上如果没有克隆外源性DN**段,在质粒被导入lac-的大肠杆菌后,质粒携带的半乳糖苷酶基因将正常表达,与大肠杆菌的半乳糖苷酶基因互补,产生有活性的半乳糖苷酶,加入人工底物X-gal和诱导剂IPTG后,出现蓝色的菌落.如果在多克隆位点上插入外源DN**段,将使lac Z基因灭活,不能生成半乳糖苷酶,结果菌落出现白色.由于这种颜色标志,重组克隆和非重组克隆的区分一目了然.

(十一)SANGER双脱氧链终止法的原理

答:DNA链中核苷酸以3\',5\'-磷酸二酯键连接,合成DNA所用的底物是2\'-脱氧核苷三磷酸.

2\',3\'ddNTP与普通dNTP不同,它们在脱氧核糖的3\'位置缺少一个羟基.在DNA聚合酶作用

下通过三磷酸基团掺入到延伸的DNA链中,但由于没有3\'羟基,不能同后续的dNTP形成磷酸二酯键,因此,正在延伸的DNA链不能继续延伸.在DNA合成反应混合物的4种普通dNTP中加入少量的一种ddNTP,链延伸将与偶然发生但却十分特异的链终止竞争,产物是一系列的核苷酸链, 其长度取决于引物末端到出现过早链终止位置间的距离.在4组独立酶反应中分别采用4种不同的

ddNTP,结果将产生4组寡核苷酸,它们将分别终止于模板链的A,C,G或T位置.

(十二),核酸分子杂交的原理

答:具有互补序列的两条单链核酸分子在一定的条件下(适宜的温度及离子强度等)碱基互补配对结合,重新形成双链;在这一过程中,核酸分子经历了变性和复性的变化,以及在复性过程中个分

子间键的形成和断裂.杂交的双方是待测核酸和已知序列.

(十三),影响杂交的因素

答:1,核酸分子的浓度和长度:核酸浓度越大,复性速度越快.探针长度应控制在50-300个碱基

对为好.

2,温度:温度过高不利于复性,而温度过低,少数碱基配对形成的局部双链不易解离,适宜的温度

是较TM值低25度.

3,离子强度:在低离子强度下,核酸杂交非常缓慢,随着离子强度的增加,杂交反应率增加.高浓

度的盐使碱基错配的杂交体更稳定,所以进行序列不完全同源的核酸分子杂交时必须维持杂交反应

液中的盐浓度和洗膜液中的盐浓度.

4,杂交液中的甲酰胺:甲酰胺能降低核酸杂交的TM值.它有以下优点:在低温下探针更稳定;能

更好地保留非共价结合的核酸.

5,核酸分子的复杂性:是指存在于反应体系中的不同顺序的总长度.两个不同基因组DNA变性后的相对杂交速率取决于样品浓度绝对一致时的相对复杂性(即DNA中的碱基数).

6,非特异性杂交反应:在杂交前应对非特异性杂交反应位点进行封闭,以减少其对探针的非特异性

吸附作用.

(十四),探针的种类和优缺点

答:1,cDNA探针:通过逆转录获得cDNA后,将其克隆于适当的克隆载体,通过扩增重组质粒而

使cDNA得到大量的扩增.提取质粒后分离纯化作为探针使用.它是目前应用最为广泛的一种探针.

2,基因组探针:从基因组文库里筛选得到一个特定的基因或基因片段的克隆后,大量扩增,纯化,

切取插入片段,分离纯化为探针.

3,寡核苷酸探针:根据已知的核酸顺序,采用DNA合成仪合成一定长度的寡核苷酸片段作为探针. 4,RNA探针:采用基因克隆和体外转录的方法可以得到RNA或反义RNA作为探针.

(十五),探针的标记法

答:1,缺口平移法:此法是利用适当浓度的DNase Ⅰ在DNA双链上随机切割单链,造成单链切口. 切口处产生一个5末端和3末端,3末端就可以作为引物,在大肠杆菌DNA聚合酶Ⅰ的催化下,以

互补的DNA单链为摸板,依次将dNTP连接到切口的3末端的羟基上,合成新的DNA单链;同时DNA聚合酶Ⅰ的5→3的核酸外切酶活性在切口处将旧链从5末端逐步切除,新合成链不断延伸, 从而使原DNA分子上的部分核苷酸残基被标记的核苷酸所取代.

2,随机引物法:随机引物是人工合成的长度为6个寡核苷酸残基的寡聚核苷酸片段的混合物.对于任何一个用作探针的DN**段,随机引物混合物中都会有一些六核苷酸片段可以与之结合,起到DNA合成引物的作用.将这些引物与变性的DNA单链结合后,以4种dNTP(其中一种是标记物

标记的dNTP)为底物,合成与探针DNA互补的切带有标记物的DNA探针.

3,PCR标记法:在PCR反应底物中,将一种dNTP换成标记物标记的dNTP, 这样标记的dNTP 就在PCR反应的同时掺入到新合成的DNA链上.

4,末端标记法:只是将DN**段的一端进行标记.

(十六),PCR的基本原理

答CR是在试管中进行的DNA复制反应,基本原理是依据细胞内DNA半保留复制的机理,以及体外DNA分子于不同温度下双链和单链可以互相转变的性质,人为地控制体外合成系统的温度,以

促使双链DNA变成单链,单链DNA与人工合成的引物退火,然后耐热DNA聚合酶以dNTP为原料使引物沿着单链模板延伸为双链DNA.PCR全过程每一步的转换是通过温度的改变来控制的.需

要重复进行DNA模板解链,引物与模板DNA结合,DNA聚合酶催化新生DNA的合成,即高温变性,低温退火,中温延伸3个步骤构成PCR反应的一个循环,此循环的反复进行,就可使目的DNA 得以迅速扩增.DNA模板变性:模板双链DNA 单链DNA,94℃.退火:引物+单链DNA 杂交

链,引物的Tm值.引物的延伸:温度至70 ℃左右, Taq DNA聚合酶以4种dNTP为原料,以目

的DNA为模板,催化以引物3\'末端为起点的5\'→3\'DNA链延伸反应,形成新生DNA链.新

合成的引物延伸链经过变性后又可作为下一轮循环反应的模板PCR,就是如此反复循环,使目的DNA得到高效快速扩增.

(十七),PCR引物设计的基本要求

答:1,引物长度一般为15~30个核苷酸.过短影响PCR的特异性,过长会提高相应退火温度,使

延伸温度超过T aqDNA聚合酶最适温度74℃,影响产物的生成.

2,引物的碱基尽可能随机,避免出现嘌呤,嘧啶碱基堆积现象.3\'端不应有连续3个G和C.否

则会使引物和模板错误配对.G+C含量一般占45% -55%.3\'端和5\'端引物具有相似的Tm值,Tm 值计算公式:Tm=4(G+C)+ 2(A+T)

3,引物自身不应存在互补序列以避免折叠成发夹结构.引物的连续互补序列,一般不超过3bp. 4,两个引物之间不应存在互补序列,尤其应避免3\'端的互补重叠.

5,引物与非特异扩增区的序列的同源性不超过70%,引物3\'末端连续8个碱基在待扩增区以外不能有完全互补序列,否则易导致非特异性扩增.

6,引物3\'端碱基是引发延伸的起点,因此一定要与模板DNA配对.引物3\'端最佳碱基选择是G 和C,形成的碱基配对比较稳定.

7,引物与模板结合时,引物的5\'端最多可以游离十几个碱基而不影响PCR反应的进行.

8,引物的5\'端可以修饰,如附加限制酶位点,引入突变位点,用生物素,荧光物质,地高辛标记,

加入其它短序列包括起始密码子,终止密码子等.

(十八),PCR的反应条件

答:1,PCR反应的缓冲液:

Tris -HCl缓冲液

KCl 促进引物的退火,浓度太高时会抑制T aq DNA聚合酶活性.

加入BSA或明胶有利于保护TaqDNA聚合酶活性.

必要时加入适量二甲基亚砜(DMSO)或甲酰胺利于破坏模板二级结构,提高PCR反应特异

性.

2,镁离子浓度一般用量1.5-2.0 mmol/L,T aq DNA聚合酶活性需要Mg 2+.Mg 2+浓度过低,会显著降低酶活性.Mg 2+浓度过高又使酶催化非特异性扩增增强.Mg 2+浓度还会影响引物的退火,模

板与PCR产物的解链温度,从而影响扩增片段的产率.

3,底物浓度工作浓度20-200umol/L, dNTPs浓度过高可加快反应速度,也增加碱基的错配率和实

验成本.降低浓度会导致反应速度下降,可提高反应的特异性.在PCR反应中,4种dNTP必须以等摩尔浓度配制,以减少PCR反应的错配误差并提高使用效率.

4,Taq DNA聚合酶75-80℃时具有最高的聚合酶活性,150个核苷酸/秒;具有良好的热稳定性,95 ℃仍有活性,应用浓度一般为1-2.5u/100ul反应体积.

5,引物0.1-0.5umol/L.引物浓度偏高会引起错配或非特异性扩增,生成引物二聚体,使目的DNA 片段产率下降.退火温度与引物Tm值有关,引物Tm值在55-80 ℃范围较为理想.

6,反应温度和循环次数

(十九),影响大肠杆菌系统外源基因表达的因素

答:1,启动子的强弱;2,基因的剂量;3,影响RNA转录和翻译效率的因素:SD序列,mRNA;

4,外源基因密码子的选择;5,表达产物的大小;6,表达产物的稳定性.

(二十),大肠杆菌系统表达外源基因必须具备的条件

答:1,要求外源基因的编码区不能含有内含子;

2,表达的外源片段要位于大肠杆菌启动子的下游,并形成正确的阅读框架;

3,转录出的mRNA必须有与大肠杆菌16S rRNA3,末端相匹配的SD序列,才能被有效的翻译成蛋白质.

4,蛋白产物必须稳定,不易被细胞内蛋白酶快速降解,且对宿主无害.

(二十一),真核细胞表达外源基因的条件

答:1,首先必须具备哺乳动物细胞表达的功能元件.要求哺乳动物细胞表达载体带有能在真核细胞中表达外源基因的真核转录调控元件;

2,注意选择转染的受体细胞,不同类型的细胞具有不同的特性;

3,注意选择适当的选择标记.

(二十二),转基因动物的概念,原理及应用

答:1,概念:是指用人工方法将外源基因导入或整合到基因组内,并能稳定传代的一类动物.它的

特点是"分子及细胞水平操作,组织及动物整体水平表达".

2,基本原理:将目的基因或基因组片段用显微注射等方法注入实验动物的受精卵或着床前的胚胎细胞中,使目的基因整合到基因组中,然后将此受精卵或着床前的胚胎细胞再植入受体动物的输卵管或子宫中,使其发育成携带有外源基因的转基因动物,人们可以通过分析转基因和动物表型的关系,揭示外源基因的功能;也可以通过转入外源基因培育优良的动物品种.

3,应用:建立用于研究外源基因表达调控体系;建立医学中常用的疾病模型;培育动物新品种;药

理学和药用蛋白的生产研究.

(二十三),基因敲除的基本程序

答:通过DNA同源重组,使得胚胎干细胞特定的内源基因被破坏而造成功能丧失,然后通过胚胎干细胞介导得到该基因丧失的小鼠模型的过程称为基因敲除.

1, 打靶载体的构建:同源序列要足够长,要含有筛选用的标志基因.

2, 胚胎干细胞的体外培养

3, 打靶载体导入胚胎干细胞

4, 同源重组胚胎干细胞的筛选

5, 基因敲除胚胎干细胞注射入胚泡

6, 胚泡植入假孕小鼠的子宫中

7, 杂交育种获得纯合的基因敲除动物

(二十四),DNA芯片的原理

答:DNA芯片技术就是一种大规模的集成的固相核酸分子杂交,以大量已知碱基序列的寡核苷酸片段为探针,检测样品中哪些核酸序列与其互补,然后通过定性定量分析得出待测样品的基因序列及表达的信息.其方法包括芯片的制备,样品的准备,分子杂交和检测分子.

(二十五),诱变剂的作用机制

答:1,碱基的类似物诱发突变

2,改变DNA的化学结构

3,结合到DNA分子上诱发移码突变

4,紫外线及其他射线引起的DNA分子的变化

(二十六),突变类型及其遗传效应

答:1,突变类型:

①点突变:DNA大分子上一个碱基的变异.分为转换和颠换.②缺失:一个碱基或一段核苷酸链从DNA大分子上消失.

③插入:一个原来没有的碱基或一段原来没有的核苷酸链插入到DNA大分子中间.

④倒位:DNA链内重组,使其中一段方向倒置.

2,突变的遗传效应:

①遗传密码的改变:错义突变,无义突变,同义突变,移码突变

②对mRNA剪接的影响:一是使原来的剪接位点消失;二是产生新的剪接位点.

③蛋白质肽链中的片段缺失:

(二十七),基因治疗的策略

答:1,基因置换或称基因矫正:特定的目的基因导入特定的细胞,通过定位重组,让导入的正常基因置换基因组内原有的缺陷基因,不涉及基因组的任何改变.

2,基因添加或称基因增补:通过导入外源基因使靶细胞表达其本身不表达的基因.

3,基因干预:采用特定的方式抑制某个基因的表达,或者通过破坏某个基因而使之不能表达,以达到治疗疾病的目的.

4, 基因标记:基因标记实验是基因治疗的前奏,并不在于直接治疗疾病而是期望能够提供有

关正常细胞生物学和疾病病理方面的信息.

(二十八),基因诊断常用的生物学技术.

(二十九),简述重组DNA技术的过程

分子生物学期末考试试题

一、名词解释

1、反式作用因子:能直接或间接地识别或结合各类顺式作用元件核心序列,参与调控靶基因转录效率的蛋白质。

2、基因家族:

3、C值矛盾:C值是指真核生物单倍体的DNA含量,一般的,真核生物的进化程度越高,C值越大,但在一些两栖类生物中,其C值却比哺乳动物大的现象。原因是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能DNA所隔开。

4、核型:指一个物种所特有的染色体数目和每一条染色体所特有的形态特征。

5、RNA editing:转录后的RNA在编码区发生碱基的突变、加入或丢失等现象。

二、判断:

1、真核生物所有的mRNA都有polyA结构。(X )

组蛋白的mRNA没有

2、由于密码子存在摇摆性,使得一种tRNA分子常常能够识别一种以上同一种氨基酸的密码子。(√ )

3、大肠杆菌的连接酶以A TP作为能量来源。(X )

以NAD作为能量来源

4、tRNA只在蛋白质合成中起作用。(X )

tRNA还有其它的生物学功能,如可作为逆转录酶的引物

5、DNA聚合酶和RNA聚合酶的催化反应都需要引物。(X )

RNA聚合酶的催化反应不需要引物

6、真核生物蛋白质合成的起始氨基酸是甲酰甲硫氨酸(X )

真核生物蛋白质合成的起始氨基酸是甲硫氨酸

7、质粒不能在宿主细胞中独立自主地进行复制(X )

质粒具有复制起始原点,能在宿主细胞中独立自主地进行复制

8、RNA因为不含有DNA基因组,所以根据分子遗传的中心法则,它必须先进行反转录,才能复制和增殖。(X )

不一定,有的RNA病毒可直接进行RNA复制和翻译

9、细菌的RNA聚合酶全酶由核心酶和ρ因子组成。(X )

细菌的RNA聚合酶全酶由核心酶和ζ因子组成

10、核小体在复制时组蛋白八聚体以全保留的方式传递给子代。(√ )

11、色氨酸操纵子中含有衰减子序列(√ )

12、SOS框是所有din基因(SOS基因)的操纵子都含有的20bp的lexA结合位点。(√ )

三、填空:

1、原核生物的启动子的四个保守区域为转录起始点、-10区、-35区、-10区与-35区的距离。

2、根据对DNA序列和蛋白质因子的要求,可以把重组分为同源重组、位点专一性重组/特异位点重组、转座重组、异常重组四类。

3、研究启动子功能的主要方法是启动子的突变,研究酶与启动子间识别与结合的方法有足迹法和碱基修饰法。

4、真核生物中反式作用因子的DNA结合结构域有螺旋-转角-螺旋(HTH) 、碱性-螺旋-环-螺旋(bHLH) 、锌指(zinc finger) 、碱性-亮氨酸拉链(bZIP)。

5、根据DNA复性动力学,DNA序列可以分成哪四种类型?

单一序列、轻度重复序列、中度重复序列、高度重复序列

四、选择题(10分,每题1分)

1、在真核基因表达调控中,( B )调控元件能促进转录的速率。

A、衰减子

B、增强子

C、repressor

D、TATA Box

2、核基因mRNA、的内元拼接点序列为( D )。

A、AG...GU

B、GA...UG

C、UG...GA

D、GU...AG

3、下列何种因子不会诱变DNA( D )

A、亚硝酸

B、UV

C、丫啶橙

D、饱和脂肪乳剂

4、RNA聚合酶1的功能是( C )

A 转录tRNA和5sRNA基因;B转录蛋白质基因和部分snRNA基因;

C 只转录rRNA基因;D转录多种基因

5、如果一段DNA产生了+1的译码突变,可以加以校正的是( D )

A 突变型氨酰tRNA合成酶

B 有突变型反密码子的tRNA

C 有切割一个核苷酸的酶

D 有四个碱基长的反密码子的tRNA

6、参与重组修复的酶系统中,具有交换DNA链活性的是( D )

A DNA聚合酶I

B RecB蛋白

C RecC蛋白

D RecA蛋白

7、原核RNA pol 识别的启动子位于:( A )

A、转录起始点的上游;

B、转录起始点的下游;

C、转录终点的下游;

D、无一定位置;

8、在研究原核翻译过程中,可用不同的抑制剂研究翻译诸阶段,其中链霉素可抑制:( C )

A、起始

B、延长

C、肽基有P位移至A位

D、核糖体移位

9、在什么情况下,乳糖操纵子的转录活性最高(A )

A 高乳糖,低葡萄糖

B 高乳糖,高葡萄糖

C 低乳糖,低葡萄糖D低乳糖,高葡萄糖

10、设密码子为5'XYZ 3',反密码子为5'ABC 3',则处于摆动位置上的碱基为( C )

A X-C

B Y-B

C Z-A

五、简答:

1.叙述由一段DNA序列形成多种蛋白产物的机制。

答:由一段DNA形成多种蛋白产物的可能机制有:阅读框不同、抗终止作用、可变剪切和RNA编辑。

重叠基因在фX174中最早发现,两个邻近的基因以一种巧妙的方式发生重叠,转录出来的mRNA以不同的阅读框阅读并被表达,产生两种以上的蛋白产物。在λ噬菌体中有不同时期表达的操纵子,如左向早期操纵子可以转录出两种mRNA,这是由于依赖于ρ因子的终止作用以及早期基因编码的抗终止蛋白的抗终止作用造成的。抗终止蛋白与RNA 聚合酶结合后修饰了酶的构象,使其不再识别弱终止子,从而使一段DNA可以转录出多种mRNA,从而产生两种以上的蛋白产物。

真核生物的hnRNA含有内含子,通过剪接可将其出去形成Mrna,但有的高等真核细胞存在可变剪接,即来自一个基因的RNA,其某个内含子的5'供体在不同的条件下和不同内含子的3'受体进行剪接,从而将来自一个基因的mRNA前体剪接产生多RNA,其某个内含子的5'供体在不同的条件下和不同内含子的3'受体进行剪接,从而将来自一个基因的mRNA前体剪接产生多种mRNA,翻译出不同的蛋白质。另外,在真核生物中存在RNA编辑,将mRNA在转录后进行插入、缺失或核苷酸的替换,改变DNA 模板的遗传信息,从而翻译出氨基酸序列不同的多种蛋白质。

1、各种二核苷酸对的排列顺序不同,对双螺旋结构的影响不同。

(1)请问那种的Tm最低?

答:的Tm值最低。

(2)含这种二核苷酸的序列有那些,为什么?(7分)

答:含有A/T的主要有复制起始点、原核生物启动子的-10区、真核生物启动子的TA TA 框,此外,还有生物体选择以UAA作为最有效的终止密码子。

DNA在复制和转录时要在起始原点和启动子区形成起始复合物,复制起始点、原核生物启动子的-10区、真核生物启动子的TA TA框富含AT对,二者之间有两条氢键,在此处易于解开双链,容易形成起始复合物,使复制和转录过程顺利进行。生物体选择以UAA 作为最有效的终止密码子,因为在64的密码子中,假使UAA具有和它配对的反密码子,所形成的产物在生理条件下也是不稳定的,有利于肽链的释放,而且UAA 很少发生无义抑制突变,有利于肽链的正常终止。

3、详述大肠杆菌色氨酸操纵子的调控机理。(12分)

答:大肠杆菌色氨酸操纵子的转录受阻遏和衰减两种机制的控制,前者通过阻遏蛋白和操纵基因的作用控制转录的起始,后者通过前导序列形成特殊的空间结构控制转录起始后是否进行下去。

1)色氨酸操纵子的可阻遏系统:

在阻遏系统中,起负调控的调节基因的产物是一个无活性的阻遏蛋白,色氨酸是辅阻遏物;当色氨酸不足时,阻遏蛋白无活性,不能和操纵基因结合,色氨酸操纵子能够转录;当色氨酸充足时,阻遏蛋白和它结合而被激活,从而结合到操纵基因上,而色氨酸操纵子的操纵基因位于启动基因内,因此,活性阻遏物的结合排斥了RNA聚合酶的结合,从而抑制了结构基因的表达。

2)色氨酸操纵子的衰减调控

在色氨酸操纵子的操纵基因和第一个结构基因之间有一段前导序列L,在前导序列上游部分有一个核糖体结合位点,后面是以起始密码AUG开头的14个氨基酸的编码区,编码区有两个紧密相连的色氨酸密码子,后面是一个终止密码子UGA,在开放阅读框下游有一个不

依赖ρ因子的终止子,是一段富含G/C的回文序列,可以形成发夹结构,因此可以在此处终止转录。另外前导序列包含4个能进行碱基互补配对的片断1区、2区、3区和4区。它们能以1、2和3、4或2、3的方式进行配对,从而使前导序列形成二级结构的变化。在细菌中,翻译与转录偶连,一旦RNA聚合酶转录出trp mRNA中的前导肽编码区,核糖体便立即结合上去翻译这一序列。当细胞中缺乏色氨酸时,Trp-tRNATrp的浓度很低,核糖体翻译前导肽至两个连续的色氨酸密码子处就陷入停顿,这时核糖体只占据1区,由RNA聚合酶转录的2区和3区便可配对,4区游离在外,这样就不能形成终止子结构,RNA聚合酶就可以一直转录下去,最后完成trp全部结构基因的转录,得到完整的mRNA分子。当细胞中存在色氨酸时,就有一定浓度的Trp-tRNATrp,核糖体便能顺利通过两个连续的色氨酸密码子而翻译出整个前导肽,直到前导肽序列后面的终止密码子UGA处停止。此时,核糖体占据了1区和2区,结果3区和4区配对,形成转录终止子结构,使RNA聚合酶终止转录。实现衰减调控的关键在于时间和空间上的巧妙安排。在空间上,两个色氨酸密码子的位置很重要,不可随意更改;在时间上,核糖体停顿于两个色氨酸密码子上时,序列4应当还未转录出来。

云南大学生命科学学院2012年生物科学分子生物学期末考试试题

一、选择题(每题1分,共15分)

二、填空题(每空1分,共20分)回忆意思对

最稳定的G-C的Tm值

DNA变性能产生效应

RNA编辑方式,, DNA检测方法,,原核生物RNA没有终止因子,通过

来终止翻译聚合酶链式反应需要,

三、名词解释(每题2分,共20分) 1、ips:iPS细胞全称为诱导性多能干细胞,是由体细胞诱导而成的干细胞,具有和胚胎干细胞类似的发育多潜能性。 2、启动子:与基因表达启动有关的顺式作用元件,是结构基因的重要成分,它是位于转录起始位点5’端上游区大约100~200bp以内的具有独立功能的DNA序列,能活化RNA 聚合酶,使之与模板DNA准确地相结合并具有转录起始的特异性。 3、Gene:基因,产生一条多肽链或功能RNA所需的全部核苷酸序列。(能转录且具有生物学功能的DNA/RNA的序列。) 4、PCNA:增殖细胞核抗原,一种参与真核细胞DNA复制的蛋白质。由三个相同亚基(约29 kDa)组成的环状三聚体。能与DNA聚合酶δ、聚合酶ε、复制因子 C结合,并使DNA在其形成的环中滑行,使前导链连续合成 5、基因家族:真核细胞中,许多相关的基因常按功能成套组合,被称为基因家族 6、cDNA : 7、内含子: 8、细胞凋亡: 9、引物酶: 10、免疫共沉淀技术:

四、简答(每题5分,共25分) 1、分子杂交方法及原理 2、简述从低等生物到高等生物基因组的变化

3、简述DNA损伤与修复

4、为啥自然界选择DNA作为遗传物质

5、研究基因的方法

三.问答题(每题10分,共20分,任选两题)

1.综述RNA的生理功能

答:mRNA、tRNA、rRNA、反义RNA、snRNA,gRNA等等。

①mRNA,信使RNA,功能就是把DNA上的遗传信息精确无误地转录下来,决定蛋白质的氨基酸顺序,完成遗传信息传递过程。

②tRNA,转运RNA,根据mRNA的遗传密码依次准确地将它携带的氨基酸连结起来形成

多肽链。

③rRNA,核糖体RNA,一般与核糖体蛋白质结合在一起,形成核糖体。

④反义RNA,与mRNA互补的RNA分子,从而抑制mRNA的翻译,参与基因表达的调控。

⑤snRNA,小核RNA,是真核生物转录后加工过程中RNA剪接体的主要成分。

上述各种RNA分子均为转录的产物,mRNA最后翻译为蛋白质,而rRNA、tRNA及snRNA 等并不携带翻译为蛋白质的信息,其终产物就是RNA。

⑥gRNA,引导RNA,真核生物中参与RNA编辑的具有与mRNA互补序列的RNA。2.原核和真核复制的异同

答:原核生物与真核生物DNA复制共同的特点:①分为起始、延伸、终止三个过程;

②必须有提供3’羟基末端的引物;③亲代DNA分子为模板,四种脱氧三磷酸核苷(dNTP)为底物,多种酶及蛋白质:DNA拓扑异构酶、DNA解链酶、单链结合蛋白、引物酶、 DNA 聚合酶、RNA酶以及DNA连接酶等;④一般都为半保留复制、半不连续复制。

原核生物与真核生物DNA复制不同的特点:

①真核生物为线性DNA,具有多个复制起始位点,形成多个复制叉,DNA聚合酶的移动速度较原核生物慢。原核生物一般为环形DNA,具有单一复制起始位点。

②真核生物DNA复制只发生在细胞周期的S期,一次复制开始后在完成前不再进行复制,原核生物多重复制同时进行。

③真核生物有多个复制子ARS大小不一且并不同步。原核生物只有一个复制子Ori。

④真核生物有五种DNA聚合酶,需要Mg+。主要复制酶为DNA聚合酶δ(ε),引物由DNA 聚合酶α合成。原核生物只有三种,主要复制酶为DNA聚合酶III。

⑤真核生物末端靠端粒酶(部分细胞)补齐,而原核生物以多联体的形式补齐。

⑥真核生物冈崎片段间的RNA引物由核酸外切酶MF1去除,而原核生物引物由DNA聚合酶I去除。

9.原核生物的基因表达调控原理及乳糖操纵子的工作原理

答:?乳糖操纵子:乳糖操纵子是个弱启动子,包括3个结构基因:Z、Y和A,以及启动子、控制子和阻遏子等。

乳糖操纵子负控诱导模式:无诱导物时,LacⅠ基因转录产生阻遏物单体,结合形成同源四体,Lac同源四体与操纵区(O区)DNA相结合,阻遏基因转录。基因不表达。当有诱导物时,诱导物使LacⅠ变成不能与O区相结合的非活化形式,RNA聚合酶就可以与Lac启动子区相结合,起始转录基因。mRNA被转录成三个蛋白质,即贝塔-半乳糖苷酶、贝塔-半乳糖苷透过酶、贝塔-半乳糖苷乙酰基转移酶。((图解)乳糖操纵子是个弱启动子,在葡萄糖和乳糖都存在的情况下,大肠杆菌利用葡萄糖,是因为葡萄糖可降低cAMP浓度,阻碍其与CAP结合,而cAMP-CAP是激活Lac的重要组成部分,Lac启动子表达受阻,就没有贝塔-半乳糖苷酶活性。不能利用乳糖。所以说lac操纵子强的诱导作用既需要乳糖又需缺乏葡萄糖

分子生物学试题整理

一、植物组织培养:狭义指对植物体组织或由植物器官培养产生的愈伤组织进行培养直至生成完整植株。广义:无菌操作分离植物体一部分(即外植体)接种到培养基,在人工条件下培养直至生成完整植株。生物技术中的一个基本技术。 MS:MS培养基是Murashige和Skoog于1962年为烟草细胞培养设计的,特点是无机盐和离子浓度较高,是较稳定的离子平衡溶液,它的硝酸盐含量高,其营养丰富,养分的数量和比例合适,不需要添加更多的有机附加物,能满足植物细胞的营养和生理需要,因而适用范围比较广,多数植物组织培养快速繁殖用它作为培养基的基本培养基。 愈伤组织愈伤组织callus在离体培养过程中形成的具有分生能力的一团不规则细胞,多在植物体切面上产生。 cDNA文库:包含细胞全部的mRNA信息的反转录所得到的cDNA的集合体。 胚状体:是指植物在离体培养条件下,非合子细胞经过胚胎发生和发育的过程形成的胚状结构,又称体细胞胚。 体细胞杂交:体细胞杂交又称体细胞融合,指将两个GT不同的体细胞融合成一个体细胞的过程。融合形成的杂种细胞,兼有两个细胞的染色体。 分子标记:是指在分子水平上DNA序列的差异所能够明确显示遗传多态性的一类遗传标记。 基因工程原称遗传工程,亦称重组DNA技术,是指采用分子生物学手段,将不同来源的基因,按照人类的愿望,在体外进行重组,然后将重组的基因导人受体细胞,使原有生物产生新的遗传特性,获得新品种,生产新产品的技术科学。 细胞培养指动物、植物和微生物细胞在体外无菌条件下的保存和生长。过程:①取材和除菌;②培养基的配制;③接种与培养。 生物反应器是适用于林木细胞规模化培养的装置。 生物技术biotechmlogy:也称生物工程,是指人们以现代生命科学为基础,结合其他基础学科的科学原理,采用先进的工程技术手段,按照预先的设计改造生物体或加工生物原料,为人类生产出所需产品或达到某种目的。 外植体explant:从植物体上分离下来的用于离体培养的材料。 植物细胞的全能性:植物每一个具有完整细胞核的体细胞,都含有植物体的全部遗传信息,在适当条件下,具有发育成完整植株的潜在能力。 再分化:脱分化的分生细胞(愈伤组织)在一定的条件下,重新分化为各种类型的细胞,并进一步发育成完整植株的过程。 器官发生organogenesis:亦称器官形成,一般指脊椎动物个体发育中,由器官原基进而演变为器官的过程。各种器官形成的时间有早有晚,通过器官发生阶段,各种器官经过形态发生和组织分化,逐渐获得了特定的形态并执行一定的生理功能 体细胞胚胎发生:单细胞或一群细胞被诱导,不断再生非合子胚,并萌发形成完整植株的过程。 PCR:聚合酶链式反应是利用DNA在体外摄氏95°高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右),DNA聚合酶沿着磷酸到五碳糖(5'-3')的方向合成互补链。Recombinant DNA重组DNA:是指采用分子生物学手段,将不同来源的基因,按照人类的愿望,在体外进行重组,然后将重组的基因导人受体细胞,使原有生物产生新的遗传特性,获得新品种,生产新产品的技术科学。 细胞融合:两个或多个细胞相互接触后,其细胞膜发生分子重排,导致细胞合并、染色体等遗传物质重组的过程称为细胞融合。 悬浮培养:悬浮培养是细胞培养的基本方法,不仅为研究细胞的生长和分化提供了一个

(完整版)分子生物学试题及答案(整理版)

分子生物学试题及答案 一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。 3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。 9.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。 10.魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。产生这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。 11.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA、-35区的TGACA 及增强子,弱化子等。 12.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。13.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。 14.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 15.考斯质粒:是经过人工构建的一种外源DNA载体,保留噬菌体两端的COS区,与质粒连接构成。16.蓝-白斑筛选:含LacZ基因(编码β半乳糖苷酶)该酶能分解生色底物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌。称之为蓝-白斑筛选。 17.顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。18.Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去除了5’→3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。 3.原核生物中有三种起始因子分别是(IF-1)、(IF-2)和(IF-3)。 4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、(DNA重组技术)三部分。7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:(hnRNA在转变为mRNA的过程中经过剪接,)、 (mRNA的5′末端被加上一个m7pGppp帽子,在mRNA3′末端多了一个多聚腺苷酸(polyA)尾巴)。 9.蛋白质多亚基形式的优点是(亚基对DNA的利用来说是一种经济的方法)、(可以减少蛋白质合成过程中随机的错误对蛋白质活性的影响)、(活性能够非常有效和迅速地被打开和被关闭)。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP—CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP—CRP的启动子S1对高水平合成进行调节。有G时转录从( S2)开始,无G时转录从( S1)开

现代分子生物学_复习笔记完整版.doc

现代分子生物学 复习提纲 第一章绪论 第一节分子生物学的基本含义及主要研究内容 1 分子生物学Molecular Biology的基本含义 ?广义的分子生物学:以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究 对象,从分子水平阐明生命现象和生物学规律。 ?狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调控 等过程,也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 1.1 分子生物学的三大原则 1) 构成生物大分子的单体是相同的 2) 生物遗传信息表达的中心法则相同 3) 生物大分子单体的排列(核苷酸、氨基酸)的不同 1.3 分子生物学的研究内容 ●DNA重组技术(基因工程) ●基因的表达调控 ●生物大分子的结构和功能研究(结构分子生物学) ●基因组、功能基因组与生物信息学研究 第二节分子生物学发展简史 1 准备和酝酿阶段 ?时间:19世纪后期到20世纪50年代初。 ?确定了生物遗传的物质基础是DNA。 DNA是遗传物质的证明实验一:肺炎双球菌转化实验 DNA是遗传物质的证明实验二:噬菌体感染大肠杆菌实验 RNA也是重要的遗传物质-----烟草花叶病毒的感染和繁殖过程 2 建立和发展阶段 ?1953年Watson和Crick的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑。 ?主要进展包括: ?遗传信息传递中心法则的建立 3 发展阶段 ?基因工程技术作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。 ? 第三节分子生物学与其他学科的关系 思考 ?证明DNA是遗传物质的实验有哪些? ?分子生物学的主要研究内容。 ?列举5~10位获诺贝尔奖的科学家,简要说明其贡献。

分子生物学问题汇总

Section A 细胞与大分子 简述复杂大分子的生物学功能及与人类健康的关系。 Section C 核酸的性质 1.DNA的超螺旋结构的特点有哪些? A 发生在闭环双链DNA分子上 B DNA双链轴线高卷曲,与简单的环状相比,连接数发生变化 C 当DNA扭曲方向与双螺旋方向相同时,DNA变得紧绷,为正超螺旋,反之变得松弛为负超螺旋。自然界几乎所有DNA分子超螺旋都为负的,因为能量最低。 2.简述核酸的性质。 A 核酸的稳定性:由于核酸中碱基对的疏水效应以及电荷偶极作用而趋于稳定 B 酸效应:在强酸和高温条件下,核酸完全水解,而在稀酸条件下,DNA的核苷键被选择性地断裂生成脱嘌呤核酸 C 碱效应:当PH超出生理范围时(7-8),碱基的互变异构态发生变化 D 化学变性:一些化学物质如尿素,甲酰胺能破坏DNA和RNA二级结构中的 而使核酸变性。 E 粘性:DNA的粘性是由其形态决定的,DNA分子细长,称为高轴比,可被机械力和超声波剪切而粘性下降。 F 浮力密度:1.7g/cm^3,因此可利用高浓度分子质量的盐溶液进行纯化和分析 G 紫外线吸收:核酸中的芳香族碱基在269nm 处有最大光吸收 H 减色性,热变性,复性。 思考题:提取细菌的质粒依据是核酸的哪些性质? 质粒是抗性基因,,在基因组或者质粒DNA中用碱提取法。 Sectio C 课前提问 1.在1.5mL的离心管中有500μL,取出10 μL稀释至1000 μL后进行检测,测得A260=0.15。 问(1):试管中的DNA浓度是多少? 问(2):如果测得A280=0.078, .A260/A280=?说明什么问题? (1)稀释前的浓度:0.15/20=0.0075 稀释后的浓度:0.0075/100=0.75ug/ml (2)0.15/0.078=1.92〉1.8,说明DNA中混有RNA样品。 2.解释以下两幅图

分子生物学问题

1.分子生物学的定义。 2.简述分子生物学的主要研究内容 广义:是研究蛋白质及核酸等生物大分子特定的空间结构及结构的运动变化与其生物学功能关系的科学。从分子水平阐明生命现象和生物学规律。 狭义:主要研究基因或DNA的复制、转录、表达和调节控制等过程 分子生物学的主要研究内容 生物大分子本质:一切生物体中的各类有机大分子都是由完全相同的单体,如蛋白质分子中的20种氨基酸、DNA及RNA中的8种碱基所组合而成的。 生物大分子结构功能(结构分子生物学) DNA重组技术(基因工程) 基因表达调控(核酸生物学) 基因组学 ?2章DNA双螺旋模型是哪年、由谁提出的?简述其基本内容。 ?1953 DNA的双螺旋结构有哪几种不同形式,各有何特点?细胞内最常见的是哪一类构象? ?B-DNA构象: 相对湿度为92%时,DNA钠盐纤维为B-DNA构象。在天然情况下,绝大多数DNA 以B构象存在。最常见 ?A-DNA构象: 当相对湿度改变(75%以下)或由钠盐变为钾盐、铯盐,DNA的结构可成为A构象。它是B-DNA螺旋拧得更紧的状态。DNA-RNA杂交分子、RNA-RNA双链分子均采取A构象。

?Z-DNA构象: 在一定的条件下(如高盐浓度),DNA可能出现Z构象。Z-DNA是左手双螺旋,磷酸核糖骨架呈Z字性走向。不存在大沟,小沟窄而深,并具有更多的负电荷密度。Z-DNA的存在与基因的表达调控有关 第四节DNA的变性和复性 简述DNA的C-值、C-值矛盾(C Value paradox);核小体、断裂基因 C-值是一种生物的单倍体基因组DNA的总量 ?C-值矛盾(C-value paradox): 形态学的复杂程度(物种的生物复杂性)与C-值大小的不一致,称为C值矛盾(C-值悖理) 核小体(nucleosome)定义:用于包装染色质的结构单位,是由DNA链缠绕一个组蛋白核心构成的 简述真核生物染色体上组蛋白的种类,组蛋白修饰的种类及其生物学意义 组蛋白:H1 H2A H2B H3 H4 如甲基化、乙酰化、磷酸化、泛素化及ADP核糖基化等。修饰作用只发生在细胞周期的特定时间和组蛋白的特定位点上。 H3、H4的修饰作用较普遍。 所有这些修饰作用都有一个共同的特点,即降低组蛋白所携带的正电荷。这些组蛋白修饰的意义:一是改变染色体的结构,直接影响转录活性;二是核小体表面发生改变,使其他调控蛋白易于和染色质相互接触,从而间接影响转录活性 、

分子生物学笔记

分子生物学笔记 ? ?第一章基因的结构第一节基因和基因组 一、基因(gene) 是合成一种功能蛋白或RNA分子所必须的全部DNA序列. 一个典型的真核基因包括 ①编码序列—外显子(exon) ②插入外显子之间的非编码序列—内合子(intron) ③5'-端和3'-端非翻译区(UTR) ④调控序列(可位于上述三种序列中) 绝大多数真核基因是断裂基因(split-gene),外显子不连续。 二、基因组(genome) 一特定生物体的整套(单倍体)遗传物质的总和, 基因组的大小用全部DNA的碱基对总数表示。 人基因组3X1 09(30亿bp),共编码约10万个基因。 每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划(human genome project, HGP) 基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。蛋白质组(proteome)和蛋白质组学(proteomics)

第二节真核生物基因组 一、真核生物基因组的特点:, ①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中. ②真核基因组中,编码序列只占整个基因组的很小部分(2—3%), 二、真核基因组中DNA序列的分类? (一)高度重复序列(重复次数>lO5) 卫星DNA(Satellite DNA) (二)中度重复序列 1.中度重复序列的特点 ①重复单位序列相似,但不完全一样, ②散在分布于基因组中. ③序列的长度和拷贝数非常不均一, ④中度重复序列一般具有种属特异性,可作为DNA标记. ⑤中度重复序列可能是转座元件(返座子), 2.中度重复序列的分类 ①长散在重复序列(long interspersed repeated segments.)LINES ②短散在重复序列(Short interspersed repeated segments)SINES SINES:长度<500bp,拷贝数>105.如人Alu序列 LINEs:长度>1000bp(可达7Kb),拷贝数104-105,如人LINEl (三)单拷贝序列(Unique Sequence) 包括大多数编码蛋白质的结构基因和基因间间隔序列, 三、基因家族(gene family)

分子生物学试题及答案

分子生物学试题及答案

分子生物学试题及答案一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。

除了5’ 3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。3.原核生物中有三种起始因子分别是(IF-1)、( IF-2 )和(IF-3 )。4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。 5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、( DNA重组技术)三部分。 7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:( hnRNA在转变为mRNA 的过程中经过剪接,)、

分子生物学题库

分子生物学备选考题 名词解释: 1.功能基因组学 2.分子生物学 3.epigenetics 4.C值矛盾 5.基因簇 6.间隔基因 7.基因芯片 8.基序(Motifs) 9.CpG岛 10.染色体重建 11.Telomerase 12.足迹分析实验 13.RNA editing 14.RNA干涉(RNA interference) 15.反义RNA 16.启动子(Promoter) 17.SD序列(SD sequence) 18.碳末端结构域(carboxyl terminal domain,CTD) 19.single nucleotide polymorphism,SNP 20.切口平移(Nick translation) 21.原位杂交 22.Expressing vector 23.Multiple cloning sites 24.同源重组 25.转座 26.密码的摆动性 27.热休克蛋白嵌套基因 28.基因家族增强子 29.终止子 30.前导肽RNAi 31.分子伴侣 32.魔斑核苷酸 33.同源域 34.引物酶 35.多顺反子mRNA 36.物理图谱、 37.载体(vector) 38.位点特异性重组 39.原癌基因(oncogene) 40.重叠基因、 41.母源影响基因、

42.抑癌基因(anti-oncogene)、 43.回文序列(palindrome sequence)、 44.熔解温度(melting temperature, Tm) 45.DNA的呼吸作用(DNA respiration) 46..增色效应(hyperchromicity)、 47.C0t曲线(C0t curve)、 48.DNA的C值(C value) 49.超螺旋(superhelix) 、 50.拓扑异构酶(topoisomerase)、 51.引发酶(primase) 、 52.引发体(primosome) 53.转录激活(transcriptional activation) 54.dna基因(dna gene)、 55.从头起始(de novo initiation) 、 56.端粒(telomere) 57.酵母人工染色体(yeast artificial chromosome, YAC)、 58.SSB蛋白(single strand binding protein)、 59.复制叉(replication fork)、 60.保留复制(semiconservative replication) 61.滚环式复制(rolling circle replication)、 62.复制原点(replication origin)、 63.切口(nick) 64.居民DNA (resident DNA) 65.有义链(sense strand) 66.反义链(antisense strand) 67.操纵子(operon) 、 68.操纵基因(operator) 69.内含子(内元intron) 70.外显子(外元exon) 、 71.突变子(muton) 、 72.密码子(codon)、、 73.同义密码(synonymous codons)、 74.GC盒(GC box) 75.增强子(enhancer) 76.沉默子(silencer) 77.终止子(terminator) 78.弱化子(衰减子)(attenuator) 79.同位酶(isoschizomers) 、 80.同尾酶(isocandamers) 81.阻抑蛋白(阻遏蛋白)(repressor) 82.诱导物(inducer)、 83.CTD尾(carboxyl-terminal domain ) 84.载体(vector)、 85.转化体(transformant)

分子生物学笔记完全版

分子生物学笔记第一章基因的结构 第一节基因和基因组 一、基因(gene)是合成一种功能蛋白或RNA分子所必须的全部DNA序列. 一个典型的真核基因包括 ①编码序列—外显子(exon)②插入外显子之间的非编码序列—内合子(intron)③5'-端和3'-端非翻译区(UTR) ④调控 序列(可位于上述三种序列中) 绝大多数真核基因是断裂基因(split-gene) ,外显子不连续。 二、基因组(genome) 一特定生物体的整套(单倍体)遗传物质的总和,基因组的大小用全部DNA的碱基对总数表示。人基因组3X1 09(30亿bp),共编码约10万个基因。 每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划( human genome project, HGP ) 基因组学( genomics ),结构基因组学( structural genomics )和功能基因组学( functional genomics )。 蛋白质组( proteome )和蛋白质组学( proteomics ) 第二节真核生物基因组 一、真核生物基因组的特点:, ①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中. ②真核基因组中,编码序列只占整个基因组的很小部分(2 —>% ), 三、基因家族(gene family) 一组功能相似且核苷酸序列具有同源性的基因. 可能由某一共同祖先基因(ancestral gene) 经重复(duplication) 和突变产生。 基因家族的特点: ①基因家族的成员可以串联排列在一起,形成基因簇(gene cluster)或串联重复基因(tandemly repeated genes),如 rRNA、tRNA和组蛋白的基因;②有些基因家族的成员也可位于不同的染色体上,如珠蛋白基因;③有些成员不产生 有功能的基因产物,这种基因称为假基因(Pseudogene) . ¥ a1表示与a1相似的假基因. 四、超基因家族(Supergene family ,Superfamily) 由基因家族和单基因组成的大基因家族,结构上有程度不等的同源性,但功能不同. 第四节细菌和病毒基因组 一、细菌基因组的特点。 1 .功能相关的几个结构基因往往串联在—起,受它们上游的共同调控区控制,形成操纵子结构,2.结构基因中没有内含子,也无重叠现象。 3 .细菌DNA大部分为编码序列。 二、病毒基因组的特点 1 .每种病毒只有一种核酸,或者DNA,或者RNA ; 2 .病毒核酸大小差别很大,3X10 3 一3X106bp ; 3.除逆病毒外,所有病毒基因都是单拷贝的。 4 .大部份病毒核酸是由一条双链或单链分子(RNA或DNA),仅少数RNA病毒由几个核酸片段组成. 5. 真核病毒基因有内含子,而噬菌体(感染细菌的病毒)基因中无内含子. 6. 有重叠基因. 第五节染色质和染色体 (二)组蛋白(histone): 一类小的带有丰富正电荷<富含Lys,Arg)的核蛋白,与DNA有高亲和力. (二).端粒(telomere) :真核生物线状染色体分子末端的DNA 区域端粒DNA的特点: 1、由富含G的简单串联重复序列组成(长达数kb). 人的端粒DNA重复序列:TTAGGC。

分子生物学整理

1.核酸与蛋白质的结构比较表如下: 核酸(Nucleic acids) 蛋白质(Proteins) DNA RNA 一级结构Primary structure 核苷酸序列 AGTTCT 或AGUUCU 的排列顺序 3,,5,- 磷酸二酯键 氨基酸排列顺序 肽键 二级结构Secondarystructure 双螺旋 主要是氢键,碱基堆积 力 配对(茎-环结构) (同左) 有规则重复的构象 (α-helix ,β-sheet, β-turn) 氢键 三级结构Tertiary structure 超螺旋RNA空间构象 一条肽链的空间构象 范德华力氢键疏水 作用盐桥二硫键等 四级结构Quaternarystructure 多条肽链 (或不同蛋白) 3.分离和纯化核酸:聚丙烯酰胺凝胶电泳(PAGE)与琼脂糖凝胶电泳(AGE)广泛用于核酸的分离、纯化 与鉴定 基因组DNA的分离与纯化:(一)酚抽提法(二)甲酰胺解聚法(三)玻棒缠绕法(四)DNA样品的进一 步纯化:纯化的方法包括透析、层析、电泳及选择性沉淀等 4原核生物与真核生物基因信息传递过程中的差异 1. DNA的复制 原核生物真核生物 DNA聚合酶DNA聚合酶Ⅰ、Ⅱ、ⅢDNA聚合酶α、β、γ、δ、ε五种,其中δ为主要的聚合酶, γ存在于线粒体中 原核的DNA聚合酶I具有5'-3'外切酶活性。真核生物的聚合酶没有5'-3'外切酶活性,需要一种叫FEN1 的蛋白切除5'端引物 DNA聚合酶III复制时形成二聚体复合物 起始复制地点:细胞质复制地点:细胞核 复制时间:DNA合成只是发生在细胞周期的S期 有时序性,即复制子以分组方式激活而非同步启动复制起点:一个起始位点,单复制子复制起点:多个复制起始位点,多复制子 起始点长度:长起始点长度:短 延长冈崎片段:比较长冈崎片段:比原核生物要短 引物:RNA,切除引物需要DNA聚合酶I 引物:较原核生物的短,除RNA外还有DNA,所以真核生 物切除引物需要核内RNA酶,还需要核酸外切酶。 终止基因为环状的DNA,复制的终止点ter,催 化填补空隙为DNA-polⅠ,DNA连接酶连 接冈崎片段成DNA链真核生物基因为线状的DNA,其复制与核小体的装配同步进行,复制后形成染色体,DNA-polε填补空隙,存在端粒及端粒酶防止DNA的缩短(RNA引物留下的空白无法填补时出现DNA的缩短)

分子生物学小问题整理

第一章 1.蛋白质氨基酸构成氨基羧基H原子R 2.碱性赖精组酸性天谷Asp Glu 3.肽键是有刚性的酰胺键部分双键防止肽键自由旋转 4.N-末端正电荷C-末端负电荷 5.多肽肽键连接起来的聚合物 6.一级结构氨基酸顺序 7.二级结构多肽中的区域通过折叠产生 8.三级结构由不同二级结构组成 9.四级结构几条多肽链组成的蛋白质形状 10.二级结构a螺旋b折叠helix and sheet 11.疏水相互作用非极性分子远离水分子而互相聚集在一起 第二章 1.核酸长的小分子聚合物 2.核苷酸含氮碱基糖三磷酸 3.一环嘧啶2N 4.二环嘌呤4N 5.大小沟major minor 蛋白质大多结合在大沟 6.一圈3.4nm 10bp 宽度大约2nm 7.变性260nm 单链DNA吸收很多光复性了解一下 8. 1.DNA链中的碱基序列可以用来保存生产蛋白质的氨基酸序列信息

9. 2.提供了作为遗传物质需要的稳定性 10.3.对某些类型的损伤进行修复 11.4.一定的脆弱性 第三章 1.原核生物转录 2.起始:闭合启动子复合体开放启动子复合体取得立足点启动子清空 3.延伸:局部分开两条链,RNA聚合酶创造了一个开口转录泡 4.终止内在型重视和ρ依赖型终止结合到RNA上形成发夹 5.对基因的表达进行调控何时该表达什么蛋白特殊时期特殊表达。。 6.操纵子:被协同调控的基因组织起来的结构包含一个启动子和操纵基因(operator) 7.乳糖操纵子:没有乳糖时乳糖会与lac阻遏蛋白结合别构调控 8.正调控CAP能感应葡萄糖水平低->激活lac基因的转录不与葡萄糖直接结合与 CAMP 这样的小分子结合而发挥作用成反比(CAMP和葡萄糖) 9.乳糖诱导物诱导了转录 10.色氨酸操纵子trp阻遏蛋白辅阻遏物 11.衰减作用:确保转录被彻底阻遏 12.边转录边翻译偶联转录-翻译 第四章 1.RNA聚合酶I rRNA 2.III tRNA 5S rRNA U6 RNA

分子生物学试题库

第2章染色体与DNA 名词解释 原癌基因:细胞内与细胞增殖相关的正常基因,是维持机体正常生命活动所必须的,在进化上高等保守。当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增殖,从而形成肿瘤。 复制:以亲代DNA或RNA为模板,根据碱基配对的原则,在一系列酶的作用下,生成与亲代相同的子代DNA或RNA的过程。 转座子 (transposon 或 transposable element):位于染色体DNA上可自主复制和位移的基本单位。包括插入序列和复合转座子。 半保留复制:以亲代DNA双链为模板以碱基互补方式合成子代DNA,这样新形成的子代DNA 中,一条链来自亲代DNA,而另一条链则是新合成的,这种复制方式叫半保留复制。 染色体:染色体是遗传信息的载体,由DNA、RNA和蛋白质构成,其形态和数目具有种系的特性。在细胞间期核中,以染色质形式存在。在细胞分裂时,染色质丝经过螺旋化、折叠、包装成为染色体,为显微镜下可见的具不同形状的小体。 核小体:是构成真核生物染色体的基本单位,是DNA和蛋白质构成的紧密结构形式,包括200bp左右的DNA和9个组蛋白分子构成的致密结构。 填空题 1.真核细胞核小体的组成是 DNA和蛋白 2.天然染色体末端不能与其他染色体断裂片段发生连接,这是因为天然染色体末端存在端粒结构。 3.在聚合酶链反应中,除了需要模板DNA外,还需加入引物、DNA聚合酶、dNTP和镁离子。 4.引起DNA损伤的因素有自发因素、物理因素、化学因素。 5.DNA复制时与DNA解链有关的酶和蛋白质有拓扑异构酶Ⅱ、解螺旋酶、单链DNA结合蛋白。 6.参与DNA切除修复的酶有DNA聚合酶Ⅰ、DNA连接酶、特异的核酸内切酶。 7.在真核生物中DNA复制的主要酶是DNA聚合酶δ。在原核生物中是DNA聚合酶Ⅲ。 8.端粒酶是端粒酶是含一段RNA的逆转录酶。 9.DNA的修复方式有错配修复、碱基切除修复、核苷酸切除修复、DNA的直接修复。 选择题 1.真核生物复制起点的特征包括(B) A. 富含G-C区 B. 富含A-T区 C. Z-DNA D. 无明显特征 2.插入序列(IS)编码(A) A.转座酶 B.逆转录酶 C. DNA合成酶 D.核糖核酸酶 3.紫外线照射对DNA分子的损伤主要是(D) A.碱基替换 B.磷酸脂键断裂 C。碱基丢失 D.形成共价连接的嘧啶二聚体 4.自然界中以DNA为遗传物质的大多数生物DNA的复制方式(C) A.环式 B.D环式 C.半保留 D.全保留 5.原核生物基因组中没有(A) A.内含子 B.外显子 C.转录因子 D.插入序列 6.关于组蛋白下列说法正确的是(D)

!!分子生物学笔记完全版

列〃一个典型的真核基因包括 ①编码序列—外显子(exon) ②插入外显子之间的非编码序列—内合子(intron) ③5'-端和 3'-端非翻译区(UTR) ④调控序列(可位于上述三种序列中) 绝大多数真核基因是断 裂基因(split-gene),外显子不连续。二、基因组(genome) 一 特定生物体的整套(单倍体)遗传物质的总和,基因组的大小 用全部 DNA 的碱基对总数表示。 人基因组 3X1 09(30 亿 bp),共编码约 10 万个基因。 每种真核生物的单倍体基因组中的全部 DNA 量称为 C 值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划(human genome project, HGP)基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。 蛋白质组(proteome)和蛋白质组学(proteomics) 第二节真核生物基因组一、真核生物基因组的特 点:, ①真核基因组 DNA 在细胞核内处于以核小体为基本单位的染色体结构中〃 ②真核基因组中,编码序列只占整个基因组的很小部分(2—3%), 二、真核基因组中 DNA 序列的分类 &#8226; (一)高度重复序列(重复次数>lO5) 卫星 DNA(Satellite DNA) (二)中度重复序列 1〃中度重复序列的特点

①重复单位序列相似,但不完全一样, ②散在分布于基因组中〃 ③序列的长度和拷贝数非常不均一, ④中度重复序列一般具有种属特异性,可作为 DNA 标记〃 ⑤中度重复序列可能是转座元件(返座子), 2〃中度重复序列的分类 ①长散在重复序列(long interspersed repeated segments〃) LINES ②短散在重复序列(Short interspersed repeated segments) SINES SINES:长度<500bp,拷贝数>105〃如人 Alu 序列 LINEs:长

分子生物学课件整理朱玉贤

1、广义分子生物学:在分子水平上研究生命本质的科学,其研究对象是生物大分子的结构和功能。2 2、狭义分子生物学:即核酸(基因)的分子生物学,研究基因的结构和功能、复制、转录、翻译、表达调控、重组、修复等过程,以及其中涉及到与过程相关的蛋白质和 酶的结构与功能 3、基因:遗传信息的基本单位。编码蛋白质或RNA等具有特定功能产物的遗传信息 的基本单位,是染色体或基因组的一段DNA序列(对以RNA作为遗传信息载体的 RNA病毒而言则是RNA序列)。 4、基因:基因是含有特定遗传信息的一段核苷酸序列,包含产生一条多肽链或功能RNA所必需的全部核苷酸序列。 5、功能基因组学:是依附于对DNA序列的了解,应用基因组学的知识和工具去了解 影响发育和整个生物体的特定序列表达谱。 6、蛋白质组学:是以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学。 7、生物信息学:对DNA和蛋白质序列资料中各种类型信息进行识别、存储、分析、模拟和转输 8、蛋白质组:指的是由一个基因组表达的全部蛋白质 9、功能蛋白质组学:是指研究在特定时间、特定环境和实验条件下细胞内表达的全部蛋白质。 10、单细胞蛋白:也叫微生物蛋白,它是用许多工农业废料及石油废料人工培养的微 生物菌体。因而,单细胞蛋白不是一种纯蛋白质,而是由蛋白质、脂肪、碳水化合物、核酸及不是蛋白质的含氮化合物、维生素和无机化合物等混合物组成的细胞质团。 11、基因组:指生物体或细胞一套完整单倍体的遗传物质总和。 12、C值:指生物单倍体基因组的全部DNA的含量,单位以pg或Mb表示。 13、C值矛盾:C值和生物结构或组成的复杂性不一致的现象。 14、重叠基因:共有同一段DNA序列的两个或多个基因。 15、基因重叠:同一段核酸序列参与了不同基因编 码的现象。 16、单拷贝序列:单拷贝顺序在单倍体基因组中只出现一次,因而复性速度很慢。单 拷贝顺序中储存了巨大的遗传信息,编码各种不同功能的蛋白质。 17、低度重复序列:低度重复序列是指在基因组中含有2~10个拷贝的序列 18、中度重复序列:中度重复序列大致指在真核基因组中重复数十至数万(<105)次的重复顺序。其复性速度快于单拷贝顺序,但慢于高度重复顺序。 19、高度重复序列:基因组中有数千个到几百万个拷贝的DNA序列。这些重复序列 的长度为6~200碱基对。

分子生物学zuq题库

问答题: 1 衰老与基因的结构与功能的变化有关,涉及到:(1)生长停滞;(2)端粒缩短现象;(3)DNA损伤的累积与修复能力减退;(4)基因调控能力减退。 2 超螺旋的生物学意义:(1)超螺旋的DNA比松驰型DNA更紧密,使DNA分子体积变得更小,对其在细胞的包装过程更为有利;(2)超螺旋能影响双螺旋的解链程序,因而影响DNA分子与其它分子(如酶、蛋白质)之间的相互作用。 3 原核与真核生物学mRNA的区别: 原核:(1)往往是多顺反子的,即每分子mRNA带有几种蛋白质的遗传信息(来自几个结构基因)。(2)5端无帽子结构,3端一般无多聚A尾巴。(3)一般没有修饰碱基,即这类mRNA分子链完全不被修饰。 真核:(1)5端有帽子结构(2)3端绝大多数均带有多聚腺苷酸尾巴,其长度为20-200个腺苷酸。(3)分子中可能有修饰碱基,主要有甲基化,(4)分子中有编码区与非编码区。 4 tRNA的共同特征: (!)单链小分子,含73-93个核苷酸。(2)含有很多稀有碱基或修饰碱基。(3)5端总是磷酸化,5末端核苷酸往往是pG。(4)3端是CPCPAOH序列。(5)分子中约半数的碱基通过链内碱基配对互相结合,开成双螺旋,从而构成其二级结构,开头类似三叶草。(6)三级结构是倒L型。 5 核酶分类:(1)异体催化的剪切型,如RNaseP;(2)自体催化的剪切型,如植物类病毒等;(3)内含子的自我剪接型,如四膜虫大核26SrRNA前体。 6 hnRNA变成有活性的成熟的mRNA的加工过程: (1)5端加帽;(2)3端加尾(3)内含子的切除和外显子的拼接;(4)分子内部的甲基化修饰作用,(5)核苷酸序列的编辑作用。 7 反义RNA及其功能: 碱基序列正好与有意义mRNA互补的RNA称为反意义或反义RNA,又称调节RNA,这类RNA是单链RNA,可与mRNA配对结合形成双链,最终抑制mRNA作为模板进行翻译。这是其主要调控功能,还可作为DNA复制的抑制因子,与引物RNA互补结合抑制DNA的复制,以及在转录水平上与mRNA5末端互补,阻止RNA合成转录。 8 病毒基因组分型:(1)双链DNA(2)单链正股DNA(3)双链RNA(4)单链负股RNA(5)单链正股RNA 9 病毒基因组结构与功能的特点: (1)不同病毒基因组大小相差较大;(2)不同病毒的基因组可以是不同结构的核酸。(3)病毒基因组有连续的也有不连续的;(4)病毒基因组的编码序列大于90%;(5)单倍体基因组,(6)基因有连续的和间断的,(7)相关基因丛集;(8)基因重叠(9)病毒基因组含有不规则结构基因,主要类型有:a几个结构基因的编码区无间隔;bmRNA没有5端的帽结构;c结构基因本身没有翻译起始序列。 10 原核生物基因组的结构的功能特点: (1)基因组通常仅由一条环状双链DNA分子组成。 (2)基因组中只有1个复制起点。 (3)具有操纵子结构。(4)编码顺序一般不会重叠。(5)基因是连续的,无内含子,因此转录后不需要剪切。(6)编码区在基因组中所占的比例(约占50%)远远大于真核基因组,但又远远小于病毒基因组。(7)基因组中重复序列很少(8)具有编码同工酶的基因。(9)细菌基因组中存在着可移动的DNA序列,包括插入序列和转座子。 (10)在DNA分子中具有多种功能的识别区域。 11??真核生物基因组结构与功能的特点:

分子生物学课件整理

注:根据课件容简单整理,为了方便大家理解,容较多;如果仅仅为了考试,可以根据自己的需要进行容的删减。 Lecture 1. Introduction 1. What is Molecular Biology? Molecular biology seeks to explain the relationships between the structure and function of biological molecules and how these relationships contribute to the operation and control of biochemical processes. Molecular biology is the study of genes and their activities at the molecular level, including transcription, translation, DNA replication, recombination and translocation. 分子生物学的研究容 Major content of molecular biology ◆ Structure and Function of nucleic acid ★conformation and function of DNA ★conformation and function of RNA ◎mRNA ◎tRNA◎rRNA ◎ ribozyme ◎antisence RNA ◎ microRNA ◎ RNA interfrence 人们开发出:RNAi、RNAa、ncRNA、SiRNA、microRNA、Antisene RNA、SatellileRNA、TelomereRNA、lincRNA、InCRNA、PiRNA、qiRNA、endoSiRNA 等等,其他还有RNA结合蛋白(RNPs)、RNA酶等成百上千种RNA相关的新成员,组成了一个庞大的RNA新世界 这些RNA不仅在基因-蛋白质的合成中发挥重要作用,它更调节和管理着—基因的转录、表达、表型等几乎所有的功能。 在细胞增殖、分化、生长、凋亡、生殖、发育、遗传、损伤、修复、炎症、感染、防治等一切生命活动中发挥着重要作用; RNA还是生命起源的“先驱’’,近年来研究证明,RNA比DNA更古老,它是地球上最早出现的生命形式;它可以携带遗传信息,能自我复制,自我进化,自我编译,又具有催化分子功能------,以后才有了DNA和蛋白质,才有了今天的生物世界。 RNA更是人类生命健康的维护者,它不仅调节和管理着人类的一切生命活动,而且它还是防治许多重大的疾病和开发新药物的靶分子和预警分子,并可直接和间接的发挥防治疾病的作用。 ◆Functional Genomics ◎As the Human Genome Project has mostly determined the genetic sequence, the next step is functional genomics, which will reveal each gene's functions and controls ◎ Human Genome Diversity Project ◎ Environmental Genome Project ◎Pharmacogenomics ◎Comparative Genomics Artificial life 人工生命是通过人工模拟生命系统,来研究生命的领域。人工生命的概念,包括两个方面容 1.属于计算机科学领域的虚拟生命系统,涉及计算机软件工程与人工智能技术,以及 2.基因工程技术人工改造生物的工程生物系统,涉及合成生物学技术。 分子生物学与医学 ◆人体发育调控和人体功能调控的分子生物学基础 ◎发育、分化与衰老的分子生物学基础 ◎细胞增殖调控的分子生物学基础 ◎神经、分泌和免疫调控的分子生物学基础 ◆基因与疾病 ◎疾病的分子机理 致病基因的克隆 复杂疾病的分子基础 ◎基因诊断 ◎基因治疗 Lecture 2 structure and function of gene 第一节基因的概念及其发展 一基因(gene)(一)基因的概念的产生和发展 2、Morgan 基因的物质载体是染色体 3、G.Beadle & R.Tatum 基因是决定蛋白质一级结构的遗传物质单位 5、O. Avery 基因的化学本质是DNA 6、Jacob & Monod 基因是在特定的遗传调控系统的调节下和控制下表达其功能的遗传物质单位 7、现代的基因概念 基因是核酸分子中储存遗传信息的遗传单位,是指储存有功能的蛋白质多肽链或RNA序列信息所必需的全部核苷酸序列 二、基因组(genomic) The genome is the entirety of an organism's hereditary information. It is encoded either in DNA or, for many types of virus, in RNA. The genome includes both the genes and the non-coding sequences of the DNA 细胞或生物体中,一套完整单倍体的遗传物质的总和。 人类基因组包含24条染色体以及线粒体上的全部的遗传物质。 第二节真核生物基因组 一、基因分类 1、结构基因(strutual gene)可被转录形成mRNA并进而翻译位多肽链,构成各种结构蛋白的基因 2、调节基因(regulatory gene)可调节、控制结构基因表达的基因。其突变可能会影响一个或多个结构基因的功能,导致一个(或多个)蛋白质的改变。 3、rRNA基因和tRNA基因 二、基因的结构 enhancer pr omoter e xon 5UTR, 3UTR intron (一)编码区 1 、外显子(exon) 2、含子(intron) ★GT—AG规则: 含子多是以GT开始,并以AG结尾 ★一个基因的含子可以是另一个基因的外显子。 ★外显子的数量是描述基因结构特征的重要指标。 三、调控元件(acting elements) (二)前导区: 位于编码区的上游,相当于mRNA5端的非编码区 (三)调节区: 包括启动子、增强子等基因编码区的两侧,也称侧翼序列 ◎顺式调控元件(cis-acting elements):与结构基因表达调控相关。能够被基因调控蛋白特异性识别和结合的DNA序列。 ◎反式调控元件(trans-acting elements):一些可以通过结合顺式元件而调节基因转录活性的蛋白因子。 (一)启动子(promoter) 启动子是DNA分子可以与RNA聚合酶特异结合的部位,也就是使转录开始的部位。在基因表达的调控中,转录的起始是个关键。常常某个基因是否应当表达决定于在特定的启动子起始过程。 2 启动子的类型 (1)一类是RNA聚合酶可以直接识别的启动子这类启动子应当总是能被转录。 但实际上也不都如此,外来蛋白质可对其有影响,即该蛋白质可直接阻断启动子,也可间接作用于邻近的DNA结构,使聚合酶不能和启动子结合 (2)另一类启动子在和聚合酶结合时需要有蛋白质辅助因子的存在。这种蛋白质因子能够识别与该启动子顺序相邻或甚至重叠的DNA顺序。 3 启动子的共同顺序 ⑴真核生物基因启动子位于RNA合成开始位点的上游大约10bp和35bp处有两个共同的顺序,称为-10和-35序列。这两个序列的共同顺序如下, -35区“AATGTGTGGAAT”, -10区“TTGACATATATT”。 -10序列又称为Pribnow盒(原核生物)。是RNA聚合酶所结合和作用必需的顺序

相关主题
文本预览
相关文档 最新文档