当前位置:文档之家› 2015年高考数学复习学案:圆锥曲线的统一定义(精)

2015年高考数学复习学案:圆锥曲线的统一定义(精)

2015年高考数学复习学案:圆锥曲线的统一定义(精)
2015年高考数学复习学案:圆锥曲线的统一定义(精)

一教材分析

1.教学内容

高级中学课本《数学》必修第八章--圆锥曲线方程。本章主要研究圆锥曲线的定义

方程、几何性质,以及它们在实际生活中的简单应用。

2.教材的地位与作用

前一章中学习了直线和圆的方程,对曲线和方程的概念已经有一些了解,并且已学过求简单曲线方程和利用曲线方程研究曲线几何性质的初步知识。本章是在这个基础上学习求圆锥曲线方程,研究它们的几何性质,进一步熟悉和掌握坐标法。由于高考试卷中区分度较大的题目都涉及本章内容,所以难度不易把握。考虑到本校学生的实际情况,设计例题时难度应适中。

本节课是学习完圆锥曲线几何性质之后的第二节复习课,上节课总结椭圆、双曲线、抛物线的几何条件,标准方程及性质,然后从中归纳它们的几个共同特征,使学生比较清楚的掌握这三种曲线的特点,以及它们之间的区别与联系。这节课继续利用圆锥曲线的第二定义及方程形式上的共同点,进行多题一解的训练。

3.教学重点和难点

圆锥曲线统一定义及其应用。

突破方法:

(1)引导学生围绕思考题讨论,并对具体事例进行分析。

(2)引导学生通过类比联想已学知识,找到问题解决的方法。

4.教学目标

知识目标

圆锥曲线统一定义及其应用。

能力目标

(1)分析圆锥曲线之间的共同点,培养归纳总结的能力。

(2)利用圆锥曲线定义之间的联系,找到共同的解决问题的方法,培养类比联想的能力。

(3)解题过程中,培养学生运算与思维能力。

情感目标

(1)在寻求圆锥曲线定义与解题方法之间共同点的过程中,培养学生用“普遍联系”的观念分析事物。

(2)讨论的过程中,培养合作精神,树立严谨的科学态度。

二教法分析

高二学生已经具备一定的探索与研究问题的能力。所以设计问题时应考虑灵活性。采用启发探索式教学,师生共同探索,共同研究,充分发挥学生主题能动性,教师的主导作用。

在教学过程中采用讨论法,向学生提出具有启发性和思考性的讨论题,组织学生展开讨论。通过讨论,提高学生的阅读、探索、推理、想象、分析和总结归纳等方面的能力。

在教学手段上,采用多媒体等电教手段,增加教学容量和直观性,通过演示,激发学生学习数学的兴趣。

三学法分析

1.指导读书

指导读书是培养学生自学能力以获得知识的一种非常好的方法,我在课堂上让学生带着问题研究课本知识。这不仅可以引导他们重视基础知识的作用,也可调动学生学习的积极性和主动性。

2.指导分析

从高考发展的趋势看,高考越来越重视学生分析问题解决问题的能力。因此,要求学生在学习中遇到问题时,不要急于求解,而要根据问题提供的信息回忆所学知识,选择最佳方案加以解决,从而避免“瞎撞、乱撞”的不良解题习惯。

四教学过程

教师活动学生活动设计意图

阅读课本中的椭圆、双曲线的第二定义和抛物线的定义,从中找出共同点,思考能否用统一的形式把定义归纳出来。学生阅读并讨论得出结论:平面

内,到定点的距离与它到定直线的

距离之比为一个常数e的点的轨

迹。这里e∈(0,1)时轨迹是椭

圆;e=1时轨迹是抛物线;e∈(1,

+∞)时轨迹是双曲线。

通过分析比较三种曲

线定义之间的共同

点,培养学生的归纳

总结能力,从而使所

学知识前后联系,形

成系统,加深学生对

概念的理解。

例1.已知动点P(x,y 满足=,则动点P的轨迹为 ______。学生回忆所学知识分析:分子为到

定点(2,2)的距离,分母为到定

直线x+y+2=0的距离,它们的比值

为定值,∈(0,1),所以点P的

轨迹为椭圆。

用方程的形式进一步

考查学生对圆锥曲线

定义的理解。

思考:已知动点P(x,y 满足=a,且动点P的轨迹为双曲线,求a的范围。若轨迹为抛物线呢?学生容易得到:轨迹为双曲线时,

a>1;抛物线时a=1。

通过对例1问题的变

化,不仅引导学生探

究出问题的本质,而

且使学生对圆锥曲线

的概念能够进一步加

深印象。

例2.设椭圆的右焦点为F2,AB为椭圆中过F2的弦,试分析以AB 为直径的圆和右准线l 的位置关系。

分析:只要判断圆心到直线的距离与半径的大小关系即可。

X

Y

O

A,学生讨论得解:设AB的中点为

M,A,,M,,B,分别为A,

M, B在直线l上的射影。由第二

定义得=e (e为离心率 =e,则

|AB|=|AF2|+|BF2|=e(|AA,|+|BB,

|=e·2|MM,|,

∴=e| MM,|,又∵0 ,

∴<| MM,| 。

即圆心到准线的距离大于半径,

∴准线与圆相离。

本题一方面考查直线

与圆的位置关系,另

一方面考查学生对于

椭圆第二定义的应

用。

B A B,F2 M M,

思考:由例1作为基础能否联想双曲线与抛物线有没有类似题型,试写出并给出结论。学生通过比较得到变式1:(双曲

线)设双曲线的右焦点为F2,AB

为双曲线中过F2的弦,试分析以

AB为直径的圆和右准线l的位置关

系。变式2:(抛物线)设抛物线

的焦点为F,AB为抛物线中过F的

弦,试分析以AB为直径的圆和准

线l的位置关系。

由例1作为基础,学

生可以自己出题,这

对于学生的能力要求

更高了。

O

P

θ

F2

F1

X

Y

m

n

例3.已知椭圆+=1(a>b>0),F1,F2为左右两焦点,P为椭圆上一点,且

∠F1PF2=θ,求(1)(1)男生讨论:设P F1=m,

PF2=n,且∠F1PF2=θ,则△F1PF2

的面积:S=mnsinθ,只要求出mn

即可。由定义可知m+n=2a…①;由

余弦定理得m2+n2-

2mncosθ=(2c2=4(a2-b2…②。

1 2-②得:2mn(1+cosθ=4b2,

mn=,所以

S=mnsinθ= b2= b2tan。

(2)女生讨论:已知双曲线-=1

(a>0,b>0),F1,F2为左右两焦

点,P为椭圆上一点,且

∠F1PF2=θ,此时△F1PF2的面积?

经过分析同上利用定义和余弦定理

得出结论S =b2cot。

这题是考查学生圆锥

曲线的第二定义及余

弦定理的应用。采用

男女生分开做难度相

近的题,既培养学生

团结合作精神,又能

形成竞争意识。

△F1PF2的面积S。

(2)双曲线有类似结论吗?是写出并求出。

例4.已知椭圆+=1(a>b>0),P为椭圆上一点,求证满足下列条件的kPM·kPN为一定值,①M、N为长轴的两个端点;②M、N 为在椭圆上关于原点对称的两点。

O

X

Y

P(xo,yo

M(-a,0)

N(a,0)

X

Y

O

P(xo,yo

M(m,n)

N(-m,-n)

思考:双曲线有这个结论吗?试写出。男生证明:①由题意得M(-a,

0)、N(a,0),设P(xo,yo

∵P在椭圆上,∴+=1,

变形得xo2-a2=-yo2,

又∵kPM·kPN=·=,

∴kPM·kPN=-。

女生证明:②由题意可设M(m,

n)、N(-m,-n),P(xo,yo

∵M、P在椭圆上,

∴+=1,+=1,变形得

yo2=b2(1-,n2=(1-,yo2-

n2=b2,∴kPM·kPN===-。

讨论:已知双曲线-=1(a>0,

b>0),P为椭圆上一点,求证满足

下列条件的kPM·kPN为一定值,

①M、N为长轴的两个端点;②M、

N为在椭圆上关于原点对称的两

点。

方法同上可得在双曲线的结论为

kPM·kPN=

这题考查圆锥曲线几

何性质中的对称性及

第二定义的应用。通

过圆锥曲线方程形式

上的共同点的联想对

比,培养学生的类比

思维能力。

布置作业作业题目略1置的作业有剃度,

不能一刀切。

2布置一些思考题,

使学有余力的学生的

创造性得到进一步的

发挥。

五板书设计

圆锥曲线统一定义例1 例3

例2 例4

六教学后记

在数学解题过程中,当思维遇到障碍时,运用类比推理,往往能实现知识的迁移,将已学过的知识(如例1与例2)或已掌握的解题方法(如例3、例4、例5)迁移过来,就有“柳暗花明又一村”的感觉了。

当然类比在解析几何的实际应用还有很多,例如新课学习焦半径,中点弦的应用等等都可以通过类比来进行学习。通过类比,学生可以对所学知识形成一个完整的体系,前后知识融会贯通后就能达到举一反三了。

研究数学的方法和手段越来越多,但类比方法仍然是我们数学教学中的一种重要的手段。在强调素质教育的今天,类比的方法应该得到进一步的加强。中学数学教材中可用来类比的素材很多,这就有待我们教师在教学中总结发现,把培养学生的类比联想思维的工作落到实处,那我们学生的思维就会上一个台阶。

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油! 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 1 1 c a <2 2 c a . 其中正确式子的序号是B

A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C .(0, 2 D .,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .92 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为 A B C D -

高考数学圆锥曲线专题复习

圆锥曲线 一、知识结构 1.方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上?f(x0,y 0)=0; 点P0(x0,y0)不在曲线C上?f(x0,y0)≠0 两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则 f1(x0,y0)=0 点P0(x0,y0)是C1,C2的交点? f2(x0,y0) =0 方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.

2.圆 圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: (1)标准方程 圆心在c(a,b),半径为r 的圆方程是 (x-a)2 +(y-b)2 =r 2 圆心在坐标原点,半径为r 的圆方程是 x 2 +y 2 =r 2 (2)一般方程 当D 2 +E 2 -4F >0时,一元二次方程 x 2 +y 2 +Dx+Ey+F=0 叫做圆的一般方程,圆心为(-2D ,-2 E ),半径是 2 4F -E D 22+.配方,将方程 x 2 +y 2 +Dx+Ey+F=0化为 (x+2D )2+(y+2 E )2=44 F -E D 22+ 当D 2 +E 2 -4F=0时,方程表示一个点 (-2D ,-2 E ); 当D 2 +E 2-4F <0时,方程不表示任何图形. 点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则 |MC |<r ?点M 在圆C 内,|MC |=r ?点M 在圆C 上,|MC |>r ?点M 在圆C 内, 其中|MC |=2 02 0b)-(y a)-(x +. (3)直线和圆的位置关系 ①直线和圆有相交、相切、相离三种位置关系 直线与圆相交?有两个公共点 直线与圆相切?有一个公共点 直线与圆相离?没有公共点 ②直线和圆的位置关系的判定 (i)判别式法 (ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d= 2 2 C Bb Aa B A +++与半径r 的大小关系来判 定.

2021年高考数学圆锥曲线的定义、方程与性质

2021年高考数学圆锥曲线的定义、方程与性质 (1)圆锥曲线的定义、方程与性质是每年高考必考的内容.以选择题、填空题的形式考查,常出现在第4~12或15~16题的位置,着重考查圆锥曲线的几何性质与标准方程,难度中等. (2)圆锥曲线的综合问题多以解答题的形式考查,常作为压轴题出现在第19~20题的位置,一般难度较大. 考点一 圆锥曲线的定义与标准方程 [例1] (1)(2019·全国卷Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( ) A.x 22+y 2 =1 B.x 23+y 2 2=1 C.x 24+y 2 3 =1 D.x 25+y 2 4 =1 (2)(2019·全国卷Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆 x 23p +y 2 p =1的一个焦点,则p =( ) A .2 B .3 C .4 D .8 (3)(2019·郑州模拟)设F 1,F 2分别是双曲线C :x 2a 2-y 2 b 2=1(a >0,b >0)的左、右焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( ) A.2x ±y =0 B.x ±2y =0 C .x ±2y =0 D.2x ±y =0 1.椭圆x 25+y 2 4=1的左焦点为F ,直线x =m 与椭圆相交于点M ,N ,当△FMN 的周长 最大时,△FMN 的面积是( )

A. 55 B.655 C.855 D.455 2.(2019·福州模拟)已知双曲线C :x 2a 2-y 2 b 2=1(a >0,b >0)的右焦点为F ,点B 是虚轴 的一个端点,线段BF 与双曲线C 的右支交于点A ,若BA ―→=2AF ―→,且|BF ―→ |=4,则双曲线C 的方程为( ) A.x 26-y 2 5=1 B.x 28-y 2 12=1 C.x 28-y 2 4=1 D.x 24-y 2 6 =1 3.若抛物线y 2=2px (p >0)上一点到焦点和到抛物线对称轴的距离分别为10和6,则抛物线的标准方程为____________________. 考点二 圆锥曲线的性质 [例2] (1)(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为3 6 的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( ) A.2 3 B.12 C.13 D.14 (2)(2019·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2 b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2, 过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A ―→=AB ―→, F 1B ―→·F 2B ―→ =0,则C 的离心率为________. (3)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别 交于A ,B 两点,O 为坐标原点.若双曲线的离心率为5,△AOB 的面积为2,则p =________.

高中数学选修2-1圆锥曲线的统一定义 例题解析

圆锥曲线的统一定义 例题解析 【例1】以下同个关于圆锥曲线的命题中 ①设A 、B 为两个定点,k 为非零常数,k PB PA =-||||,则动点P 的轨迹为双曲线; ②设定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若),(2 1 +=则动点P 的轨迹为椭圆; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率; ④双曲线 135 192522 22=+=-y x y x 与椭圆有相同的焦点. 其中真命题的序号为 (写出所有真命题的序号) 【分析】本题主要考查圆锥曲线的定义和性质主要由a,b,c,e 的关系求得 【解】双曲线的第一定义是:平面上的动点P 到两定点是A,B 之间的距离的差的绝对值为常数 2a, 且2||a AB <,那么P 点的轨迹为双曲线,故①错, 由1 ()2 OP OA OB =+,得P 为弦AB 的中点,故②错, 设22520x x -+=的两根为12,x x 则12125 ,12 x x x x +==可知两根互与为倒数,且均为正,故③ 对, 22 1259x y -=的焦点坐标(),而2 2135 x y +=的焦点坐标(),故④正确. 【点评】要牢牢掌握椭圆,双曲线的第一定义,同时还要掌握圆锥曲线的统一定义,弄清圆锥曲线中a,b,c,e 的相互关系. 【例2】设,2 0π θ<<曲线1sin cos 1cos sin 2222=-=+θθθθy x y x 和有4个不同的交点. (Ⅰ)求θ的取值范围; (Ⅱ)证明这4个交点共圆,并求圆半径的取值范围. 【分析】本小题主要考查坐标法、曲线的交点和三角函数性质等基础知识,以及逻辑推理能力和运算能力. 【解】(I )两曲线的交点坐标(x ,y )满足方程组 ?????=-=+,1sin cos ,1cos sin 2222θθθθy x y x 即?????-=+=. sin cos ,cos sin 22θθθθy x

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

圆锥曲线间的三个统一统一定义、统一公式、统一方程

圆锥曲线间的三个统一 巴彦淖尔市奋斗中学0504班 高卓玮 指导老师:薛红梅 世界之美在于和谐,圆锥曲线间也有其在的和谐与统一,通过对圆锥曲线图形和已知公式的变换,我们可以得出以下结论。 一、四种圆锥曲线的统一定义 动点P 到定点F 的距离到定直线L 的距离之比等于常数e ,则当01e <<时,动点P 的轨迹是椭圆:当1e =时,动点P 的轨迹是抛物线;当1e >时,动点P 的轨迹是双曲线;若0e =,我们规定直线L 在无穷远处且P 与F 的距离为定值(非零),则此时动点P 的轨迹是圆,同时我们称e 为圆锥曲线的离心率,F 为焦点,L 为准线。 二、四种圆锥曲线的统一方程 从第1点我们可以知道离心率影响着圆锥曲线的形状。为了实现统一我们把椭圆、双曲线进行平移,使椭圆、双曲线的右顶点与坐标原点重合,记它们 的半通径为p ,则2 b p a =。 如图1,将椭圆22 221(0)x y a b a b +=>>按向量(,0a )平移 得到2222()1x a y a b -+= ∴22 2222b b y x x a a =+ ∵椭圆的半通径211||b F M p a ==,2 221b e a =- ∴椭圆的方程可写成2222(1)y px e x =+- (01)e << 类似的,如图2,将双曲线22 221(0,0)x y a b a b -=>>按向量(,0)a -平移得到

2222()1x a y a b +-= ∴22 2222b b y x x a a =+ ∵双曲线的半通径222||b F M a =,2 221b e a =- ∴双曲线方程可写成2222(1)(1)y px e x e =+-> 对于抛物线22(0)y px x =>P 为半通径,离心率1e =,它也可写成 2222(1)(1)y px e x e =+-= 对于圆心在(P ,0),半径为P 的圆,其方程为222()x p y p -+=,它也可写成2222(1)(0)y px e x e =+-= 于是在同一坐标下,四种圆锥曲线有统一的方程2222(1)y px e x =+-,其中P 是曲线的半通径长,当0e =,01e <<,1,1e e =>时分别表示圆、椭圆、抛物线、双曲线。 三、四种圆锥曲线的统一焦点坐标、准线方程和焦半径公式 在同一坐标系下,作出方程2222(1)y px e x =+-所表示的四种圆锥曲线,如图3,设P 、B 、A 、C 分别是圆的圆心,椭圆的左焦点、抛物线的焦点、双曲线的右焦点统一记为2222(1)y px e x =+-的焦点F 则有222(1)(1)11 c a a e P OC c a e a c e e --=-===>+++ (1)21 p p OA e e ===+,222(1)(01)11a c a e p OB a c e a c e e --=-===<<+++ (0)1 p OP p e e ===+ 即方程2222(1)y px e x =+-所表示的四种圆锥曲线的一个焦点为(,0)1 p F e +,设焦点F 相应的准线为x m =,则有OF e m =-。

高中数学学案:圆锥曲线的定义在解题中的应用

高中数学学案:圆锥曲线的定义在解题中的应用 1. 了解圆锥曲线的统一定义,能够运用定义求圆锥曲线的标准方程. 2. 理解圆锥曲线准线的意义,会利用准线进行相关的转化和计算. 1. 阅读:选修11第52~53页(理科阅读选修21相应内容);阅读之前先独立书写出圆锥曲线的统一定义,并尝试根据圆锥曲线的统一定义推导出椭圆方程. 2. 解悟:①写出圆锥曲线的统一定义,写出椭圆x 2a 2+y 2b 2=1(a>b>0)和双曲线x 2a 2-y 2 b 2=1(a>0,b>0)的准线方程;②椭圆、双曲线、抛物线各有几条准线?有什么特征? 3. 在教材上的空白处完成选修11第54页练习第2题(理科完成选修21相应任务). 基础诊断 1. 点P 在椭圆x 225+y 2 9=1上,它到左焦点的距离是它到右焦点距离的两倍,则点P 到左准线 的距离为 25 3 . 解析:设椭圆的左,右焦点分别为F 1,F 2,由题意知PF 1+PF 2=2a =10,PF 1=2PF 2,所以PF 1=203,PF 2=103.因为椭圆x 225+y 29=1的离心率为e =45,所以点P 到左准线的距离d =PF 1e =20 345=253. 2. 已知椭圆x 225+y 29=1上一点的横坐标为2,则该点到左焦点的距离是 33 5 . 解析:椭圆x 225+y 29=1,则a =5,b =3,c =4,所以离心率e =c a =4 5.由焦半径公式可得该点到左 焦点的距离为a +ex =5+45×2=33 5. 3. 焦点在x 轴上,且一个焦点到渐近线的距离为3,到相应准线的距离为9 5的双曲线的标准 方程为 x 216-y 2 9=1 . 解析:设双曲线的方程为x 2a 2-y 2b 2=1,焦点为(-c,0),(c,0),渐近线方程为y =±b a x,准线方程为x =±a 2c ,由题意得焦点到渐近线的距离d =bc a 2+ b 2=bc c = b =3,所以b =3.因为焦点到相应准线的

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线11与12是同一平面两条互相垂直的直线, 交点是A ,点B 、D 在直线11上(B 、 D 位于点A 右侧),且|AB|=4 , |AD|=1 , M 是该平面上的一个动点, M 在l i 上的射影点 是 N ,且 |BN|=2|DM|. (I )建立适当的坐标系,求动点 M 的轨迹C 的方程. (II )过点D 且不与11、12垂直的直线1交(I )中的轨迹C 于E 、F 两点;另外平面上的点 G 、 求点G 的横坐标的取值围. M ___ B ___________________ A D N B 11 、3 e 2. 设椭圆的中心是坐标原点,焦点在 x 轴上,离心率 2,已知 点P(0,3) 到这个椭圆 上的点的最远距离是 4,求这个椭圆的方程. H 满足: AD( R); G E G F 2G H ; G H E F 0. 12

2 2 C x y 1( b 0) 3. 已知椭圆/ b2的一条准线方程是25 , 4其左、右顶点分别

(I) 求椭圆C i的方程及双曲线C2的离心率; (H)在第一象限取双曲线C2上一点P,连结AP交椭圆C i于点M,连结PB并延长交椭 圆C i于点N,若AM MP.求证:MN ?AB 0. 4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45。的直线交 椭圆于A, B两点.设AB中点为M,直线AB与OM的夹角为 a. (1) 用半焦距c表示椭圆的方程及tan ; (2) 若2b>0)的离心率 3 ,过点A (0, -b)和B (a, 0)的直线 ,3 与原点的距离为 2 (1)求椭圆的方程 (2)已知定点E (-1, 0),若直线y= kx + 2 (k乒0与椭圆交于C D两点问:是否存在k的值,使以CD 为直径的圆过E点?请说明理由 2 2 C x y 是A、B;双曲线, a2b2 1 的一条渐近线方程为3x- 5y=0. 2 x 2 5.已知椭圆a

高考数学一轮复习专题突破训练圆锥曲线

圆锥曲线 一、填空题 1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值 为___ 2 __________。 2、(2013年江苏高考)双曲线19 162 2=-y x 的两条渐近线的方程为 。 3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为 )0,0(122 22>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆 C 的离心率为 。 4、( 南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C : y x 42=的焦点为F ,定点)0, 22(A ,若射线FA 及抛物线C 相交于点M ,及抛物线C 的准线相交于点N ,则FM :MN= 5、(苏锡常镇四市 高三教学情况调研(二))已知双曲线22 221(,0) x y a b a b -=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲ 6、(泰州市 高三第二次模拟考试)已知双曲线22 14x y m -=的渐近线方程为 2 y x =± ,则m = ▲

7、(盐城市 高三第三次模拟考试)若抛物线28y x =的焦点F 及双曲线 22 13x y n -=的一个焦点重合,则n 的值为 ▲ 8、( 江苏南京高三9月调研)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近 线方程 为y =±3x ,则该双曲线的离心率为 ▲ 9、( 江苏苏州高三9月调研)已知双曲线22 15 x y m -=的右焦点及抛物线 212y x =的焦点相同,则此双曲线的渐近线方程为 ▲ 10、(南京市、盐城市 高三)若双曲线222(0)x y a a -=>的右焦点及抛物线 24y x =的焦点重合,则a = ▲ . 11、(南通市 高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物 线24y x =焦点的双曲线的方程是 12、(苏州市 高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为 13、(泰州市 高三上期末)双曲线12222=-b y a x 的右焦点到渐近线的距离是其 到左顶点距离的一半,则双曲线的离心率e = ▲ 14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线22 19x y m -=的一个焦点为(5,0),则实数 m = ▲ 15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐 标系xOy 中,双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线及抛物线y 2=4x Y

高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反; ②标准方程中一次项的字母与对称轴和准线方程的字母一

致; ③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像; 二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

圆锥曲线的统一定义 (2)

§2.5圆锥曲线的统一定义 教学目的: 1、知识与技能: 掌握椭圆、双曲线的第二定义以及准线的概念 2.过程与方法 类比抛物线的定义引出椭圆和双曲线的第二定义,借助几何画板等多媒体手段探究出轨迹的形成,进一步推导出椭圆和双曲线的方程。 3.情感、态度与价值观 通过本节课的学习,可以培养我们类比推理的能力,探究能力,激发我们的学习兴趣,培养学生思考问题、分析问题、解决问题的能力. 教学重点:圆锥曲线的统一定义的形成 教学难点:圆锥曲线方程的推导 教学过程: 一.情境设置 复习回顾 1、抛物线的定义: 探究与思考: 1≠d PF 呢 2、在推导椭圆的标准方程时,我们曾得到这样一个式子: 将其变形为: 你能解释这个式子的几何意义吗? 二、知识建构 例1.已知点P(x,y)到定点F(c,0)的距离与它到定直线c a x l 2 :=的距离的比是常数 c a (a>c>0),求 P 的轨迹. 变题:已知点P(x,y)到定点F(c,0)的距离与它到定直线c a x l 2 := 的距离的比是常数 c a (c>a>0),求P 的轨迹. 222)(y c x a cx a +-=-a c x c a y c x =-+-22 2)(

圆锥曲线的统一定义:平面内到一定点 F 与到一条定直线l 的距离之比为常数 e 的点的轨迹.( 点F 不在直线l 上) (1)当 0< e <1 时, 点的轨迹是 (2)当 e >1 时, 点的轨迹是 (3)当 e = 1 时, 点的轨迹是 其中常数e 叫做圆锥曲线的离心率, 定点F 叫做圆锥曲线的焦点, 定直线l 就是该圆锥曲线的准线. 思考 1、上述定义中只给出了一个焦点,一条准线,还有另一焦点,是否还有另一准线? 2、另一焦点的坐标和准线的方程是什么? 3、题中的|MF|=ed 的距离d 到底是到哪一条准线的距离?能否随意选一条? 准线: 定义式: )0(12222>>=+b a b y a x ) 0,0(122 22>>=-b a b y a x

数学高考圆锥曲线压轴题

数学高考圆锥曲线压轴 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

数学高考圆锥曲线压轴题经典预测一、圆锥曲线中的定值问题 ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的离心率e= 3 2,a+b=3. (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值. ★★如图,椭圆C:x2 a2+ y2 b2=1(a>b>0)经过点P(1, 3 2),离心率e= 1 2,直 线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3若存在,求λ的值;若不存在,说明理由. ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的左右焦点分别是F1,F2,离心率为 3 2,过 F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围; (Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只 有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明 1 kk1+ 1 kk2 为定值,并求出这个定值. - 2 -

二、圆锥曲线中的最值问题 +y2 b2=1( a>b>0)的离心率为 (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. - 3 -

2020高考数学圆锥曲线复习方法

2020高考数学圆锥曲线复习方法 2017高考数学圆锥曲线复习方法 圆锥曲线之所以叫做圆锥曲线,是因为它是从圆锥上截出来的。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直于锥轴的平面去截圆锥,得到了圆;把平面渐渐倾斜,得到了 椭圆;当平面倾斜到"和且仅和"圆锥的一条母线平行时,得到了抛物线;用平行圆锥的轴的平面截取,可得到双曲线的一边,以圆锥顶点 做对称圆锥,则可得到双曲线。 在高中的学习中,平面解析几何研究的两个主要问题,一个是根据已知条件,求出表示平面曲线的方程;而另一个就是通过方程,研 究平面曲线的性质. 那么接下来,我们就就着这两个问题来说啦 1、曲线与方程 首先第一个问题,我们想到的就是曲线与方程的这部分内容了。 在学习圆锥曲线这部分内容之前,我们最早接触到的就是曲线与方程这部分内容。在这部分呢,我们要注意到的是几种常见求轨迹 方程的方法。在这里呢,简单的说一下,一共有四种方法:1.直接 法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的 几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这 种方法叫直接法. 2、定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方 法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 3、相关点法

若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法). 4、待定系数法 求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求 (二)椭圆,双曲线,抛物线 这部分就可以研究第二个问题了呢。在椭圆,双曲线以及抛物线里,最最重要的就是他们的标准方程,因为我们可以从它们的标准方程中看到许多东西,包括顶点,焦点,图形的画法等等等等,所以这个呢是要求我们必须要会的。(不会的通宵快去恶补~~~) 在一般做题的时候,我们要首先要根据题意来画图,这点特别重要,我们要清楚题目要我们求什么才能继续做下去不是。接下来就是根据题意来写过程了,我们的一般步骤呢都是建系,设点,联立方程,化简,判断△,韦达定理,列关系式,整理,作答。在考试中,我们按照步骤一步一步的写,写到韦达定理至少8分有了。当然了,各圆锥曲线的几何性质也尤其重要,包括离心率,顶点,对称性,范围,以及焦点弦,准线,渐近线等等。这些性质大家也要熟练掌握并且会应用。在这部分呢,还有很多很多的专题,譬如弦长问题,那大家还记得弦长公式吗?中点弦问题,我们通常会用到点差法,那么何为点差法呢?就是把两点坐标代入曲线方程作差后得到直线的斜率和弦中点坐标之间的关系式,这种方法。还有一类问题就是直线与圆锥曲线的位置关系。分为三大类:有直线与椭圆的位置关系,就是看△;直线与双曲线的位置关系,先看联立之后的方程中的a,如果a=0方程有一解,直线与双曲线有一个公共点(直线与渐近线平行),a≠0的时候,还是看△啦;而直线与抛物线与直线与双曲线的位置关系是类似的,当a=0直线与抛物线有一个公共点(直线与抛物线的轴平行或重合),a≠0的时候,还是看△。

2021年高考数学 圆锥曲线复习课

实用文档 2021年高考数学 圆锥曲线复习课 1. 一定要重视椭圆、双曲线、抛物线(注:抛物线只有一个定义)第一定义,有很多题可以转化为定义去做。 例如: (1) 求与圆和圆相切的点的轨迹方程 (2) 求与圆相切且过点(5,0)的点的轨迹方程 (3) 是双曲线)0,0(122 22>>=-b a b y a x 的左、右焦点,M ,N 是左、右顶点,P 是双曲线上的一点,且的内切 圆与切于点T.求T 的坐标 (4) 试在抛物线上找一点P ,使其到焦点F 的距离与到A (2,1)的距离之和最小。求该点坐标 2. 一定要重视椭圆、双曲线、抛物线(注:抛物线只有一个定义)第二定义: (1)已知椭圆内有一点A (1,1),分别是椭圆的左、右焦点,点P 是椭圆上一点.(1)求的最大值、最小值及对应的点P 坐标(2)

实用文档 求的最小值及对应的点P 的坐标 (2)推导椭圆、双曲线、抛物线的焦半径公式非常方便 (3)特别重视抛物线的定义:①(1)AB 为抛物线上的动弦,且|AB|=a (a 为常数,且),求弦AB 中点M 离准线最近的距离(2)在(1)中如把改成0->->>k b k a b a )焦点相同)共轭双曲线()、以直线为渐近线的双曲线系方程() (2) 要会描述非标准位置的圆锥曲线:①给你一个非标准位置的 圆锥曲线,你能说出它的焦点、顶点坐标,准线方程,以及能进一步地求出它的离心率(曲线

高中数学圆锥曲线题目(答案)

解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42) (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,分析:(1)A 在抛物线外,如图,连PF ,则PF PH =P 、F 三点共线时,距离和最小。 (2)B 在抛物线内,如图,作QR ⊥l 交于R ,则当B 、Q 、R 最小。 解:(1)(2,2) 连PF ,当A 、P 、F 三点共线时,PF AP PH AP +=+最小,此时y=22(x-1),代入y 2=4x 得P(2,22),(注:另一交点为( 2,2 1 -)

高考数学一轮复习 圆锥曲线的统一定义教案

江苏省泰兴市第三中学2015届高考数学一轮复习 圆锥曲线的 统一定义教案 一、教学目标 1. 了解圆锥曲线的统一定义. 2.掌握根据标准方程求圆锥曲线的准线方程的方法。 二、教学重点、难点 重点:圆锥曲线的统一定义。 难点:圆锥曲线的统一定义 三、教学过程 (一) 创设情境 我们知道,平面内到一个定点F 的距离和到一条定直线L (F 不在L 上)的距离 的比等于1的动点P 的轨迹是抛物线。如图(1)即 1PF PA =时,点P 的轨迹是抛物线。 下面思考这样个问题:当这个比值是一个不等于1的常数时,我们来观察动点P 的轨迹又是什么曲线呢?比如: 12PF PA =和2PF PA =时,动点P 的轨迹怎么变化? (二 )师生探究 下面我们来探讨这样个问题: 例1:已知点P (x,y )到定点F (c,0)的距离与它到定直线l :x=2 a c 的距离的比是常数 c a (a >c >0),求点P 的轨迹。

结论:点P 的轨迹是焦点为(-c ,0),(c ,0),长轴、短轴分别为2a ,2b 的椭圆。这个椭圆的离心率e 就是P 到定点F 的距离和它到定直线l (F 不在l 上)的距离的比。 变式:如果我们在例1中,将条件(a >c >0)改为(c >a >0),点P的轨迹又发生如何变化呢? 下面,我们对上面三种情况总结归纳出圆锥曲线的一种统一定义. 结论:圆锥曲线统一定义:平面内到一个定点F和到一条定直线L (F 不在L 上)的距离的比等于常数e 的点的轨迹.当0<e <1时,它表示椭圆;当e >1时,它表示双曲线;当e =1时,它表示抛物线.(其中e 是圆锥曲线的离心率,定点F是圆锥曲线的焦点,定直线是圆锥曲线的准线) 例3:已知动点M 到A (2,0)的距离等于它到直线x=-1的距离的2倍,求点M 的轨迹方程。 例4.椭圆22 2214x y b b +=上一点到右准线的距离是,求该点到椭圆左焦点的距离. 例5.若椭圆22 143 x y +=内有一点(1,1)P -,F 为右焦点,椭圆上有一点M 使||2||MP MF +最小,求点M 的坐标及最小值。

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧,且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|. 2. (Ⅰ建立适当的坐标系,求动点M的轨迹C的方程. (Ⅱ过点D且不与l1、l2垂直的直线l交(Ⅰ中的轨迹C于E、F两点;另外平面上的点G、H满足: 求点G的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在轴上,离心率,已知点到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆的一条准线方程是其左、右顶点分别 是A、B;双曲线的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB 并延长交椭圆C1于点N,若. 求证: 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为 a. (1)用半焦距c表示椭圆的方程及tg;

(2)若2 <3 ,求椭圆率心率 e 的取值范围 . 5. 已知椭圆(a>b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为 (1)求椭圆的方程 (2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C D两点问:是否存在k的值,使以CD为直径的圆过E点?请说明理由 6. 在直角坐标平面中,的两个顶点的坐标分别为,,平 面内两点同时满足下列条件: ①;②;③∥ (1)求的顶点的轨迹方程; (2)过点的直线与(1)中轨迹交于两点,求的取值范围 7. 设,为直角坐标平面内x轴.y轴正方向上的单位向量,若 ,且 (Ⅰ)求动点M(x,y的轨迹C的方程; (Ⅱ)设曲线C上两点A.B,满足(1直线AB过点(0,3),(2若,则OAPB为矩形,试求AB方程.

相关主题
文本预览
相关文档 最新文档